The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order
Abstract
:1. Introduction
- (1)
- Define how Polish policies are being passed on to local authorities (specific objective one);
- (2)
- Realize a Poland’s provinces ranking, taking into account the indicators of sustainable development, thanks to the taxonomic measure of development in the area of environmental order (specific objective two).
2. Theoretical Background
2.1. Environmental Policy Integration (EPI)
2.2. EU Policy on Renewable Energy Sources
2.3. Renewable Energy Implementation Policy in Poland
- Further reduction in the emission of carbon dioxide, sulfur, nitrogen and fine particulate matter in the production of energy in order to fully meet the obligations of the accession treaty and EU directives;
- Adopting solutions for energy saving and energy production from renewable energy sources in Poland’s new energy policy by 2030;
- Taking due action in terms of preparing and implementing the technology on carbon capture and storage;
- Achieving or maintaining satisfactory condition of water by finalizing the program of construction and extension of sewage treatment plants and sewage systems in urban areas under the EU Operational Programme: Infrastructure and Environment;
- Developing plans on water management for each river basin;
- Devising the national water and environment program;
- Reducing pollution caused by dangerous substances of industrial origin;
- Increasing energy recovery from communal waste;
- Increasing the amount of recovered waste produced in households by over 50%;
- Devising an efficient mechanism of control over chemical substances officially available on the market;
- Removal of biphenyl chloride from transformers and other appliances;
- Removal of asbestos.
- As regards preventive actions, the top priorities include as follows:
- Monitoring the contamination of air, water and soil with control and measurement tests;
- Informing the decision-makers and the public on contamination, and giving alerts in case of particular emergency;
- Damage liquidation through rescue and recovery operations;
- Preventive and educational efforts with regard to dangerous substances;
- Efforts aimed at restoring the environment’s natural condition [58].
- Development, implementation and monitoring of provincial programs on environmental protection;
- Controlling and evaluating the condition of the environment in the region;
- Developing programs on air protection with a view to achieving maximum acceptable levels of substances in the air.
- EU funds (the Cohesion Fund, the EU Fund: Infrastructure and Environment);
- Direct investments from particular ministries’ resources (primarily, the ministries involved in environmental issues, i.e., the ministry of economy, the ministry of transport, the ministry of energy, the ministry of agriculture and rural development);
- Local governments’ own resources (communal, county and provincial funds for environmental protection);
- Resources allocated centrally through relevant agencies (primarily, the National Fund for Environmental Protection and Water Management, e.g., the program aimed at local governments “Clean Air”, and to a certain degree the National Water Holding “Polish Water”).
3. Materials and Methods
- non-benchmark methods,
- benchmark methods” [71].
- xij—empirical values of jth feature in ith object.
- —the arithmetic mean of jth feature.
- Sj—standard deviation of jth feature.
- di0—the Euclidean distance of object xi from benchmark object x0.
- d0—the critical distance of particular unit from the benchmark.
- X1t—carbon emissions from plants especially noxious to air purity (tons per year).
- X2t—share of renewable energy in total electricity production (%).
- X3t—electricity consumption per PLN one million GDP (GWh).
- X4t—investments in fixed assets in environmental protection relating to electricity conservation per person (Polish zloty).
- X5t—air pollutants emission from plants especially noxious to air purity—gas (tones per year).
- X6t—air pollutants emission from plants especially noxious to air purity—particulate matter (tones per year).
- X7t—exploitable resources of underground water—increment or loss on the previous year (hm3).
- X8t—forest cover.
- X9t—share of recovery and afforested acreage in total forests acreage.
- X10t—share of arable land in total acreage.
- X11t—share of the Natura 2000 acreage in total acreage—share of special bird protection zones.
- X12t—share of the Natura 2000 acreage in total acreage—share of wildlife habitat zones in total acreage.
- X13t—investment in fixed assets in environmental protection and water management according to investment lines: bio-diversity and landscape conservation per person (Polish zloty).
- X14t—share of legally protected acreage in total acreage.
- X15t—communal waste collected selectively as percent of total communal waste collected annually.
