An Improved Inverse-Time Over-Current Protection Method for a Microgrid with Optimized Acceleration and Coordination
Abstract
:1. Introduction
2. Improved Inverse-Time Over-Current Protection Method Based on the Compound Fault Acceleration Factor
2.1. Introduction to the Inverse-Time Over-Current Relay
2.2. Development of the Compound Fault Acceleration Factor for Over-Current Protection of a Microgrid
2.3. Effect of DG on the Compound Fault Acceleration Factor
3. Protection Coordination Optimization Based on the Beetle Antennae Search Algorithm
3.1. Coordinated Optimization of the I-ITOCRs
3.1.1. Protection Coordination Constraints
3.1.2. Protection Operation Time Constraint
3.1.3. Protection Parameter Constraint
3.2. Parameter Optimization of the I-ITOCR Based on the Beetle Antenna Search Algorithm
3.3. Classification of Microgrid Scenarios Based on DG Status
4. Simulation Results
4.1. Optimized Configuration of the Protection Parameters
4.2. Evaluation of the Acceleration Capability of the Proposed Method
4.2.1. Evaluations in the Grid-Connected Mode of the Microgrid
4.2.2. Evaluations in the Islanded Mode of the Microgrid
4.3. Evaluations of Protection Coordination of the Proposed Method
4.3.1. Evaluations in the Grid-Connected Mode of the Microgrid
4.3.2. Evaluations in the Islanded Mode of the Microgrid
4.3.3. Evaluations of the DG Connection States
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BAS | Beetle antennae search |
DG | Distributed generation |
TDS | Time Dial Setting |
IIDG | Inverter-interfaced distributed generation |
FCLs | Fault current limiters |
HHT | Hilbert–Huang transform |
OCR | Over-current relay |
ITOC | Inverse-time over-current |
ITOCR | Inverse-time over-current relay |
CTI | Coordination time interval |
References
- Liu, B.; Zhuo, F.; Zhu, Y. System operation and energy management of a renewable energy-based DC micro-grid for high penetration depth application. IEEE Trans. Smart Grid 2015, 6, 1147–1155. [Google Scholar] [CrossRef]
- Badal, F.R.; Das, P.; Sarker, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 87–113. [Google Scholar] [CrossRef] [Green Version]
- Teimourzadeh, S.; Aminifar, F.; Davarpanah, M. Macroprotections for microgrids: Toward a new protection paradigm subsequent to distributed energy resource integration. IEEE Ind. Electron. Mag. 2016, 10, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Mu, L. New protection scheme for internal fault of multi-microgrid. Prot. Control Mod. Power Syst. 2019, 4, 159–170. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, X.; Yang, M. A novel protection scheme for inverter-interfaced microgrid (IIM) operated in islanded mode. IEEE Trans. Power Electron. 2018, 33, 7684–7697. [Google Scholar] [CrossRef]
- Kumar, D.S.; Savier, J.S.; Biju, S.S. Micro-synchrophasor based special protection scheme for distribution system automation in a smart city. Prot. Control Mod. Power Syst. 2020, 5, 97–110. [Google Scholar] [CrossRef]
- Hooshyar, A.; Iravani, R. Microgrid protection. Proc. IEEE 2017, 105, 1332–1353. [Google Scholar] [CrossRef]
- Beheshtaein, S.; Cuzner, R.; Savaghebi, M. Review on microgrids protection. IET Gener. Transm. Distrib. 2019, 13, 743–759. [Google Scholar] [CrossRef]
- Haron, A.R.; Mohamed, A.; Shareef, H. A review on protection schemes and coordination techniques in microgrid system. J. Appl. Sci. 2012, 12, 101–112. [Google Scholar] [CrossRef]
