Role of TiO2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li4Ti5O12-TiO2 Microrod as an Anode for Lithium-Ion Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LTO-TiO2
2.2. Material Characterization
2.3. Electrochemical Measurement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Lu, P.-J.; Liang, S.; Liu, J.; Wang, W.; Lei, M.; Tang, S.; Yang, Q. Ultrathin Li3VO4 Nanoribbon/Graphene Sandwich-Like Nanostructures with Ultrahigh Lithium Ion Storage Properties. Nano Energy 2015, 12, 709–724. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Z.; Yang, L.Y.; Liu, J.; Li, S.T.; Fang, L.B.; Lu, Y.K.; Yang, H.R.; Liu, S.L.; Lei, M. Improved Electrochemical Performance of Yolk-Shell Structured SnO2@void@C Porous Nanowires as Anode for Lithium and Sodium Batteries. J. Power Sources 2016, 324, 780–787. [Google Scholar] [CrossRef]
- Yang, L.Y.; Li, H.Z.; Liu, J.; Tang, S.S.; Lu, Y.K.; Te Li, S.; Min, J.; Yan, N.; Lei, M. Li4Ti5O12 Nanosheets as High-Rate and Long-Life Anode Materials for Sodium-Ion Batteries. J. Mater. Chem. A 2015, 3, 24446–24452. [Google Scholar] [CrossRef]
- Cao, N.; Wen, L.; Song, Z.; Meng, W.; Qin, X. Li4Ti5O12/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Lithium Ion Batteries. Electrochim. Acta 2016, 209, 235–243. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Zhang, H.; Wang, X.; Li, G.; Wang, Y.; Jiao, L.; Yuan, H. Small Amount of Reduce Graphene Oxide Modified Li4Ti5O12 Nanoparticles for Ultrafast High-Power Lithium Ion Battery. J. Power Sources 2015, 278, 693–702. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-Based Composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Chen, Z.; Belharouak, I.; Sun, Y.-K.; Amine, K. Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Adv. Funct. Mater. 2012, 23, 959–969. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456. [Google Scholar] [CrossRef]
- Tarascon, J.-M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, B.; Yang, X.; Fang, L.; Pan, C.; Song, W.; Hou, H.; Ji, X. Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Adv. Funct. Mater. 2014, 24, 4349–4356. [Google Scholar] [CrossRef]
- Kim, J.-G.; Park, M.-S.; Hwang, S.M.; Heo, Y.-U.; Liao, T.; Sun, Z.; Park, J.H.; Kim, K.J.; Jeong, G.; Kim, Y.-J.; et al. Zr4+ Doping in Li4Ti5O12 Anode for Lithium-Ion Batteries: Open Li+ Diffusion Paths through Structural Imperfection. ChemSusChem 2014, 7, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.X.; Cao, F.; Zhang, Y.J. Graphene Foam Integrated with Lithium Titanate as Anode of Li Ion Batteries. Mater. Res. Bull. 2017, 96, 311–314. [Google Scholar] [CrossRef]
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366. [Google Scholar] [CrossRef] [PubMed]
- Haetge, J.; Hartmann, P.; Brezesinski, K.; Janek, J.; Brezesinski, T. Ordered Large-Pore Mesoporous Li4Ti5O12 Spinel Thin Film Electrodes with Nanocrystalline Framework for High Rate Rechargeable Lithium Batteries: Relationships among Charge Storage, Electrical Conductivity, and Nanoscale Structure. Chem. Mater. 2011, 23, 4384–4393. [Google Scholar] [CrossRef]
- Qian, D.; Gu, Y.; Chen, Y.; Liu, H.; Wang, J.; Zhou, H. Ultra-High Specific Capacity of Cr3+-Doped Li4Ti5O12 at 1.55 V as Anode Material for Lithium-Ion Batteries. Mater. Lett. 2019, 238, 102–106. [Google Scholar] [CrossRef]
- Su, X.; Huang, T.; Wang, Y.; Yu, A. Synthesis and Electrochemical Performance of Nano-Sized Li4Ti5O12 Coated with Boron-Doped Carbon. Electrochim. Acta 2016, 196, 300–308. [Google Scholar] [CrossRef]