- X16t—the amount of mixed communal waste from households collected annually per person (kg).
- X17t—share of communal and industrial sewage subjected to treatment as percent of total amount of sewage requiring treatment.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.; Song, W. Characteristics of Climate Change in the Lancang–Mekong Sub-Region. Climate 2020, 8, 115. [Google Scholar] [CrossRef]
- Loh, P.S.; Alnoor, H.I.M.; He, S. Impact of Climate Change on Vegetation Cover at South Port Sudan Area. Climate 2020, 8, 114. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.-G.; Di, D.-R.; Shi, W.-Y. Separating the Impacts of Climate Change and Human Activities on Runoff: A Review of Method and Application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Dovì, V.G.; Battaglini, A. Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem. Energies 2015, 8, 13473–13480. [Google Scholar] [CrossRef] [Green Version]
- Kung, C.-C.; McCarl, B.A. Sustainable Energy Development under Climate Change. Sustainability 2018, 10, 3269. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Oppong, A.; Acheampong, K.N.; Abruquah, L.A. Forecasting Renewable Energy Consumption under Zero Assumptions. Sustainability 2018, 10, 576. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. European Commission Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Walewicz, P. Greening the Critical Theory of International Relations with the Concept of World-Ecology. Torun Int. Stud. 2018, 1, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Walewicz, P. How international relations scholars explain the world: A world-ecological critique. Torun Int. Stud. 2019, 1, 51–60. [Google Scholar] [CrossRef]
- World Commission on Environment and Development. Our Common Future: Report of the World Commission on the Environment and Development; Bruntlandt Report; General Assembly United Nations: Oxford, UK; New York, NY, USA, 1987. [Google Scholar]
- Guijarro, F.; Poyatos, J.A. Designing a Sustainable Development Goal Index through a Goal Programming Model: The Case of EU-28 Countries. Sustainability 2018, 10, 3167. [Google Scholar] [CrossRef] [Green Version]
- Krzyśko, M.; Wołyński, W.; Ratajczak, W.; Kierczyńska, A.; Wenerska, B. Sustainable Development of Polish Macroregions—Study by Means of the Kernel Discriminant Coordinates Method. Int. J. Environ. Res. Public Health 2020, 17, 7021. [Google Scholar] [CrossRef] [PubMed]
- Raszkowski, A.; Bartniczak, B. On the Road to Sustainability: Implementation of the 2030 Agenda Sustainable Development Goals (SDG) in Poland. Sustainability 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Lenschow, A. (Ed.) Greening the European Union: An introduction. In Environmental Policy Integration: Greening Sectoral Policies in Europe; Earthscan: London, UK, 2002. [Google Scholar]
- Biermann, F.; Davies, O.; Van Der Grijp, N. Environmental policy integration and the architecture of global environmental governance. Int. Environ. Agreem. Politics Law Econ. 2009, 9, 351–369. [Google Scholar] [CrossRef] [Green Version]
- Beunen, R.; van der Knaap, W.G.M.; Biesbroek, G.R. Implementation and integration of EU environmental directives. Experiences from The Netherlands. Environ. Policy Gov. 2009, 19, 57–69. [Google Scholar] [CrossRef]
- Nilsson, M.; Persson, A. Framework for analysing environmental policy integration. J. Environ. Policy Plan. 2003, 5, 333–359. [Google Scholar] [CrossRef]
- Sej-Kolasa, M. An environmental management system as an information system. Econ. Sociol. 2010, 3, 101–118. [Google Scholar] [CrossRef]
- Lafferty, W.; Hovden, E. Environmental policy integration: Towards an analytical framework. Environ. Politics 2003, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fergusson, M.; Collier, U. Energy and Environment in the European Union. Int. Aff. 1995, 71, 875. [Google Scholar] [CrossRef]
- DeSombre, E.R. Domestic Sources of International Environmental Policy; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Falkner, R. The political economy of ‘normative power’ Europe: EU environmental leadership in international biotechnology regulation. J. Eur. Public Policy 2007, 14, 507–526. [Google Scholar] [CrossRef]
- Kelemen, R.D. Globalizing European Union environmental policy. J. Eur. Public Policy 2010, 17, 335–349. [Google Scholar] [CrossRef]
- Calabro, G. The Eu-Policy of Promoting Green Purchases: The Role of Ecological Labelling. Forum Ware Int. 2007, 1, 1–7. [Google Scholar]
