Coastal Wind Power in Southern Santa Catarina, Brazil
Abstract
:1. Introduction
2. Data and Methods
2.1. LIDAR Profiler
2.2. Power Density
2.3. Wind Power Output
2.4. Generated Energy
2.5. Capacity Factor
2.6. Probability Distributions
3. Results and Discussion
3.1. Wind Variability in 2017–2018
3.1.1. Wind Speed and Direction
3.1.2. Wind Power Density
3.1.3. Turbine Output
3.2. Analysis of Probability Distributions
3.3. Interannual Variability of the SASH
3.4. Monthly Variability
3.5. A Hypothetical Wind Farm
3.6. Comparisons with Other Locations in Santa Catarina
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pinto, R.J.; Santos, V.M.L. Energia eólica no Brasil: Evolução, desafios e perspectivas. RISUS J. Innov. Sustain. 2019, 10, 124–142. [Google Scholar] [CrossRef] [Green Version]
- ANEEL. SIGA—Sistema de Informações de Geração: Matriz Elétrica Brasileira. Available online: https://www.aneel.gov.br/siga (accessed on 7 May 2020).
- ABEEólica. 2018 Annual Wind Energy Report; Technical Report; Associação Brasileira de Energia Eólica: São Paulo, Brazil, 2018; Available online: http://abeeolica.org.br/ (accessed on 7 May 2020).
- Brannstrom, C.; Gorayeb, A.; Souza, W.F.; Leite, N.S.; Chaves, L.O.; Guimarães, R.; Gê, D.R.F. Perspectivas geográficas nas transformações do litoral brasileiro pela energia eólica. Rev. Bras. Geogr. 2018, 63, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.S. Os Impactos Socioambientais do Empreendimento Eólico em Comunidades de Fundo de Pasto no Município de Campo Formoso. Bachelor’s Thesis, Universidade do Estado da Bahia, Salvador, Brazil, 2017. [Google Scholar]
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; Restrepo, C.; Kontos, E.; Pinto, R.T.; Bauer, P. Trends of offshore wind projects. Renew. Sustain. Energy Rev. 2015, 49, 1114–1135. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Comparison of potential power production at on- and offshore sites. Wind Energy 2001, 4, 173–181. [Google Scholar] [CrossRef]
- Garvine, R.W.; Kempton, W. Assessing the wind field over the continental shelf as a resource for electric power. J. Mar. Res. 2008, 66, 751–773. [Google Scholar] [CrossRef]
- Pimenta, F.M.; Silva, A.R.; Assireu, A.T.; Almeida, V.S.; Saavedra, O.R. Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability. Energies 2019, 12, 4195. [Google Scholar] [CrossRef] [Green Version]
- EPE. Roadmap Eólica Offshore Brasil; Technical Report; Empresa de Pesquisa Energética: Brasília, Brasil, 2020. Available online: http://www.epe.gov.br (accessed on 11 May 2020).
- Petrobrás. Fatos & Dados: Estamos Desenvolvendo o Primeiro Projeto Piloto de Energia Eólica Offshore do Brasil. Available online: http://www.petrobras.com.br/fatos-e-dados/estamos-desenvolvendo-o-primeiro-projeto-piloto-de-energia-eolica-offshore-do-brasil.htm (accessed on 7 May 2020).
- Silva, A.R.; Pimenta, F.M.; Assireu, A.T.; Spyrides, M.H.C. Complementarity of Brazil’s hydro and offshore wind power. Renew. Sustain. Energy Rev. 2016, 56, 413–427. [Google Scholar] [CrossRef]
- Global Wind Atlas. Mean Wind Speed Map: Brazil|Santa Catarina. Available online: https://globalwindatlas.info/area/Brazil/Santa%20Catarina (accessed on 22 February 2019).
- Dalmaz, A. Estudo do Potencial Eólico e Previsão de Ventos para Geração de Eletricidade em Santa Catarina. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2007. [Google Scholar]
- ANEEL. SIGA—Sistema de Informações de Geração: Lista de Usinas por Estado/Município. Available online: https://www.aneel.gov.br/siga (accessed on 7 May 2020).