- Noerochim, L.; Fikry, R.; Nurdiansah, H.; Purwaningsih, H.; Subhan, A.; Triwibowo, J.; Prihandoko, B. Synthesis of Dual-Phase Li4Ti5O12-TiO2 Nanowires as Anode for Lithium-Ion Battery. Ionics 2018. [Google Scholar] [CrossRef]
- Li, N.; Zhou, G.; Li, F.; Wen, L.; Cheng, H.-M. A Self-Standing and Flexible Electrode of Li4Ti5O12 Nanosheets with a N-Doped Carbon Coating for High Rate Lithium Ion Batteries. Adv. Funct. Mater. 2013, 23, 5429–5435. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Z.; Cai, L.; Thompson, J. Fabrication of Phosphorus-Doped Carbon-Decorated Li4Ti5O12 Anode and Its Lithium Storage Performance for Li-Ion Batteries. Ceram. Int. 2018, 44, 17544–17547. [Google Scholar] [CrossRef]
- Li, Y.; Fu, G.; Watson, M.; Harrison, S.; Paranthaman, M.P. Monodispersed Li4Ti5O12 with Controlled Morphology as High Power Lithium Ion Battery Anodes. ChemNanoMat 2016, 2, 642–646. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, W.; Song, X.; Wang, W.; Hou, Z.; Zhao, X.; Deng, K.; Ju, H.; Sun, Y.; Zhao, Y.; et al. Thermally Reduced Graphene Paper with Fast Li Ion Diffusion for Stable Li Metal Anode. Electrochim. Acta 2019, 294, 413–422. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Lu, H.; Tang, D.; Ouyang, C.; Zhang, L. Ce3+-Doped Li4Ti5O12 with CeO2 Surface Modification by a Sol-Gel Method for High-Performance Lithium-Ion Batteries. Electrochim. Acta 2016, 189, 147–157. [Google Scholar] [CrossRef]
- Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Adv. Mater. 2018, 30, 1705850. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xu, H.; Zhou, T.; Guo, Z.; Chen, L.; Yan, M.; Mai, L.; Hu, P.; Cheng, S.; Huang, Y.; et al. Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel. Adv. Energy Mater. 2016, 6, 1600322. [Google Scholar] [CrossRef]
- Hui, Y.; Cao, L.; Xu, Z.; Huang, J.; Ouyang, H.; Li, J.; Hu, H. In Situ Synthesis of Core-Shell Li4Ti5O12 @ Polyaniline Composites with Enhanced Rate Performance for Lithium-Ion Battery Anodes. J. Mater. Sci. Technol. 2017, 33, 231–238. [Google Scholar] [CrossRef]
- Rahman, M.M.; Wang, J.-Z.; Hassan, M.F.; Wexler, D.; Liu, H.K. Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12-TiO2: A Nanocomposite Anode Material for Li-Ion Batteries. Adv. Energy Mater. 2011, 1, 212–220. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Chen, L.; Wang, Y.-G.; Wang, C.-X.; Che, R.-C.; Xia, Y.-Y. Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries. Adv. Funct. Mater. 2013, 23, 640–647. [Google Scholar] [CrossRef]
- Liao, J.-Y.; Chabot, V.; Gu, M.; Wang, C.; Xiao, X.; Chen, Z. Dual Phase Li4Ti5O12–TiO2 Nanowire Arrays as Integrated Anodes for High-Rate Lithium-Ion Batteries. Nano Energy 2014, 9, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Zhu, Y.; Tang, Z.; Zhang, Y.; Yang, Y.; Wang, L. Design and Synthesis of Dual-Phase Li4Ti5O12–TiO2 Nanoparticles as Anode Material for Lithium Ion Batteries. Mater. Lett. 2014, 131, 118–121. [Google Scholar] [CrossRef]
- Yi, T.-F.; Fang, Z.-K.; Xie, Y.; Zhu, Y.-R.; Yang, S.-Y. Rapid Charge—Discharge Property of Li4Ti5O12–TiO2 Nanosheet and Nanotube Composites as Anode Material for Power Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 20205–20213. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery. J. Am. Chem. Soc. 2012, 134, 7874–7879. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xue, L.; Zhang, W.; Fan, X.; Yan, Y.; Li, Q.; Huang, Y.; Zhang, W. Hydrothermal Synthesis of Li4Ti5O12/TiO2 Nano-Composite As High Performance Anode Material for Li-Ion Batteries. Electrochim. Acta 2014, 147, 506–512. [Google Scholar] [CrossRef]