- Jordan, A.; Jeppesen, T. EU Environmental policy: Adapting to the principle of subsidiarity? Eur. Environ. 2000, 10, 64–74. [Google Scholar] [CrossRef]
- European Commission. Eco-Innovation at the Heart of European Policies; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kivimaa, P.; Mickwitz, P. The challenge of greening technologies—Environmental policy integration in Finnish technology policies. Res. Policy 2006, 35, 729–744. [Google Scholar] [CrossRef]
- Kordana, S.; Słyś, D.; Dziopak, J. Rationalization of water and energy consumption in shower systems of single-family dwelling houses. J. Clean. Prod. 2014, 82, 58–69. [Google Scholar] [CrossRef]
- Laperche, B.; Lefebvre, G.; Langlet, D. Innovation strategies of industrial groups in the global crisis: Rationalization and new paths. Technol. Soc. Chang. 2011, 78, 1319–1331. [Google Scholar] [CrossRef]
- Pucar, M.; Pajevic, M.; Nenkovic, M. Intelligent buildings in context of energy rationalization. Spatium 2005, 12, 28–31. [Google Scholar] [CrossRef]
- Tsuruda, L.K.; Rodrigues, L.; Salles, D.M.; Alves, A.J.; Calixto, W.P.; Vitor, L.R.; Souza, M.B.S.E. Energy Efficiency, Rationalization of Energy and Water Consumption in Popular Houses; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Shinn, L. Renewable Energy: The Clean Facts. Available online: https://www.nrdc.org/stories/renewable-energy-clean-facts (accessed on 30 August 2020).
- Owusu, P.A.; Sarkodie, S.A. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 2–14. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Barry, M.-L.; Steyn, H.; Brent, A.C. Selection of renewable energy technologies for Africa: Eight case studies in Rwanda, Tanzania and Malawi. Renew. Energy 2011, 36, 2845–2852. [Google Scholar] [CrossRef] [Green Version]
- Martinot, E.; Reiche, K. Regulatory Approaches to Rural Electrification and Renewable Energy: Case Studies from Six Developing Countries; Working Paper; World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Stigka, E.; Paravantis, J.A.; Mihalakakou, G.K. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew. Sustain. Energy Rev. 2014, 32, 100–106. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Overland, I.; Sandalow, D. The Geopolitics of Renewable Energy. SSRN Electron. J. 2017. [Google Scholar] [CrossRef] [Green Version]
- Sequeira, T.N.; Santos, M.S. Renewable energy and politics: A systematic review and new evidence. J. Clean. Prod. 2018, 192, 553–568. [Google Scholar] [CrossRef]
- Burke, M.J.; Stephens, J.C. Political power and renewable energy futures: A critical review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- Kharlamova, G.; Chernyak, A.; Nate, S. Renewable energy and security for Ukraine: Challenge or smart way? J. Int. Stud. 2016, 9, 88–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suska-Szczerbicka, M. Wind energy financing tools. Econ. Soc. 2010, 3, 141–160. [Google Scholar] [CrossRef]
- Łucka, I.A. Economic and environmental aspects of renewable energy. Econ. Soc. 2010, 3, 119–140. [Google Scholar] [CrossRef]
- Siemiatkowski, P. External financial security of the European Union member states outside the Eurozone. J. Int. Stud. 2017, 10, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Kasprowicz, R. Economic growth and CO2 emissions: The ECM analysis. J. Int. Stud. 2015, 8, 91–98. [Google Scholar] [CrossRef]
- Kordonska, A.; Hurnyak, I. Efficient use of common resources in conditions of sustainable development. Torun Int. Stud. 2018, 1, 75–87. [Google Scholar] [CrossRef]
- Jankowska, E. Social indicators and the measure of the quality of life. Torun Int. Stud. 2015, 1, 5. [Google Scholar] [CrossRef]
- Szpak, A. Cities and human security. Torun Int. Stud. 2015, 1, 119. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. European Policies on Climate and Energy Towards 2020, 2030 and 2050; European Parliament: Brussels, Belgium, 2019. [Google Scholar]
- European Parliament. European Commission DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing; Directives 2001/77/EC and 2003/30/EC; European Parliament: Brussels, Belgium, 2009. [Google Scholar]
- Forsal Jeśli Polska Nie Spełni Celu OZE, Kluczowe Staną Się Negocjacje z KE w 2021 Roku. Available online: https://forsal.pl/artykuly/1461014,brak-realizacji-celow-oze-pomoga-tylko-rozmowy-z-ke-w-2021-roku.html (accessed on 30 August 2020).
