Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland
Abstract
:1. Introduction
2. Material and Methods
- quantitative analyses,
- desk research on cities’ strategic documents,
- a PAPI (paper and pen personal interview) survey as a case study of Bydgoszcz.
- the year 2019, for quantitative data relating to the installation of RES in cities;
- 2007–2020 for the analysis of strategic documents.
3. Results
3.1. RES Installations in the Largest Cities of Poland
3.2. RES in City Development Documents
3.3. Case Study: Bydgoszcz
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caragliu, A.; del Bo, C.; Nijkamp, P. Smart cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Douša, M.; Lewandowska, A. Inteligentní města v praxi: Projekty realizované v slovenských a polských městech. In Trvalo Udržate’ný Rozvoj v Krajinách Európskej Únie, Nekonferenčný Zborník Vedeckých Prác: VEGA č. 1/0302/18: Inteligentné Mestá ako Spôsob Implementácie Konceptu Trvalo Udržate’ného Rozvoja Miest SR; Čepelová, A., Koreňová, D., Eds.; Univerzita Pavla Jozefa Šafárika: Košice, Slovak, 2019; pp. 171–189. [Google Scholar]
- Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the smart city transformation framework. Technol. Forecast. Soc. Chang. 2020, 153, 1–16. [Google Scholar] [CrossRef]
- Leźnicki, M.; Lewandowska, A. Contemporary concepts of a city in the context of sustainable development: Perspective of humanities and natural sciences. Probl. Ekorozw. 2016, 11, 45–54. [Google Scholar]
- Kumar, T.V.; Dahiya, B. Smart economy in smart cities. In Smart Economy in Smart Cities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–76. [Google Scholar]
- Visvizi, A.; Lytras, M.D. Rescaling and refocusing smart cities research: From mega cities to smart villages. J. Sci. Technol. Policy Manag. 2018, 9, 134–145. [Google Scholar] [CrossRef]
- Ruhlandt, R.W.S. The governance of smart cities: A systematic literature review. Cities 2018, 81, 1–23. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Smart urbanism and smart citizenship: The neoliberal logic of ‘citizen-focused’smart cities in Europe. Environment and Planning. Politics Space 2019, 37, 813–830. [Google Scholar] [CrossRef] [Green Version]
- Strielkowski, W.; Veinbender, T.; Tvaronavičienė, M.; Lace, N. Economic efficiency and energy security of smart cities. Econ. Res. Ekon. Istraživanj 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Janik, A.; Ryszko, A.; Szafraniec, M. Scientific landscape of smart and sustainable cities literature: A bibliometric analysis. Sustainability 2020, 12, 779. [Google Scholar] [CrossRef] [Green Version]
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Lee, J.H.; Phaal, R.; Lee, S.H. An integrated service-device-technology roadmap for smart city development. Technol. Forecast. Soc. Chang. 2013, 80, 286–306. [Google Scholar] [CrossRef]
- Akaraci, S.; Usman, M.A.; Usman, M.R.; Ahn, D.J. From smart to smarter cities: Bridging the dimensions of technology and urban planning. In Proceedings of the 2016 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), Bali, Indonesia, 6–8 October 2016; pp. 74–78. [Google Scholar]
- Sepasgozar, S.M.; Hawken, S.; Sargolzaei, S.; Foroozanfa, M. Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technol. Forecast. Soc. Chang. 2019, 142, 105–116. [Google Scholar] [CrossRef]
- Shapiro, J.M. Smart cities: Quality of life, productivity, and the growth effects of human capital. Rev. Econ. Stat. 2016, 88, 324–335. [Google Scholar] [CrossRef]
- Jurenka, R.; Cagáňová, D.; Horňáková, N.; Stareček, A. Smart city in terms of social innovations and human capital. Smart City 2016, 360, 2nd. [Google Scholar] [CrossRef] [Green Version]
- Giffinger, R.; Fertner, C.; Kramar, H.; Kramar, H.; Kalasek, R.; Pichler-Milanovic, N.; Meijers, E. Smart Cities. In Ranking of European Medium-Sized Cities; Centre for Regional Science, Vienna University of Technology: Viena, Austria, 2017; Available online: http://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 12 September 2020).