- Fani, B.; Bisheh, H.; Sadeghkhani, I. Protection coordination scheme for distribution networks with high penetration of photovoltaic generators. IET Gener. Transm. Distrib. 2018, 12, 1802–1814. [Google Scholar] [CrossRef]
- Belwin, J.; Raja, R. A review on issues and approaches for microgrid protection. J. Renew. Sustain. Energy Rev. 2017, 67, 988–997. [Google Scholar]
- Soleimanisardoo, A.; Karegar, H.K.; Zeineldin, H.H. Differential frequency protection scheme based on off-nominal frequency injections for inverter-based islanded microgrids. IEEE Trans. Smart Grid 2019, 10, 2107–2114. [Google Scholar] [CrossRef]
- Aghdam, T.S.; Karegar, H.K.; Zeineldin, H.H. Variable tripping time differential protection for microgrids considering DG stability. IEEE Trans. Smart Grid 2019, 10, 2407–2415. [Google Scholar] [CrossRef]
- Sharma, A.; Panigrahi, B.K. Phase fault protection scheme for reliable operation of microgrids. IEEE Trans. Ind. Appl. 2018, 54, 2646–2655. [Google Scholar] [CrossRef]
- Zanjani, M.G.; Mazlumi, K.; Kamwa, I. Application of μPMUs for adaptive protection of over-current relays in microgrids. IET Gener. Transm. Distrib. 2018, 12, 4061–4068. [Google Scholar] [CrossRef]
- Jain, R.; Lubkeman, D.L.; Lukic, S.M. Dynamic adaptive protection for distribution systems in grid-connected and islanded modes. IEEE Trans. Power Deliv. 2019, 34, 281–289. [Google Scholar] [CrossRef]
- Hooshyar, A.; Iravani, R. A new directional element for microgrid protection. IEEE Trans. Smart Grid 2018, 9, 6862–6876. [Google Scholar] [CrossRef]
- Mahamedi, B.; Zhu, J.G.; Eskandari, M. Protection of inverter-based microgrids from ground faults by an innovative directional element. IET Gener. Transm. Distrib. 2018, 12, 5918–5927. [Google Scholar] [CrossRef]
- Huang, W.; Nengling, T.; Zheng, X. An impedance protection scheme for feeders of active distribution networks. IEEE Trans. Power Deliv. 2014, 29, 1591–1602. [Google Scholar] [CrossRef]
- Jin, L.; Jiang, M.; Yang, G. Fault Analysis of Microgrid and Adaptive Distance Protection Based on Complex Wavelet Transform. In Proceedings of the International Power Electronics and Application Conference and Exposition, Shanghai, China, 5–8 November 2014; pp. 1–5. [Google Scholar]
- Muda, H.; Jena, P. Superimposed adaptive sequence current based microgrid protection: A new technique. IEEE Trans. Power Deliv. 2017, 32, 757–767. [Google Scholar] [CrossRef]
- Mahat, P.; Chen, Z.; Bakjensen, B. A simple adaptive 0ver-current protection of distribution systems with distributed generation. IEEE Trans. Smart Grid 2011, 2, 428–437. [Google Scholar] [CrossRef]
- Elnaily, N.; Saad, S.M.; Hussein, T. A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme. IET Gener. Transm. Distrib. 2019, 13, 780–793. [Google Scholar] [CrossRef]
- Najy, W.K.A.; Zeineldin, H.H.; Woon, W.L. Optimal protection coordination for microgrids with grid-connected and islanded capability. IEEE Trans. Ind. Electron. 2013, 60, 1668–1677. [Google Scholar] [CrossRef]
- Dehghanpour, E.; Karegar, H.K.; Kheirollahi, R. Optimal coordination of directional over-current relays in microgrids by using cuckoo-linear optimization algorithm and fault current limiter. IEEE Trans. Smart Grid 2018, 9, 1365–1375. [Google Scholar] [CrossRef]
- Kar, S.; Samantaray, S.R.; Zadeh, M.D. Data-mining model based intelligent differential microgrid protection scheme. IEEE Syst. J. 2017, 11, 1161–1169. [Google Scholar] [CrossRef]