- Wróbel, P.; Ścigan, M. Co Się Stanie, Jeśli Polska Nie Osiągnie Celu OZE na 2020? Available online: https://www.gramwzielone.pl/trendy/102673/co-sie-stanie-jesli-polska-go-nie-osiagnie-celu-oze-na-2020 (accessed on 30 August 2020).
- Ministerstwo Rozwoju Polska i 7 Innych Państw UE Pisze do KE ws. Nowej Strategii Przemysłowej dla Europy i Wykorzystania OZE w Walce z Konsekwencjami COVID-19. Available online: https://www.gov.pl/web/rozwoj/polska-i-7-innych-panstw-ue-pisze-do-ke-ws-nowej-strategii-przemyslowej-dla-europy-i-wykorzystania-oze-w-walce-z-konsekwencjami-covid-19 (accessed on 30 August 2020).
- SEJM. Ustawa Prawo Ochrony Środowiska, Ustawa z Dnia 26 Kwietnia 2001; Dz.U.2019.0.1396; SEJM: Warszawa, Poland, 2001. [Google Scholar]
- Ministerstwo Rozwoju. Strategia na Rzecz Odpowiedzialnego Rozwoju do Roku 2020 z Perspektywą do Roku 2030; Ministerstwo Rozwoju: Warszawa, Poland, 2017. [Google Scholar]
- Ministerstwo Aktywów. Państwowych Krajowy Plan na Rzecz Energii i Klimatu na Lata 2021–2030; Założenia i cele oraz polityki i działania; Ministerstwo Aktywów: Warszawa, Poland, 2019. [Google Scholar]
- Ministerstwo Środowiska. Polityka Ekologiczna Państwa; Ministerstwo Środowiska: Warszawa, Poland, 2019. [Google Scholar]
- BBN. Biała Księga Bezpieczeństwa Narodowego Rzeczypospolitej Polskiej; BBN: Warszawa, Poland, 2013. [Google Scholar]
- SEJM. Ustawa o Samorządzie Województwa Ustawa z Dnia 5 Czerwca 1998 r. o Samorządzie Województwa; Dz. U. z 2001, nr 142, poz. 1590, z późn. zm.: Warszawa, Poland, 1998. [Google Scholar]
- GUS. Ekonomiczne Aspekty Ochrony Środowiska w 2018 r.; GUS: Warszawa, Poland, 2019. [Google Scholar]
- EUROSTAT. Sustainable Development in the European Union. Monitoring Report on Progress towards the SDGs in an EU Context; European Union: Luxembourg, 2020. [Google Scholar]
- GUS. Wskaźniki Zrównoważonego Rozwoju Polski; GUS: Warszawa, Poland, 2010. [Google Scholar]
- Grabiński, T.; Wydymus, S.; Zielaś, A. Metody Taksonomii Numerycznej w Modelowaniu Zjawisk Społeczno-Gospodarczych; PWN: Warszawa, Poland, 1989. [Google Scholar]
- Kolenda, M. Taksonomia Numeryczna; Klasyfikacja, Porządkowanie i Analiza Obiektów Wielocechowych; Wydawnictwo Akademii Ekonomicznej we Wrocławiu: Wrocław, Poland, 2006. [Google Scholar]
- Nowak, E. Metody Taksonomiczne w Klasyfikacji Obiektów Społeczno-Gospodarczych; PWE: Warszawa, Poland, 1990. [Google Scholar]
- Zielaś, A. Ekonometria Przestrzenna; PWE: Warszawa, Poland, 1991. [Google Scholar]
- Gierszewski, J.; Siemiątkowski, P.; Urbanek, A. Local Security in the Idea of Sustainable Development. Eur. Res. Stud. J. 2020, XXIII, 405–420. [Google Scholar] [CrossRef] [Green Version]
- Siemiątkowski, P.; Tomaszewski, P.; Jurgilewicz, O.; Poplavska, Z. Assessment of basic elements of the security system of local communities. J. Secur. Sustain. Issues 2019, 617–635. [Google Scholar] [CrossRef]
