Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO2/Isobutane Autocascade Refrigeration System
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Results and Discussion
3.1. RHX and Condensing Temperature
3.2. Expansion Valves Openings
4. Conclusions
Funding
Conflicts of Interest
Nomenclature
Symbols | |
enthalpy (J kg−1) | |
heat transfer rate (W) | |
pressure (bar) | |
compressor input power (W) | |
temperature (°C) | |
temperature difference (K) | |
vapor quality (mass basis) (-) | |
Greek Symbols | |
mass fraction (-) | |
Subscripts | |
high boiling–point component | |
low boiling–point component | |
subcooling | |
superheating | |
saturated liquid | |
saturated vapor | |
Abbreviations | |
cascade heat exchanger | |
outer diameter | |
recuperative heat exchanger |
References
- European Commission. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006 Text with EEA Relevance; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Ciconkov, R. Refrigerants: There is still no vision for sustainable solutions. Int. J. Refrig. 2018, 86, 441–448. [Google Scholar] [CrossRef]
- Lorentzen, G. The use of natural refrigerants: A complete solution to the CFC/HCFC predicament. Int. J. Refrig. 1995, 18, 190–197. [Google Scholar] [CrossRef]
- Karampour, M.; Sawalha, S. State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. Int. J. Refrig. 2018, 86, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Catalán-Gil, J.; Nebot-Andrés, L.; Sánchez, D.; Llopis, R.; Cabello, R.; Calleja-Anta, D. Improvements in CO2 booster architectures with different economizer arrangements. Energies 2020, 13, 1271. [Google Scholar] [CrossRef] [Green Version]
- Haida, M.P.; Fingas, R.; Szwajnoch, W.; Smolka, J.; Palacz, M.; Bodys, J.; Nowak, A.J. An object-oriented R744 two-phase ejector reduced-order model for dynamic simulations. Energies 2019, 12, 1282. [Google Scholar] [CrossRef] [Green Version]
- Nebot-Andrés, L.; Calleja-Anta, D.; Sánchez, D.; Cabello, R.; Llopis, R. Thermodynamic analysis of a CO2 refrigeration cycle with integrated mechanical subcooling. Energies 2019, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Stoecker, W.F. Industrial Refrigeration Handbook; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Aprea, C.; Maiorino, A. Autocascade refrigeration system: Experimental results in achieving ultra low temperature. Int. J. Energy Res. 2009, 33, 565–575. [Google Scholar] [CrossRef]
- Gong, M.; Wu, J.; Cheng, Q.; Sun, Z.; Liu, J.; Hu, Q. Development of a −186 °C cryogenic preservation chamber based on a dual mixed-gases Joule–Thomson refrigeration cycle. Appl. Therm. Eng. 2012, 36, 188–192. [Google Scholar] [CrossRef]
- Gong, M.; Wu, J.; Luo, E.; Qi, Y.; Zhou, Y. Study of the single-stage mixed-gases refrigeration cycle for cooling temperature-distributed heat loads. Int. J. Therm. Sci. 2004, 43, 31–41. [Google Scholar] [CrossRef]
- Yan, G.; Hu, H.; Yu, J. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a. Appl. Therm. Eng. 2015, 75, 994–1000. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, L.; Yan, G.; Yu, J. Theoretical investigation on the performance of a modified refrigeration cycle with R170/R290 for freezers application. Int. J. Refrig. 2019, 104, 282–290. [Google Scholar] [CrossRef]
- Du, K.; Zhang, S.; Xu, W.; Niu, X. A study on the cycle characteristics of an auto-cascade refrigeration system. Exp. Therm. Fluid Sci. 2009, 33, 240–245. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Cao, L. Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system. Chin. J. Chem. Eng. 2015, 23, 199–204. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, J.; Yan, G. Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications. Appl. Therm. Eng. 2016, 108, 172–180. [Google Scholar] [CrossRef]
- Bai, T.; Yan, G.; Yu, J. Experimental investigation of an ejector-enhanced auto-cascade refrigeration system. Appl. Therm. Eng. 2018, 129, 792–801. [Google Scholar] [CrossRef]
- Podbielniak, W.J. Art of Refrigeration. U.S. Patent 2041725, 26 May 1936. [Google Scholar]