- Correa, A.G. Climatologia dos ventos e potencial eólico offshore de Santa Catarina. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2018. [Google Scholar]
- Nassif, F.B.; Pimenta, F.M.; D’Aquino, C.A.; Assireu, A.T.; Garbossa, L.H.P.; Passos, J.C. Coastal wind measurements and power assessment using a LIDAR on a pier. Rev. Bras. Meteorol. 2020, 35, 1–14. [Google Scholar] [CrossRef]
- Pires, C.H.M. Avaliação dos recursos eólicos com um LIDAR instalado em uma plataforma costeira do sul do Brasil. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2019. [Google Scholar]
- Peña, A.; Hasager, C.B.; Gryning, S.; Courtney, M.; Antoniou, I.; MIkkelsen, T. Offshore wind profiling using light detection and ranging measurements. Wind Energy 2009, 12, 105–124. [Google Scholar] [CrossRef]
- Standridge, C.R.; Zeitler, D.; Nieves, Y.; Turnage, T.J.; Nordman, E.E. Validation of a Buoy-Mounted Laser Wind Sensor and Deployment in Lake Michigan; Technical Report; Grand Valley State University: Allendale Charter Twp, MI, USA, 2012. [Google Scholar]
- Hasager, C.B.; Stein, D.; Courtney, M.; Peña, A.; Mikkelsen, T.; Stickland, M.; Oldroyd, A. Hub height ocean winds over the North Sea observed by the NORSEWInD lidar array: Measuring techniques, quality control and data management. Remote Sens. 2013, 5, 4280–4303. [Google Scholar] [CrossRef] [Green Version]
- Mathisen, J.P. Measurement of wind profile with a buoy mounted lidar. Energy Procedia 2013, 30, 12. [Google Scholar]
- Shimada, S.; Ohsawa, T.; Ohgishi, T.; Kikushima, Y.; Kogaki, T.; Kawaguchi, K.; Nakamura, S. Offshore wind profile measurements using a doppler LIDAR at the Hazaki oceanographical research station. In Proceedings of the International Conference on Optical Particle Characterization (OPC 2014), Tokyo, Japan, 10–14 March 2014; Aya, N., Ed.; SPE: Bellingham, WA, USA, 2014. [Google Scholar]
- Gottschall, J.; Wolken-Möhlmann, G.; Viergutz, T.; Lange, B. Results and conclusions of a floating-lidar offshore test. Energy Procedia 2014, 53, 156–161. [Google Scholar] [CrossRef]
- Howe, G. Developing a buoy-based offshore wind resource assessment system. Sea Technol. Mag. 2014, 55, 41–46. [Google Scholar]
- Bischoff, O.; Würth, I.; Cheng, P.; Tiana-Alsina, J.; Gutiérrez, M. Motion effects on lidar wind measurement data of the EOLOS buoy. In Proceedings of the First International Conference on Renewable Energies Offshore, Lisbon, Portugal, 24–26 November 2014; Soares, C.G., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Shimada, S.; Goit, J.P.; Ohsawa, T.; Kogaki, T.; Nakamura, S. Coastal Wind Measurements Using a Single Scanning LiDAR. Remote Sens. 2020, 12, 1347. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, Y.; Santos, P.A.A.; Haas, R.; Passos, J.C.; Taves, F.F. Wind Shear Assessment Using Wind LiDAR Profiler and Sonic 3D Anemometer for Wind Energy Applications—Preliminary Results. In Renewable Energy in the Service of Mankind Vol. I; Sayigh, A., Ed.; Springer: Cham, Switzerland, 2015; Volume 1, pp. 893–902. [Google Scholar] [CrossRef]
- Santos, P.A.A.; Sakagami, Y.; Haas, R.; Passos, J.C.; Taves, F.F. Lidar measurements validation under coastal condition. Opt. Pura Apl. 2015, 48, 193–198. [Google Scholar] [CrossRef]
- Salvador, N.; Loriato, A.G.; Santiago, A.; Albuquerque, T.T.A.; Reis, N.C., Jr.; Santos, J.M.; Landulfo, E.; Moreira, G.; Lopes, F.; Held, G.; et al. Study of the Thermal Internal Boundary Layer in Sea Breeze Conditions Using Different Parameterizations: Application of the WRF Model in the Greater Vitória Region. Rev. Bras. Meteorol. 2016, 31, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Pitter, M.; Slinger, C.; Harris, M. Introduction to Continuous-Wave Doppler Lidar; Technical Communication; Zephir Limited: Ledbury, UK, 2013. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; Wiley: Chichester, UK, 2009; 704p. [Google Scholar]
- Amaral, B.M. Modelos VARX para Geração de Cenários de Vento e Vazão Aplicados à Comercialização de Energia. Master’s Thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Pimenta, F.M.; Kempton, W.; Garvine, R.W. Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil. Renew. Energy 2008, 33, 2375–2387. [Google Scholar] [CrossRef]