- Marszałek-Kawa, J.; Siemiatkowski, P. The implementation of the sustainable development goals at the local level: The case of the districts of Kuyavian-Pomeranian province. Balt. J. Econ. Stud. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Siemiątkowski, P.; Tomaszewski, P. Poczucie bezpieczeństwa członków społeczności lokalnych na przykładzie województwa kujawsko-pomorskiego. Przedsiębiorczość Zarządzanie 2018, XIX, 157–173. [Google Scholar]
- Ostasiewicz, W. Statystyczne Metody Analizy Danych; Wydawnictwo Akademii Ekonomicznej we Wrocławiu: Wrocław, Poland, 1998. [Google Scholar]
- Dworczyk, M. Analyzes of the Division of the Voivodeship Mazowieckie are Advanced. Available online: https://www.world-today-news.com/michal-dworczyk-analyzes-of-the-division-of-the-voivodeship-mazowieckie-are-advanced/ (accessed on 14 October 2020).
- Siemiątkowski, P.; Jankowska, E. Measuring the Progress in Realizing the Strategy “Europe 2020” in 2010–2016 in 28 European Union Member States. Pol. Politics Sci. Yearb. 2020, 49, 11–31. [Google Scholar] [CrossRef]
Area | Indicator | Indicator Filter | Dimension |
---|---|---|---|
Climate change | Carbon emissions from plants especially noxious to air purity | Carbon emissions from plants especially noxious to air purity | total |
Energy | share of renewable energy in total electricity production | share of renewable energy in total electricity production | total |
electricity consumption per 1 million PLN of GDP | electricity consumption per 1 million PLN of GDP | total | |
investments in fixed assets in environmental protection relating to electricity conservation per person | investments in fixed assets in environmental protection relating to electricity conservation per person | total | |
Air protection | air pollutants emission from plants especially noxious to air purity | air pollutants emission from plants especially noxious to air purity | gaseous |
air pollutants emission from plants especially noxious to air purity | particulate | ||
Drinking water resources | exploitable resources of underground water—increment or loss on the previous year | exploitable resources of underground water—increment or loss on the previous year (hm3 | total |
Land use | Forest cover | Forest cover | total |
share of recovery and afforested acreage in total forests acreage | share of recovery and afforested acreage in total forests acreage | total | |
share of arable land in total acreage | share of arable land in total acreage | total | |
Bio-diversity | share of the Natura 2000 acreage in total acreage | share of the Natura 2000 acreage in total acreage | share of special bird protection zones |
share of the Natura 2000 acreage in total acreage | share of wildlife habitat zones in total acreage | ||
investment in fixed assets in environmental protection and water management according to investment lines: bio-diversity and landscape conservation per person | investment in fixed assets in environmental protection and water management according to investment lines: bio-diversity and landscape conservation per person | total | |
