Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation strategy
2.2. Materials and Description of the Incineration Plant
2.2.1. Materials
2.2.2. Incineration Plant
Solids Storage
Conveyor Belt
Incineration Unit
Gas Treatment Section
3. Results
3.1. Simulation Results
3.2. Experimental Results
3.2.1. Start-Up Procedure
3.2.2. Testing and Adjusting of the Single Elements
3.2.3. Start-Up Tests on the Pilot Plant
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Food and Agriculture Organisation of the United Nations. Available online: http://www.fao.org/home/en (accessed on 2 October 2020).
- Baetge, S.; Kaltschmitt, M. Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production. Biomass Convers. Biorefinery 2018, 8, 719–737. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue- management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Kaur, D.; Bhardwaj, N.K.; Lohchab, R.K. Prospects of rice straw as a raw material for paper making. Waste Manag. 2017, 60, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Elhussieny, A.; Faisal, M.; D’Angelo, G.; Aboulkhair, N.T.; Everitt, N.M.; Fahim, I.S. Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Eng. J. 2020. [Google Scholar] [CrossRef]
- Cascone, S.; Rapisarda, R.; Cascone, D. Physical Properties of Straw Bales as a Construction Material: A Review. Sustainability 2019, 11, 3388. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Lv, C.; Chen, M.; Zhou, X.; Dai, Z.; Shen, D. Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy Build. 2015, 87, 116–122. [Google Scholar] [CrossRef]
- Binod, P.; Sindhu, R.; Singhania, R.R.; Vikram, S.; Devi, L.; Nagalakshmi, S.; Kurien, N.; Sukumaran, R.K.; Pandey, A. Bioethanol production from rice straw: An overview. Bioresour. Technol. 2010, 101, 4767–4774. [Google Scholar] [CrossRef]
- Mothe, S.; Polisetty, V.R. Review on anaerobic digestion of rice straw for biogas production. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Logeswaran, J.; Shamsuddin, A.H.; Silitonga, A.S.; Mahlia, T.M.I. Prospect of using rice straw for power generation: A review. Environ. Sci. Pollut. Res. 2020, 27, 25956–25969. [Google Scholar] [CrossRef]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- Moliner, C.; Teruel-Juanes, R.; Primaz, C.; Badia, J.; Bosio, B.; Campíns-Falcó, P.; Molíns-Legua, C.; Hernandez, F.; Sanjuan-Navarro, L.; Madramany, P.; et al. Reduction of Nitrates in Waste Water through the Valorization of Rice Straw: LIFE LIBERNITRATE Project. Sustainability 2018, 10, 3007. [Google Scholar] [CrossRef] [Green Version]
- Bove, D.; Moliner, C.; Curti, M.; Baratieri, M.; Bosio, B.; Rovero, G.; Arato, E. Preliminary tests for the thermo-chemical conversion of biomass in a spouted bed pilot plant. Can. J. Chem. Eng. 2018, 97, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Moliner, C.; Bosio, B.; Arato, E.; Ribes-Greus, A. Comparative study for the energy valorisation of rice straw. Chem. Eng. Trans. 2014, 37, 241–246. [Google Scholar]
- Moliner, C.; Bosio, B.; Arato, E.; Ribes, A. Thermal and thermo-oxidative characterisation of rice straw for its use in energy valorisation processes. Fuel 2016, 180, 71–79. [Google Scholar] [CrossRef]
- Ewida, K.T.; El-Salmawy, H.; Atta, N.N.; Mahmoud, M.M. A sustainable approach to the recycling of rice straw through pelletization and controlled burning. Clean Technol. Environ. Policy 2006, 8, 188–197. [Google Scholar] [CrossRef]
- Karatza, D.; Prisciandaro, M.; Lancia, A.; Musmarra, D. Sulfite Oxidation Catalyzed by Cobalt Ions in Flue Gas Desulfurization Processes. J. Air Waste Manage. Assoc. 2010, 60, 675–680. [Google Scholar] [CrossRef]
- Nie, Y.; Li, S.; Dai, J.; He, D.; Mei, Y. Catalytic effect of Mn2+, Fe3+ and Mg2+ ions on desulfurization using phosphate rock slurry as absorbent. Chem. Eng. J. 2020, 390, 124568. [Google Scholar] [CrossRef]
- Liu, H.; Bie, R. Study of the Bed Agglomeration during the Fluidized Bed Combustion of Rice Straw. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4. [Google Scholar]
- Suramaythangkoor, T.; Gheewala, S.H. Potential alternatives of heat and power technology application using rice straw in Thailand. Appl. Energy 2010, 87, 128–133. [Google Scholar] [CrossRef]