- Stevens, M.J.M.; Smulders, P.T. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng. 1979, 3, 132–145. [Google Scholar] [CrossRef]
- Seguro, J.V.; Lambert, T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind. Eng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Chang, T.P. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Appl. Energy 2011, 88, 272–282. [Google Scholar] [CrossRef]
- Bingöl, F. Comparison of Weibull estimation methods for diverse winds. Adv. Meteorol. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Mohammadi, K.; Alavi, O.; Mostafaeipour, A.; Goudarzi, N.; Jalilvand, M. Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers. Manag. 2016, 108, 332–335. [Google Scholar] [CrossRef]
- Wahrlich, J.; Silva, F.A.; Campos, C.G.C.; Rodrigues, M.L.G.; Medeiros, J. Characterization of the predominant wind speed and direction in Santa Catarina, Brazil. Rev. Bras. Clim. 2018, 23, 356–373. [Google Scholar] [CrossRef] [Green Version]
- Bastos, C.C.; Ferreira, N.J. Análise climatológica da alta subtropical do Atlântico Sul. In Proceedings of the XI Congresso Brasileiro de Meteorologia, Rio de Janeiro, Brazil, 16–20 October 2000; pp. 612–619. [Google Scholar]
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.; Custódio, I.S. Ciclones em Superfície nas Latitudes Austrais: Parte I—Revisão Bibliográfica. Rev. Bras. Meteorol. 2017, 32, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Reboita, M.S.; Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Rodrigues, M.L.G.; Franco, D.; Sugahara, S. Climatologia de frentes frias no litoral de Santa Catarina. Rev. Bras. Geofísica 2004, 22, 135–151. [Google Scholar] [CrossRef]
- Cardozo, A.B.; Reboita, M.S.; Garcia, S.R. Climatologia de frentes frias na América do Sul e sua relação com o modo anular sul. Rev. Bras. Clim. 2015, 17, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 2009, 31, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Mardia, K.V.; Jupp, E.P. Directional Statistics; Wiley: West Sussex, UK, 2000. [Google Scholar]
- Gilliland, J.M.; Keim, B.D. Position of the South Atlantic Anticyclone and Its Impact on Surface Conditions across Brazil. J. Appl. Meteorol. Climatol. 2018, 57, 535–553. [Google Scholar] [CrossRef]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic Subtropical High: Climatology and Interannual Variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; Rocha, R.P. The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Rocha, R.P. Relationship between the southern annular mode and southern hemisphere atmospheric systems. Rev. Bras. Meteorol. 2009, 24, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, I.F.A.; Ferreira, N.J.; Silva, M.G.A.J.; Silva Dias, M.A.F. Tempo e Clima no Brasil; Oficina de Textos: São Paulo, Brazil, 2009; 464p. [Google Scholar]
- Andrade, K.M. Climatologia e Comportamento dos Sistemas Frontais Sobre a América do Sul. Master’s Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 2005. [Google Scholar]
- Stech, J.L.; Lorenzetti, J.A. The response of the South Brazil Bight to the passage of wintertime cold fronts. J. Geophys. Res. 1992, 97, 9507–9520. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.S.; Bitencourt, D.P.; Mendonça, M. Comportamento do vento no setor leste de Santa Catarina sob influência de ciclones extratropicais. Rev. Bras. Meteorol. 2012, 27, 39–48. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Woollings, T. Impact of atmospheric blocking on South America in austral summer. J. Clim. 2017, 30, 1821–1837. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common cause of severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Pires, C.H.M. Avaliação do Potencial Eólico da Costa sul Catarinense Através de um Perfilador LIDAR. Undergraduate Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2016. [Google Scholar]
- Tomazelli, L. O Regime dos Ventos e a Taxa de Migração das Dunas Eólicas Costeiras do Rio Grande do Sul, Brasil. Pesquisas em Geociências 1993, 20, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.Y.; Fields, M.J. An Overview of Wind Energy Production Prediction Bias, Losses, and Uncertainties. Wind Energy Sci. Discuss. 2020. under review. [Google Scholar] [CrossRef]
- IBGE. Instituto Brasileiro de Geografia e Estatística: Cidades. Available online: https://cidades.ibge.gov.br (accessed on 7 May 2020).