share of legally protected acreage in total acreage | share of legally protected acreage in total acreage | total | |
Waste management | communal waste collected selectively as percent of total communal waste collected annually | communal waste collected selectively as percent of total communal waste collected annually | total |
the amount of mixed communal waste from households collected annually per person | the amount of mixed communal waste from households collected annually per person | total | |
share of communal and industrial sewage subjected to treatment as percent of total amount of sewage requiring treatment | share of communal and industrial sewage subjected to treatment as percent of total amount of sewage requiring treatment | total |
X1 | 1 | ||||||||||||||||
X1 | −0.61 | ||||||||||||||||
X1 | 0.76 | −0.56 | |||||||||||||||
X1 | 0.28 | −0.33 | 0.03 | ||||||||||||||
X1 | 1.00 | −0.61 | 0.76 | 0.29 | |||||||||||||
X1 | 0.67 | −0.43 | 0.76 | 0.44 | 0.68 | ||||||||||||
X1 | 0.35 | −0.06 | 0.34 | −0.09 | 0.35 | 0.11 | |||||||||||
X1 | −0.48 | 0.20 | −0.34 | −0.03 | −0.48 | −0.15 | −0.61 | ||||||||||
X1 | −0.26 | 0.21 | −0.30 | 0.27 | −0.25 | 0.07 | −0.66 | 0.69 | |||||||||
X1 | 0.39 | −0.27 | 0.19 | 0.04 | 0.38 | −0.05 | 0.57 | −0.95 | −0.66 | ||||||||
X1 | −0.66 | 0.65 | −0.41 | −0.60 | −0.66 | −0.41 | −0.29 | 0.58 | 0.30 | −0.55 | |||||||
X1 | −0.56 | 0.39 | −0.41 | −0.22 | −0.56 | −0.30 | −0.54 | 0.54 | 0.55 | −0.46 | 0.75 | ||||||
X1 | 0.15 | −0.19 | 0.21 | 0.54 | 0.16 | 0.40 | 0.06 | 0.21 | 0.21 | −0.23 | −0.18 | 0.05 | |||||
X1 | −0.29 | 0.37 | −0.01 | −0.60 | −0.29 | −0.35 | 0.14 | −0.07 | −0.04 | 0.10 | 0.31 | 0.08 | −0.44 | ||||
X1 | 0.50 | −0.54 | 0.43 | 0.65 | 0.51 | 0.63 | 0.14 | −0.34 | −0.18 | 0.27 | −0.62 | −0.45 | 0.17 | −0.52 | |||
X1 | 0.02 | 0.05 | 0.21 | −0.43 | 0.02 | 0.04 | −0.08 | 0.32 | −0.02 | −0.45 | 0.23 | 0.00 | 0.17 | −0.08 | −0.45 | ||
X1 | −0.41 | 0.28 | −0.32 | −0.61 | −0.42 | −0.60 | 0.20 | 0.09 | −0.41 | −0.01 | 0.49 | 0.09 | −0.18 | 0.05 | −0.37 | 0.35 | |
X1 | 0.05 | −0.06 | 0.08 | −0.03 | −0.05 | −0.06 | −0.11 | 0.12 | −0.03 | −0.19 | 0.16 | −0.04 | −0.07 | −0.18 | −0.41 | 0.35 | 1 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 |
Provinces | 2016 | 2018 | 2018–2016 | ||
---|---|---|---|---|---|
Development Measure | Ranking Position | Development Measure | Ranking Position | ||
Lower Silesian | 0.105851953 | 13 | 0.134297781 | 13 | 0 |
Kuyavian-Pomeranian | 0.210717745 | 6 | 0.271798249 | 5 | 1 |
Lublin | 0.164650728 | 9 | 0.240409693 | 7 | 2 |
Lubusz | 0.369194098 | 1 | 0.303676766 | 3 | −2 |
Łódź | 0.067062895 | 15 | 0.042582929 | 15 | 0 |
Lesser Poland | 0.16625483 | 8 | 0.198365692 | 9 | −1 |
Masovian | 0.106749877 | 12 | 0.072532522 | 14 | −2 |
Opole | 0.091456056 | 14 | 0.138016699 | 12 | 2 |
Subcarpathian | 0.300367945 | 2 | 0.336721173 | 2 | 0 |
Podlaskie | 0.234082885 | 3 | 0.410961473 | 1 | 2 |
Pomeranian | 0.229962032 | 4 | 0.302797901 | 4 | 0 |