- Lin, H.; Sun, K.; Tan, Z.; Liu, C.; Guerrero, J.M.; Vasquez, J.C. Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 2019, 13, 770–779. [Google Scholar] [CrossRef]
- Mishra, M.; Rout, P.K. Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Gener. Transm. Distrib. 2018, 12, 388–397. [Google Scholar] [CrossRef]
- Shiles, J.; Wong, E.; Rao, S. Microgrid protection: An overview of protection strategies in North American microgrid projects. In Proceedings of the IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- IEC. Measuring Relays and Protection Equipment—Part 151: Functional Requirements for Over/Under Current Protection, IEC 60255-151 Edition 1.0; IEC: Geneva, Switzerland, 2009. [Google Scholar]
- Noghabi, A.S.; Sadeh, J.; Mashhadi, H.R. Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA. IEEE Trans. Power Deliv. 2009, 24, 1857–1863. [Google Scholar] [CrossRef]
- Tjahjono, A.; Anggriawan, D.O.; Faizin, A.K.; Priyadi, A.; Pujiantara, M.; Taufik, T.; Purnomo, M.H. Adaptive modified firefly algorithm for optimal coordination of over-current relays. IET Gener. Transm. Distrib. 2017, 11, 2575–2585. [Google Scholar] [CrossRef]
- Dahej, A.E.; Esmaeili, S.; Hojabri, H. Co-Optimization of protection coordination and power quality in microgrids using unidirectional fault current limiters. IEEE Trans. Smart Grid 2018, 9, 5080–5091. [Google Scholar] [CrossRef]
- Sharaf, H.M.; Zeineldin, H.H.; Ibrahim, D.K. A proposed coordination strategy for meshed distribution systems with DG considering user-defined characteristics of directional in-verse time over-current relays. Int. J. Electr. Power Energy Syst. 2015, 65, 49–58. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
Scenarios | DG2 | DG3 | DG4 |
---|---|---|---|
1 | OFF | OFF | OFF |
2 | ON | ON | OFF |
3 | ON | OFF | ON |
4 | ON | OFF | OFF |
5 | OFF | OFF | ON |
6 | OFF | ON | OFF |
7 | OFF | ON | ON |
8 | ON | ON | ON |
Element | Parameter |
---|---|
DG1/DG2/DG3/DG4 | 1500/100/200/500 kW |
Line Parameters and length | 0.01 + j0.015 Ω/km, 1 km |
Load1/Load2/Load3/Load4/Load5 | 300/100/200/200/400 kW |
PCC Voltage/Frequency | 0.4 kV/50 Hz |
Relay | Ip·i/IL·maxi | TDSi | αi |
---|---|---|---|
R1 | 1.1277 | 0.5061 | 0.0211 |
R2 | 1.1308 | 0.7231 | 0.0201 |
R3 | 1.5788 | 0.7511 | 0.0214 |
R4 | 1.1105 | 8.7153 | 0.2981 |
R5 | 2.9282 | 0.1495 | 0.0262 |
Fault Position | Relay Operational Time (s) | |||
---|---|---|---|---|
I-ITOCR | ITOCR | |||
PR | BR | PR | BR | |
F1 | 0.1110 | — | 0.4678 | — |
F2 | 0.0701 | 0.4259 | 0.3549 | 0.7307 |
F3 | 0.0499 | 0.3799 | 0.1096 | 0.4437 |
F4 | 0.0837 | — | 0.3094 | — |
F5 | 0.0204 | 0.3789 | 0.1179 | 0.4828 |
Fault Type | Relay Operational Time (s) | |||
---|---|---|---|---|
I-ITOCR | ITOCR | |||
PR | BR | PR | BR | |
A | 0.1409 | 0.5264 | 0.3556 | 0.7297 |
B | 0.0676 | 0.4151 | 0.3729 | 0.7705 |
C | 0.0640 | 0.3947 | 0.3552 | 0.7292 |
D | 0.0701 | 0.4259 | 0.3549 | 0.7307 |
Fault Position | Relay Operational Time (s) | |||
---|---|---|---|---|
I-ITOCR | ITOCR | |||
PR | BR | PR | BR | |
F1 | 0.0728 | — | 1.1519 | — |
F2 | 0.0667 | 0.5033 | 0.6013 | 1.5919 |
F3 | 0.0568 | 0.4419 | 0.1650 | 0.7408 |
F4 | 0.0715 | — | 0.7591 | — |
F5 | 0.0389 | 0.5181 | 0.2155 | 1.0478 |
Fault Ttype | Relay Operational Time (s) | |||
---|---|---|---|---|
I-ITOCR | ITOCR | |||
PR | BR | PR | BR | |