- CELESC. Mercado de Energia: Dados de consumo. Available online: https://www.celesc.com.br/home/mercado-de-energia/dados-de-consumo (accessed on 11 April 2020).
- Silva, G.K.; Colle, S.; Passos, J.C.; Reguse, W.; Beyer, H.G. Metodologia de avaliação do potencial de geração eólica para o estado de Santa Catarina. In Proceedings of the III Congresso Nacional de Engenharia Mecânica, Belém, Brazil, 10–13 August 2004. [Google Scholar]
- Akdaǧ, S.A.; Dinler, A. A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 2009, 50, 1761–1766. [Google Scholar] [CrossRef]
- Chang, T.P. Estimation of wind energy potential using different probability density functions. Appl. Energy 2011, 88, 1848–1856. [Google Scholar] [CrossRef]
- Wais, P. A review of Weibull functions in wind sector. Renew. Sustain. Energy Rev. 2017, 70, 1099–1107. [Google Scholar] [CrossRef]
- Pimenta, F.M.; Assireu, A.T. Simulating reservoir storage for a wind-hydro hydrid system. Renew. Energy 2015, 76, 757–767. [Google Scholar] [CrossRef]
Vestas V112 3.0 | Senvion 152 6.2 | Vestas V164 8.0 | |
---|---|---|---|
Rated power PT (MW) | 3 | 6.15 | 8 |
Cut-in speed UP (m s−1) | 3 | 3.5 | 4 |
Cut-out speed UD (m s−1) | 25 | 30 | 25 |
Rated speed UR (m s−1) | 12.4 | 11.5 | 13 |
Rotor diameter (m) | 90 | 152 | 164 |
Swept area (m2) | 6362 | 18,146 | 21,124 |
BOOA | BOOA (NE-Sector) | BOOA (SW-Sector) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
N | 48,572 | 50,337 | 28,553 | 23,260 | 200,019 | 27,077 |
± d (°) | 40.15 ± 2.15 | 172.25 ± 3.70 | 43.40 ± 0.48 | 51.63 ± 0.58 | −134.82 ± 0.65 | −140.00 ± 0.54 |
R | 0.17 | 0.10 | 0.80 | 0.76 | 0.74 | 0.76 |
% | NE% | SW% | c | k | Vestas 3.0 | Senvion 6.2 | Vestas 8.0 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eg | CF | Eg | CF | Eg | CF | |||||||||||
JAN | 100 | 5.4 | 15.7 | 6.2 | 6.08 | 1.91 | 185.4 | 0.7 | 0.49 | 22.2 | 1.2 | 0.90 | 19.7 | 1.5 | 1.10 | 18.6 |
FEB | 100 | 5.8 | 34.3 | 4.7 | 6.56 | 1.77 | 254.5 | 0.8 | 0.56 | 28.0 | 1.6 | 1.07 | 25.9 | 1.9 | 1.31 | 24.3 |
MAR | 100 | 5.7 | 16.9 | 7.5 | 6.48 | 1.88 | 232.4 | 0.8 | 0.58 | 25.9 | 1.4 | 1.07 | 23.5 | 1.8 | 1.31 | 22.1 |
APR | 100 | 5.9 | 24.5 | 9.0 | 6.61 | 1.81 | 258.2 | 0.8 | 0.61 | 28.3 | 1.6 | 1.15 | 26.1 | 1.9 | 1.40 | 24.3 |