Silesian | 0.028313756 | 16 | 0.027945084 | 16 | 0 |
Świętokrzyskie | 0.139084245 | 10 | 0.22432936 | 8 | 2 |
Warmian-Masurian | 0.187809831 | 7 | 0.184300111 | 11 | −4 |
Greater Poland | 0.11929203 | 11 | 0.185303006 | 10 | 1 |
West Pomeranian | 0.222152952 | 5 | 0.252491807 | 6 | −1 |
The Level of Sustainable Development in the Area of Environmental Order: | |||
---|---|---|---|
Very High TMD ≥ 0.75 (A) | High 0.5 ≤ TMD <0.75 (B) | Medium 0.5 > TMD ≥ 0.25 (C) | Low TMD < 0.25 (D) |
Lubusz Subcarpathian | Warmian-Masurian Lower Silesian Kuyavian-Pomeranian Greater Poland Świętokrzyskie Opole Silesian Łódź Masovian Lubusz Lesser Poland West Pomeranian Podlaskie Pomeranian |
The Level of Sustainable Development in the Area of Environmental Order: | |||
---|---|---|---|
Very High TMD ≥ 0.75 (A) | High 0.5 ≤ TMD <0.75 (B) | Medium 0.5 > TMD ≥ 0.25 (C) | Low TMD < 0.25 (D) |
Podlaskie Subcarpathian Kuyavian-Pomeranian Lubusz Pomeranian West Pomeranian | Warmian-Masurian Lower Silesian Greater Poland Świętokrzyskie Opole Silesian Łódź Masovian Lesser Poland Podlaskie Lublin |
2016 | 2018 | |||
---|---|---|---|---|
TMD Nominal Change | TMD Change (%) | TMD Nominal Change | TMD Change (%) | |
Lower Silesian | 0.024085 | 22.75% | 0.020036 | 14.92% |
Kuyavian-Pomeranian | 0.012942 | 6.14% | 0.006943 | 2.55% |
Lublin | 0.039056 | 23.72% | 0.000408 | 0.17% |
Lubusz | −0.02336 | −6.33% | 0.003161 | 1.04% |
Łódź | −0.04055 | −60.47% | −0.04599 | −108.00% |
Lesser Poland | 0.008213 | 4.94% | 0.018812 | 9.48% |
Masovian | 0.005021 | 4.70% | 0.019181 | 26.45% |
Opole | −0.00095 | −1.04% | −0.00586 | −4.25% |
Subcarpathian | 0.048728 | 16.22% | 0.061079 | 18.14% |
Podlaskie | 0.002462 | 1.05% | 0.024361 | 5.93% |
Pomeranian | 0.051216 | 22.27% | 0.020309 | 6.71% |
Silesian | 0.00272 | 9.61% | 0.046159 | 165.18% |
Świętokrzyskie | 0.011112 | 7.99% | −0.01243 | −5.54% |
Warmian-Masurian | 0.045844 | 24.41% | 0.053305 | 28.92% |
Greater Poland | 0.04369 | 36.62% | 0.045946 | 24.80% |
West Pomeranian | 0.011562 | 5.20% | 0.045951 | 18.20% |
median | 0.015111 | 0.073628 | 0.018836 | 12.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemiątkowski, P.; Tomaszewski, P.; Marszałek-Kawa, J.; Gierszewski, J. The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order. Energies 2020, 13, 5591. https://doi.org/10.3390/en13215591
Siemiątkowski P, Tomaszewski P, Marszałek-Kawa J, Gierszewski J. The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order. Energies. 2020; 13(21):5591. https://doi.org/10.3390/en13215591
Chicago/Turabian StyleSiemiątkowski, Piotr, Patryk Tomaszewski, Joanna Marszałek-Kawa, and Janusz Gierszewski. 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order" Energies 13, no. 21: 5591. https://doi.org/10.3390/en13215591
APA StyleSiemiątkowski, P., Tomaszewski, P., Marszałek-Kawa, J., & Gierszewski, J. (2020). The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order. Energies, 13(21), 5591. https://doi.org/10.3390/en13215591