A | 0.1490 | 0.5409 | 0.1677 | 0.7508 |
B | 0.0481 | 0.4161 | 0.1915 | 0.9061 |
C | 0.0430 | 0.3379 | 0.1667 | 0.6681 |
D | 0.0568 | 0.4419 | 0.1650 | 0.7408 |
Fault Position | Relay Operational Time (s) | |||||
---|---|---|---|---|---|---|
I-ITOCR | ITOCR | |||||
PR | BR | CTI | PR | BR | CTI | |
F1 | 0.1110 | — | — | 0.2162 | — | — |
F2 | 0.0701 | 0.4259 | 0.3558 | 0.2126 | 0.3377 | 0.1251 |
F3 | 0.0499 | 0.3799 | 0.3300 | 0.0724 | 0.2658 | 0.1934 |
F4 | 0.0837 | — | — | 0.1394 | — | — |
F5 | 0.0204 | 0.3789 | 0.3585 | 0.0621 | 0.2175 | 0.1554 |
Fault Type | Relay Operational Time (s) | |||||
---|---|---|---|---|---|---|
I-ITOCR | ITOCR | |||||
PR | BR | CTI | PR | BR | CTI | |
A | 0.1409 | 0.5264 | 0.3855 | 0.2131 | 0.3372 | 0.1241 |
B | 0.0676 | 0.4151 | 0.3475 | 0.2234 | 0.3561 | 0.1327 |
C | 0.0640 | 0.3947 | 0.3307 | 0.2128 | 0.3382 | 0.1254 |
D | 0.0701 | 0.4259 | 0.3558 | 0.2126 | 0.3377 | 0.1251 |
Fault Position | Relay Operational Time (s) | |||||
---|---|---|---|---|---|---|
I-ITOCR | ITOCR | |||||
PR | BR | CTI | PR | BR | CTI | |
F1 | 0.0728 | — | — | 0.5322 | — | — |
F2 | 0.0667 | 0.5033 | 0.4366 | 0.3602 | 0.7355 | 0.3753 |
F3 | 0.0568 | 0.4419 | 0.3851 | 0.1088 | 0.4437 | 0.3349 |
F4 | 0.0715 | — | — | 0.3419 | — | — |
F5 | 0.0389 | 0.5181 | 0.4792 | 0.1135 | 0.4718 | 0.3583 |
Fault Type | Relay Operational Time (s) | |||||
---|---|---|---|---|---|---|
I-ITOCR | ITOCR | |||||
PR | BR | CTI | PR | BR | CTI | |
A | 0.1578 | 0.5055 | 0.3477 | 0.3633 | 0.7383 | 0.3750 |
B | 0.0525 | 0.5091 | 0.4566 | 0.4464 | 0.8515 | 0.4051 |
C | 0.0475 | 0.4450 | 0.3975 | 0.3220 | 0.6140 | 0.2920 |
D | 0.0667 | 0.5033 | 0.4366 | 0.3602 | 0.7355 | 0.3753 |
Fault Position | Relay Operational Time (s) | |||
---|---|---|---|---|
PR | BR | CTI | ||
Scenario 2 | G | 0.0027 | 0.3772 | 0.3745 |
I | 0.0029 | 0.4491 | 0.4462 | |
Scenario 3 | G | 0.0117 | 0.3812 | 0.3695 |
I | 0.0118 | 0.4111 | 0.3993 | |
Scenario 4 | G | 0.0677 | 0.3942 | 0.3265 |
I | 0.0821 | 0.4617 | 0.3796 | |
Scenario 5 | G | 0.0246 | 0.3969 | 0.3723 |
I | 0.0235 | 0.3973 | 0.3738 | |
Scenario 6 | G | 0.0293 | 0.4304 | 0.4011 |
I | 0.0263 | 0.3886 | 0.3623 | |
Scenario 7 | G | 0.0093 | 0.3853 | 0.3760 |
I | 0.0081 | 0.3420 | 0.3339 | |
Scenario 8 | G | 0.0241 | 0.4713 | 0.4472 |
I | 0.0229 | 0.4590 | 0.4361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Cao, Z.; Hong, Q.; Chang, X.; Fu, Y.; Shi, J.; Mi, Y.; Li, Z. An Improved Inverse-Time Over-Current Protection Method for a Microgrid with Optimized Acceleration and Coordination. Energies 2020, 13, 5726. https://doi.org/10.3390/en13215726
Ji L, Cao Z, Hong Q, Chang X, Fu Y, Shi J, Mi Y, Li Z. An Improved Inverse-Time Over-Current Protection Method for a Microgrid with Optimized Acceleration and Coordination. Energies. 2020; 13(21):5726. https://doi.org/10.3390/en13215726
Chicago/Turabian StyleJi, Liang, Zhe Cao, Qiteng Hong, Xiao Chang, Yang Fu, Jiabing Shi, Yang Mi, and Zhenkun Li. 2020. "An Improved Inverse-Time Over-Current Protection Method for a Microgrid with Optimized Acceleration and Coordination" Energies 13, no. 21: 5726. https://doi.org/10.3390/en13215726
APA StyleJi, L., Cao, Z., Hong, Q., Chang, X., Fu, Y., Shi, J., Mi, Y., & Li, Z. (2020). An Improved Inverse-Time Over-Current Protection Method for a Microgrid with Optimized Acceleration and Coordination. Energies, 13(21), 5726. https://doi.org/10.3390/en13215726