MAY | 100 | 6.2 | 24.8 | 13.6 | 6.99 | 1.68 | 339.8 | 0.9 | 0.69 | 31.0 | 1.8 | 1.32 | 28.9 | 2.2 | 1.62 | 27.3 |
JUN | 98.9 | 5.3 | 16.8 | 12.7 | 6.03 | 1.85 | 197.5 | 0.7 | 0.48 | 22.6 | 1.3 | 0.89 | 20.4 | 1.5 | 1.08 | 19.1 |
JUL | 98.9 | 5.6 | 31.3 | 6.1 | 6.34 | 1.71 | 250.4 | 0.8 | 0.59 | 26.5 | 1.5 | 1.11 | 24.4 | 1.8 | 1.35 | 22.9 |
AUG | 100 | 8.1 | 35.7 | 12.5 | 9.13 | 1.83 | 668.7 | 1.4 | 1.02 | 45.8 | 2.7 | 2.00 | 43.6 | 3.3 | 2.48 | 41.6 |
SEP | 83.3 | 7.0 | 30.4 | 20.6 | 7.93 | 1.91 | 419.3 | 1.1 | 0.69 | 38.2 | 2.2 | 1.32 | 35.8 | 2.7 | 1.61 | 33.4 |
OCT | 100 | 7.1 | 16.9 | 15.3 | 7.99 | 1.72 | 475.6 | 1.2 | 0.89 | 39.9 | 2.3 | 1.73 | 38.0 | 2.9 | 2.14 | 36.1 |
NOV | 26.7 | 6.8 | 12.8 | 9.7 | 7.67 | 1.83 | 404.2 | 1.1 | 0.20 | 35.7 | 2.1 | 0.39 | 33.5 | 2.5 | 0.48 | 31.6 |
DEC | 100 | 6.7 | 16.4 | 15.1 | 7.58 | 1.83 | 367.6 | 1.1 | 0.82 | 36.8 | 2.1 | 1.58 | 34.5 | 2.6 | 1.92 | 32.4 |
2017 | 92.4 | 6.3 | 23.5 | 11.1 | 7.07 | 1.75 | 333.4 | 0.9 | 7.64 | 31.5 | 1.8 | 14.56 | 29.2 | 2.2 | 17.84 | 27.5 |
% | NE% | SW% | c | k | Vestas 3.0 | Senvion 6.2 | Vestas 8.0 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eg | CF | Eg | CF | Eg | CF | |||||||||||
JAN | 100 | 5.7 | 12.4 | 16.1 | 6.40 | 1.76 | 246.5 | 0.8 | 0.57 | 25.6 | 1.4 | 1.07 | 23.3 | 1.8 | 1.31 | 22.0 |
FEB | 100 | 5.2 | 11.3 | 13.4 | 5.86 | 1.83 | 177.2 | 0.6 | 0.43 | 21.4 | 1.2 | 0.79 | 19.1 | 1.4 | 0.96 | 17.8 |
MAR | 100 | 5.3 | 10.7 | 15.1 | 6.01 | 1.70 | 213.0 | 0.7 | 0.52 | 23.4 | 1.3 | 0.97 | 21.2 | 1.6 | 1.19 | 20.1 |
APR | 100 | 4.8 | 10.5 | 15.0 | 5.41 | 1.78 | 148.1 | 0.5 | 0.38 | 17.8 | 1.0 | 0.69 | 15.7 | 1.2 | 0.85 | 14.7 |
MAY | 99.6 | 5.1 | 12.0 | 15.9 | 5.77 | 1.95 | 158.8 | 0.6 | 0.45 | 20.1 | 1.1 | 0.81 | 17.7 | 1.3 | 0.98 | 16.5 |
JUN | 96.6 | 5.0 | 9.4 | 16.8 | 5.63 | 1.69 | 182.1 | 0.6 | 0.43 | 20.4 | 1.1 | 0.79 | 18.4 | 1.4 | 0.96 | 17.2 |
JUL | 97.3 | 5.3 | 9.9 | 18.6 | 5.90 | 1.61 | 240.3 | 0.7 | 0.48 | 22.1 | 1.2 | 0.89 | 20.1 | 1.5 | 1.10 | 19.1 |
AUG | 95.7 | 5.5 | 11.8 | 18.3 | 6.16 | 1.74 | 220.9 | 0.8 | 0.55 | 25.3 | 1.4 | 1.02 | 23.1 | 1.7 | 1.10 | 21.5 |
SEP | 99.8 | 5.8 | 17.1 | 19.1 | 6.48 | 1.54 | 323.6 | 0.8 | 0.60 | 27.7 | 1.6 | 1.14 | 25.8 | 1.9 | 1.40 | 24.3 |