- Kim, S.; Kim, M.S. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant. Int. J. Refrig. 2002, 25, 1093–1101. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating. Int. J. Refrig. 2018, 95, 146–155. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Du, P.; Liu, H. Experimental and theoretical investigation on the performance of CO2/propane auto-cascade refrigerator with a fractionation heat exchanger. Appl. Therm. Eng. 2015, 87, 669–677. [Google Scholar] [CrossRef]
- Bai, T.; Yan, G.; Yu, J. Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer. Energy 2018, 157, 647–657. [Google Scholar] [CrossRef]
- Rozhentsev, A. Refrigerating machine operating characteristics under various mixed refrigerant mass charges. Int. J. Refrig. 2008, 31, 1145–1155. [Google Scholar] [CrossRef]
- Rui, S.; Zhang, H.; Zhang, B.; Wen, D. Experimental investigation of the performance of a single-stage auto-cascade refrigerator. Heat Mass Transf. 2015, 52, 11–20. [Google Scholar] [CrossRef]
- Fuderer, A. Compression Process for Refrigeration. U.S. Patent 3203194, 31 August 1965. [Google Scholar]
- Sobieraj, M.; Rosiński, M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. Appl. Therm. Eng. 2019, 161. [Google Scholar] [CrossRef]
- Di Nicola, G.; Polonara, F.; Stryjek, R.; Arteconi, A. Performance of cascade cycles working with blends of CO2 + natural refrigerants. Int. J. Refrig. 2011, 34, 1436–1445. [Google Scholar] [CrossRef]
- Sobieraj, M.; Rosiński, M. Experimental study of the heat transfer in R744/R600a mixtures below the R744 triple point temperature. Int. J. Refrig. 2019, 103, 243–252. [Google Scholar] [CrossRef]
- Kondo, S.; Takizawa, S.; Takahashi, A.; Tokuhashi, K.; Sekiya, A. Flammability limits of isobutane and its mixtures with various gases. J. Hazard. Mater. 2007, 148, 640–647. [Google Scholar] [CrossRef]
- Kondo, S.; Takizawa, K.; Takahashi, A.; Tokuhashi, K. Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Saf. J. 2006, 41, 406–417. [Google Scholar] [CrossRef]
- Tian, H.; Wu, M.; Shu, G.-Q.; Liu, Y.; Wang, X. Experimental and theoretical study of flammability limits of hydrocarbon–CO2 mixture. Int. J. Hydrogen Energy 2017, 42, 29597–29605. [Google Scholar] [CrossRef]
Parameter | Uncertainty |
---|---|
Temperature | ±0.1 K |
Pressure (high side) | ±0.41 bar |
Pressure (low side) | ±0.12 bar |
Power | ±2 W |
Mass flow rate | ±0.1% |
Evaporator heat load | ±1.0% |
Coefficient of performance | ±2.5% |
Vapour quality | ±3% |
Composition | ±0.2% |
Series | RHX | RHX | RHX | CHX | CHX | CHX | CHX | |
---|---|---|---|---|---|---|---|---|
(°C) | (K) | (K) | (K) | (K) | (K) | (K) | (K) | |
1 | 20.3 | 10.4 | 12.6 | 9.1 | 14.3 | 10.7 | 3.3 | 2.2 |
2 | 24.9 | 6.1 | 18.5 | 13.0 | 19.7 | 14.0 | 4.6 | 1.7 |
3 | 29.8 | 4.9 | 22.7 | 15.9 | 23.6 | 15.5 | 5.9 | 1.3 |
4 | 34.9 | 4.0 | 26.2 | 19.1 | 27.1 | 16.4 | 7.2 | 0.7 |
5 | 19.7 | 0.0 | 0.0 | 0.0 | 29.6 | 17.8 | 10.0 | 0.0 |
6 | 24.7 | 0.0 | 0.0 | 0.0 | 31.7 | 18.1 | 11.8 | −0.5 |
7 | 30.0 | 0.0 | 0.0 | 0.0 | 33.6 | 18.6 | 13.4 | −1.0 |
8 | 35.0 | 0.0 | 0.0 | 0.0 | 31.0 | 19.1 | 12.4 | −1.6 |
Mass Flow (g s−1) | ||||
---|---|---|---|---|
EV | A | |||
40 | 50 | 60 | ||
B | 80 | 4.55 | 4.62 | 4.78 |
70 | 4.56 | 4.65 | 4.75 | |
60 | 4.45 | 4.84 | 4.94 | |
Mass Flow(g s−1) | ||||
EV | A | |||
40 | 50 | 60 | ||
B | 80 | 2.42 | 2.31 | 2.13 |
70 | 2.18 | 2.07 | 1.95 | |
60 | 1.83 | 1.49 | 1.33 | |
Mass Flow(g s−1) | ||||
EV | A | |||
40 | 50 | 60 | ||
B | 80 | 6.97 | 6.93 | 6.92 |
70 | 6.74 | 6.72 | 6.70 | |
60 | 6.28 | 6.34 | 6.26 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobieraj, M. Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO2/Isobutane Autocascade Refrigeration System. Energies 2020, 13, 5285. https://doi.org/10.3390/en13205285
Sobieraj M. Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO2/Isobutane Autocascade Refrigeration System. Energies. 2020; 13(20):5285. https://doi.org/10.3390/en13205285
Chicago/Turabian StyleSobieraj, Michał. 2020. "Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO2/Isobutane Autocascade Refrigeration System" Energies 13, no. 20: 5285. https://doi.org/10.3390/en13205285
APA StyleSobieraj, M. (2020). Experimental Investigation of the Effect of a Recuperative Heat Exchanger and Throttles Opening on a CO2/Isobutane Autocascade Refrigeration System. Energies, 13(20), 5285. https://doi.org/10.3390/en13205285