- Jonek-Kowalska, I.; Kaźmierczak, J.; Kramarz, M.; Hilarowicz, A.; Wolny, M. Introduction to the research project “Smart City: A holistic approach”. In Proceedings of the 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM 2018, Sofia, Bulgaria, 26 August–1 September 2018; pp. 101–112. [Google Scholar] [CrossRef]
- Kusch-Brandt, S. Urban Renewable Energy on the Upswing: A Spotlight on Renewable Energy in Cities in REN21’s “Renewables 2019 Global Status Report”. Resources 2019, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.; Narodoslawsky, M. Optimal Renewable Energy Systems for Smart Cities. In Proceedings of the 24th European Symposium on Computer Aided Process Engineering—ESCAPE 24, Budapest, Hungary, 15–18 June 2014; Klemes, J., Ed.; University of Pannonia: Veszprem, Hungary, 2014; pp. 1849–1854. [Google Scholar]
- Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K. Development of renewable energy sources in big cities in Poland in the context of urban policy. Renew. Energy Sources Eng. Technol. Innov. 2019, 842–852. [Google Scholar] [CrossRef]
- Eicker, U. Renewable Energy Sources within Urban Areas: Results from European Case Studies. Ashrae Trans. 2012, 118, 73–80. [Google Scholar]
- Gerpott, T.J.; Paukert, M. Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany. Energy Policy 2013, 61, 483–495. [Google Scholar] [CrossRef]
- Gabillet, P. Energy supply and urban planning projects: Analysing tensions around district heating provision in a French eco-district. Energy Policy 2015, 78, 189–197. [Google Scholar] [CrossRef]
- Kılkış, Ş. Sustainable development of energy, water and environment systems index for Southeast European cities. J. Clean. Prod. 2016, 130, 222–234. [Google Scholar] [CrossRef]
- Petersen, J.P. Energy concepts for self-supplying communities based on local and renewable energy sources: A case study from northern Germany. Sustain. Cities Soc. 2016, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kazak, J.; Van Hoof, J.; Szewranski, S. Challenges in the wind turbines location process in Central Europe–The use of spatial decision support systems. Renew. Sustain. Energy Rev. 2017, 76, 425–433. [Google Scholar] [CrossRef]
- Ahas, R.; Mooses, V.; Kamenjuk, P.; Tamm, R. Retrofitting Soviet-Era Apartment Buildings with ‘Smart City’Features: The H2020 SmartEnCity Project in Tartu, Estonia. In Housing Estates in the Baltic Countries; Springer Science and Business Media LLC: Berlin, Germany, 2019; p. 357. [Google Scholar]
- Bahers, J.B.; Tanguy, A.; Pincetl, S. Metabolic relationships between cities and hinterland: A political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France). Ecol. Econ. 2020, 167, 106447. [Google Scholar] [CrossRef]
- Hammer, S.A. Renewable energy policymaking in New York and London: Lessons for other ‘World Cities’? In Urban Energy Transition; Elsevier: Amsterdam, The Netherlands, 2008; pp. 141–172. [Google Scholar]
- Denis, G.S.; Parker, P. Community energy planning in Canada: The role of renewable energy. Renew. Sustain. Energy Rev. 2009, 13, 2088–2095. [Google Scholar] [CrossRef]
- Moscovici, D.; Dilworth, R.; Mead, J.; Zhao, S. Can sustainability plans make sustainable cities? The ecological footprint implications of renewable energy within Philadelphia’s Greenworks Plan. Sustain. Sci. Pract. Policy 2015, 11, 32–43. [Google Scholar]
- Bagheri, M.; Shirzadi, N.; Bazdar, E.; Kennedy, C.A. Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver. Renew. Sustain. Energy Rev. 2018, 95, 254–264. [Google Scholar]
- DeRolph, C.R.; McManamay, R.A.; Morton, A.M.; Nair, S.S. City energy sheds and renewable energy in the United States. Nat. Sustain. 2019, 2, 412–420. [Google Scholar]
- Hess, D.J.; Gentry, H. 100% renewable energy policies in US cities: Strategies, recommendations, and implementation challenges. Sustain. Sci. Pract. Policy 2019, 15, 45–61. [Google Scholar]
- Kouhestani, F.M.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, B. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 2019, 10, 13–32. [Google Scholar]
- Ramírez, A.M.; Sebastian, P.J.; Gamboa, S.A.; Rivera, M.A.; Cuevas, O.; Campos, J. A documented analysis of renewable energy related research and development in Mexico. Int. J. Hydrog. Energy 2000, 25, 267–271. [Google Scholar]
- Huacuz, J.M. The road to green power in Mexico—reflections on the prospects for the large-scale and sustainable implementation of renewable energy. Energy Policy 2005, 33, 2087–2099. [Google Scholar] [CrossRef]
- de Araújo, M.S.M.; de Freitas, M.A.V. Acceptance of renewable energy innovation in Brazil—Case study of wind energy. Renew. Sustain. Energy Rev. 2008, 12, 584–591. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Novel approach for decentralized energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study–Informal vertical community Torre David, Caracas–Venezuela. Energy 2013, 53, 93–105. [Google Scholar] [CrossRef]