OCT | 91.8 | 7.3 | 18.7 | 15.7 | 8.21 | 1.93 | 452.8 | 1.2 | 0.83 | 40.6 | 2.3 | 1.61 | 38.2 | 2.9 | 1.95 | 35.7 |
NOV | 88.3 | 8.1 | 20.3 | 19.4 | 9.15 | 1.92 | 611.3 | 1.5 | 0.93 | 48.6 | 2.9 | 1.83 | 46.6 | 3.5 | 2.25 | 44.0 |
DEC | 80.6 | 6.6 | 10.8 | 13.9 | 7.35 | 1.79 | 350.1 | 1.0 | 0.63 | 34.6 | 2.0 | 1.20 | 32.2 | 2.4 | 1.46 | 30.3 |
2018 | 95.8 | 5.8 | 12.9 | 16.5 | 6.48 | 1.69 | 272.2 | 0.8 | 6.80 | 26.9 | 1.5 | 12.81 | 24.8 | 1.9 | 15.66 | 23.3 |
Place | Latitude | Longitude | Years | % | c | k | ||
---|---|---|---|---|---|---|---|---|
Água Doce | −26.74639° | −51.74750° | 2001/2002/2003 | 89.33 | 6.2 | 7.04 | 2.44 | 210.8 |
Bom Jardim da Serra | −28.35139° | −49.58333° | 2000/2001 | 91.00 | 5.0 | 5.54 | 1.67 | 153.5 |
Campo Erê | −26.37467° | −53.17306° | 1999/2000/2001/2002 | 95.00 | 5.4 | 6.09 | 2.34 | 145.7 |
Imbituba | −28.16497° | −48.65956° | 2000/2001/2002/2003 | 97.75 | 5.0 | 5.67 | 1.74 | 172.2 |
Laguna | −28.50075° | −48.74875° | 2000/2001 | 96.00 | 7.9 | 8.89 | 1.78 | 684.3 |
Urubici | −28.12500° | −49.49472° | 2000/2002/2003 | 94.33 | 7.2 | 8.13 | 1.84 | 404.2 |
BOOA (all directions) | −28.96300° | −49.38018° | 2017/2018 | 94.34 | 5.5 | 6.15 | 1.74 | 227.8 |
BOOA (NE%) | - | - | 2017/2018 | 18.04 | 7.0 | 7.86 | 2.13 | 360.3 |
BOOA (SW%) | - | - | 2017/2018 | 8.71 | 6.3 | 7.16 | 1.89 | 314.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, C.H.M.; Pimenta, F.M.; D'Aquino, C.A.; Saavedra, O.R.; Mao, X.; Assireu, A.T. Coastal Wind Power in Southern Santa Catarina, Brazil. Energies 2020, 13, 5197. https://doi.org/10.3390/en13195197
Pires CHM, Pimenta FM, D'Aquino CA, Saavedra OR, Mao X, Assireu AT. Coastal Wind Power in Southern Santa Catarina, Brazil. Energies. 2020; 13(19):5197. https://doi.org/10.3390/en13195197
Chicago/Turabian StylePires, César Henrique Mattos, Felipe M. Pimenta, Carla A. D'Aquino, Osvaldo R. Saavedra, Xuerui Mao, and Arcilan T. Assireu. 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil" Energies 13, no. 19: 5197. https://doi.org/10.3390/en13195197
APA StylePires, C. H. M., Pimenta, F. M., D'Aquino, C. A., Saavedra, O. R., Mao, X., & Assireu, A. T. (2020). Coastal Wind Power in Southern Santa Catarina, Brazil. Energies, 13(19), 5197. https://doi.org/10.3390/en13195197