- Gao, L.; Wang, L.; Dai, S.; Cao, M.; Zhong, Z.; Shen, Y.; Wang, M. Li4Ti5O12-TiO2 Nanowire Arrays Constructed with Stacked Nanocrystals for High-Rate Lithium and Sodium Ion Batteries. J. Power Sources 2017, 344, 223–232. [Google Scholar] [CrossRef]
- Liu, J.; Song, K.; van Aken, P.A.; Maier, J.; Yu, Y. Self-Supported Li4Ti5O12–C Nanotube Arrays as High-Rate and Long-Life Anode Materials for Flexible Li-Ion Batteries. Nano Lett. 2014, 14, 2597–2603. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhang, X.; Uchaker, E.; Yuan, C.; Cao, G. Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Adv. Energy Mater. 2012, 2, 691–698. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V. Structural and Electrical Properties of Li4Ti5O12 Anode Material for Lithium-Ion Batteries. Results Phys. 2018, 9, 284–289. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Liu, J.; Lu, Y.; Li, S.; Min, J.; Yan, N.; Men, Z.; Lei, M. Effects of TiO2 Phase on the Performance of Li4Ti5O12 Anode for Lithium-Ion Batteries. J. Alloys Compd. 2016, 689, 812–819. [Google Scholar] [CrossRef]
- Abraham, D.P.; Heaton, J.R.; Kang, S.-H.; Dees, D.W.; Jansen, A.N. Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. J. Electrochem. Soc. 2008, 155, A41–A47. [Google Scholar] [CrossRef]
- Borghols, W.J.H.; Lützenkirchen-Hecht, D.; Haake, U.; van Eck, E.R.H.; Mulder, F.M.; Wagemaker, M. The Electronic Structure and Ionic Diffusion of Nanoscale LiTiO2 Anatase. Phys. Chem. Chem. Phys. 2009, 11, 5742–5748. [Google Scholar] [CrossRef]
Sample | Phase | Full Width at Half Maximum (FWHM) (°) | 2θ (°) | Crystallite Size (nm) |
---|---|---|---|---|
0.9 LiOH | LTO | 0.201 | 18.399 | 40.0 |
TiO2 | 0.167 | 27.418 | 49.0 | |
1.1 LiOH | LTO | 0.117 | 18.335 | 68.8 |
TiO2 | 0.067 | 27.399 | 52.0 | |
1.3 LiOH | LTO | 0.151 | 18.297 | 53.3 |
TiO2 | 0.134 | 27.383 | 61.0 |
Sample | Phase | Composition (wt.%) | Rp | Rwp | χ2 |
---|---|---|---|---|---|
0.9 LiOH | LTO | 74.10 | 18.55 | 25.38 | 2.67 |
TiO2 | 25.90 | ||||
1.1 LiOH | LTO | 82.04 | 20.15 | 26.71 | 3.25 |
TiO2 | 17.96 | ||||
1.3 LiOH | LTO | 93.90 | 19.87 | 26.94 | 3.24 |
TiO2 | 6.10 |
Sample | Diameter (µm) | Length (µm) |
---|---|---|
Na-Ti-O | 0.142–0.260 | 5.003–7.377 |
LTO-TiO2 (0.9 LiOH) | 0.110–0.125 | 1.073–2.481 |
LTO-TiO2 (1.1 LiOH) | 0.234–0.429 | 4.390–4.660 |
LTO-TiO2 (1.3 LiOH) | 0.112–0.298 | 3.603–2.505 |
Sample | Rs (Ohm) | Rct (Ohm) | σw (Ohm s−0.5) | D (cm−2 s−1) |
---|---|---|---|---|
0.9 LiOH | 5.02 | 68.5 | 97.62 | 1.61 × 10−14 |
1.1 LiOH | 4.88 | 118 | 368.72 | 1.75 × 10−15 |
1.3 LiOH | 3.89 | 312 | 377.20 | 1.21 × 10−15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noerochim, L.; Caesarendra, W.; Habib, A.; Widyastuti; Suwarno; Ni’mah, Y.L.; Subhan, A.; Prihandoko, B.; Kosasih, B. Role of TiO2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li4Ti5O12-TiO2 Microrod as an Anode for Lithium-Ion Battery. Energies 2020, 13, 5251. https://doi.org/10.3390/en13205251
Noerochim L, Caesarendra W, Habib A, Widyastuti, Suwarno, Ni’mah YL, Subhan A, Prihandoko B, Kosasih B. Role of TiO2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li4Ti5O12-TiO2 Microrod as an Anode for Lithium-Ion Battery. Energies. 2020; 13(20):5251. https://doi.org/10.3390/en13205251
Chicago/Turabian StyleNoerochim, Lukman, Wahyu Caesarendra, Abdulloh Habib, Widyastuti, Suwarno, Yatim Lailun Ni’mah, Achmad Subhan, Bambang Prihandoko, and Buyung Kosasih. 2020. "Role of TiO2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li4Ti5O12-TiO2 Microrod as an Anode for Lithium-Ion Battery" Energies 13, no. 20: 5251. https://doi.org/10.3390/en13205251