- Maguyon-Detras, M.C.; Migo, M.V.P.; Van Hung, N.; Gummert, M. Thermochemical Conversion of Rice Straw. In Sustainable Rice Straw Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–64. [Google Scholar]
- Sharma, G.; Kaur, M.; Punj, S.; Singh, K. Biomass as a sustainable resource for value-added modern materials: A review. Biofuels Bioprod. Biorefining 2020, 14, 673–695. [Google Scholar] [CrossRef]
- Moliner, C.; Bove, D.; Bosio, B.; Ribes, A.; Arato, E. Feasibility studies on the energy valorisation of agricultural residues using Aspen Plus (c). In Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1–4 June 2015; pp. 803–809. [Google Scholar]
- Moliner, C.; Lagazzo, A.; Bosio, B.; Botter, R.; Arato, E. Production and characterisation of pellets from rice straw and rice husk. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Lisbon, Portugal, 27–30 May 2019; pp. 1023–1028. [Google Scholar]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Schneider, D.; Wassersleben, S.; Weiß, M.; Denecke, R.; Stark, A.; Enke, D. A Generalized Procedure for the Production of High-Grade, Porous Biogenic Silica. Waste Biomass Valorization 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Beidaghy Dizaji, H.; Zeng, T.; Hartmann, I.; Enke, D.; Schliermann, T.; Lenz, V.; Bidabadi, M. Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. Appl. Sci. 2019, 9, 1083. [Google Scholar] [CrossRef] [Green Version]
- Schliermann, T.; Hartmann, I.; Beidaghy Dizaji, H.; Zeng, T.; Schneider, D.; Wassersleben, S.; Enke, D.; Jobst, T.; Lange, A.; Roelofs, F. High Quality Biogenic Silica from Combined Energetic and Material Utilization of Agricultural Residues. In Proceedings of the Conference: 7th International Symposium on Energy from Biomass and Waste, Venice, Italy, 15 October 2018. [Google Scholar]
Physical Properties | Wood Pellets | Rice Straw Pellets |
Length (m) | 3.0∙10−3 | 3.2∙10−3 |
Density (kg/m3) | 600 | 600 |
Proximate Analysis (wt. %) | Wood Pellets | Rice Straw Pellets |
Moisture content (MC) a | 5.1 | 9.1 |
Fixed Carbon (FC) b | 22.4 | 16.1 |
Volatile Matter (VM) b | 77.3 | 63.3 |
Ash b | 0.3 | 20.6 |
Ultimate Analysis (wt. %) | Wood Pellets | Rice Straw Pellets |
Ash b | 0.3 | 20.6 |
C c | 50.1 | 35.1 |
H c | 6.2 | 4.5 |
O c | 43.4 | 57.8 |
N c | 0.2 | 2.3 |
S c | 0.1 | 0.3 |
HHV (MJ/kg) | 19.5 | 11.6 d |
Input Data | Value | Unit |
---|---|---|
Target silica | 120 | kg |
Ash-silica yield [12] | 0.8 | - |
Rice straw-ash yield [12] | 0.12 | - |
High heating value rice straw pellet | 11 | MJ/kg |
Ratio of mass overflow | 0.4 | - |
Time of work | 170 | days |
Daily working hours | 8 | h |
Calculated design values | ||
Silica | 150 | kg |
Rice straw | 1227 | kg |
Rice straw pellets daily mass flow | 10 | kg/d |
Rice straw pellets hourly mass flow | 1.25 | kg/h |
Storage volume | 0.0833 | m3 |
Air Inflow (Nm3/h) | C (kg/h) | O2 (wt. %) | CO (wt. %) | CO2 (wt. %) | Other (CH4, H2, H2O) (wt. %) |
---|---|---|---|---|---|
1 | 0.60 | 0.00 | 0.02 | 0.60 | 0.38 |
2 | 0.51 | 0.00 | 0.02 | 0.65 | 0.33 |
3 | 0.41 | 0.00 | 0.02 | 0.68 | 0.29 |
4 | 0.31 | 0.00 | 0.02 | 0.71 | 0.26 |
5 | 0.21 | 0.00 | 0.03 | 0.74 | 0.24 |
6 | 0.10 | 0.00 | 0.03 | 0.76 | 0.22 |
7 | 0.00 | 0.00 | 0.03 | 0.77 | 0.20 |
8 | 0.00 | 0.00 | 0.02 | 0.77 | 0.21 |
9 | 0.00 | 0.00 | 0.01 | 0.76 | 0.24 |
10 | 0.00 | 0.01 | 0.00 | 0.73 | 0.27 |
Biomass Flow Rates | 40 g/min | 30 g/min | 20 g/min |
---|---|---|---|
Stoichiometric air (Nm3/h) | 7.5 | 6.5 | 5.0 |
Air for self-sustained combustion (Nm3/h) | 5.0 | 5.0 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moliner, C.; Bove, D.; Arato, E. Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste. Energies 2020, 13, 5750. https://doi.org/10.3390/en13215750
Moliner C, Bove D, Arato E. Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste. Energies. 2020; 13(21):5750. https://doi.org/10.3390/en13215750
Chicago/Turabian StyleMoliner, Cristina, Dario Bove, and Elisabetta Arato. 2020. "Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste" Energies 13, no. 21: 5750. https://doi.org/10.3390/en13215750
APA StyleMoliner, C., Bove, D., & Arato, E. (2020). Co-Incineration of Rice Straw-Wood Pellets: A Sustainable Strategy for the Valorisation of Rice Waste. Energies, 13(21), 5750. https://doi.org/10.3390/en13215750