- Cedeno, M.L.D.; Arteaga, M.G.D.; Perez, A.V.; Arteaga, M.L.D. Regulatory framework for renewable energy sources in Ecuador case study province of Manabi. Int. J. Soc. Sci. Humanit. 2017, 1, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Denicia, E.; Fernández-Luqueño, F.; Vilariño-Ayala, D.; Montaño-Zetina, L.M.; Maldonado-López, L.A. Renewable energy sources for electricity generation in Mexico: A review. Renew. Sustain. Energy Rev. 2017, 78, 597–613. [Google Scholar] [CrossRef]
- Lino, F.A.M.; Ismail, K.A.R. Evaluation of the treatment of municipal solid waste as renewable energy resource in Campinas, Brazil. Sustain. Energy Technol. Assess. 2018, 29, 19–25. [Google Scholar] [CrossRef]
- Bugaje, I.M. Renewable energy for sustainable development in Africa: A review. Renew. Sustain. Energy Rev. 2006, 10, 603–612. [Google Scholar] [CrossRef]
- Cloutier, M.; Rowley, P. The feasibility of renewable energy sources for pumping clean water in sub-Saharan Africa: A case study for Central Nigeria. Renew. Energy 2011, 36, 2220–2226. [Google Scholar] [CrossRef] [Green Version]
- Zawilska, E.; Brooks, M.J. An assessment of the solar resource for Durban, South Africa. Renew. Energy 2011, 36, 3433–3438. [Google Scholar] [CrossRef]
- Gumbo, T. Scaling up sustainable renewable energy generation from municipal solid waste in the African continent: Lessons from EThekwini, South Africa. Consilience 2014, 12, 46–62. [Google Scholar]
- Akuru, U.B.; Onukwube, I.E.; Okoro, O.I.; Obe, E.S. Towards 100% renewable energy in Nigeria. Renew. Sustain. Energy Rev. 2017, 71, 943–953. [Google Scholar] [CrossRef]
- Bouhal, T.; Agrouaz, Y.; Kousksou, T.; Allouhi, A.; El Rhafiki, T.; Jamil, A.; Bakkas, M. Technical feasibility of a sustainable Concentrated Solar Power in Morocco through an energy analysis. Renew. Sustain. Energy Rev. 2018, 81, 1087–1095. [Google Scholar] [CrossRef]
- Jebaraj, S.; Iniyan, S. Renewable energy programmes in India. Int. J. Glob. Energy Issues 2006, 26, 232–257. [Google Scholar] [CrossRef]
- Bilgen, S.; Keleş, S.; Kaygusuz, A.; Sarı, A.; Kaygusuz, K. Global warming and renewable energy sources for sustainable development: A case study in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 372–396. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour. Technol. 2010, 101, 3816–3824. [Google Scholar] [CrossRef]
- Farooq, M.K.; Kumar, S. An assessment of renewable energy potential for electricity generation in Pakistan. Renew. Sustain. Energy Rev. 2013, 20, 240–254. [Google Scholar] [CrossRef]
- Schroeder, P.M.; Chapman, R.B. Renewable energy leapfrogging in China’s urban development? Current status and outlook. Sustain. Cities Soc. 2014, 11, 31–39. [Google Scholar] [CrossRef]
- Madakam, S.; Ramaswamy, R. Sustainable smart city: Masdar (UAE) (A city: Ecologically balanced). Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Noorollahi, Y.; Itoi, R.; Yousefi, H.; Mohammadi, M.; Farhadi, A. Modeling for diversifying electricity supply by maximizing renewable energy use in Ebino city southern Japan. Sustain. Cities Soc. 2017, 34, 371–384. [Google Scholar] [CrossRef]
- Yuan, X.C.; Lyu, Y.J.; Wang, B.; Liu, Q.H.; Wu, Q. China’s energy transition strategy at the city level: The role of renewable energy. J. Clean. Prod. 2018, 205, 980–986. [Google Scholar] [CrossRef]
- Awan, A.B. Performance analysis and optimization of a hybrid renewable energy system for sustainable NEOM city in Saudi Arabia. J. Renew. Sustain. Energy 2019, 11, 025905. [Google Scholar] [CrossRef]
- Fraser, T. Japan’s resilient, renewable cities: How socioeconomics and local policy drive Japan’s renewable energy transition. Environ. Politics 2019, 500–523. [Google Scholar] [CrossRef]
- Meng, N.; Xu, Y.; Huang, G. A stochastic multi-objective optimization model for renewable energy structure adjustment management–A case study for the city of Dalian, China. Ecol. Indic. 2019, 97, 476–485. [Google Scholar] [CrossRef]
- Mithraratne, N. Roof-top wind turbines for microgeneration in urban houses in New Zealand. Energy Build. 2009, 41, 1013–1018. [Google Scholar] [CrossRef]
- Martin, N.J.; Rice, J.L. Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions. Renew. Energy 2012, 44, 119–127. [Google Scholar] [CrossRef]
- White, L.V.; Lloyd, B.; Wakes, S.J. Are Feed-in Tariffs suitable for promoting solar PV in New Zealand cities? Energy Policy 2013, 60, 167–178. [Google Scholar] [CrossRef]
- Dowling, R.; McGuirk, P.; Bulkeley, H. Retrofitting cities: Local governance in Sydney, Australia. Cities 2014, 38, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Imteaz, M.A.; Ahsan, A. Solar panels: Real efficiencies, potential productions and payback periods for major Australian cities. Sustain. Energy Technol. Assess. 2018, 25, 119–125. [Google Scholar] [CrossRef]
- Li, H.X.; Edwards, D.J.; Hosseini, M.R.; Costin, G.P. A review on renewable energy transition in Australia: An updated depiction. J. Clean. Prod. 2020, 242, 118475. [Google Scholar] [CrossRef]
- Skiba, M.; Mrówczyńska, M.; Bazan-Krzywoszańska, A. Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra. Appl. Energy 2017, 188, 356–366. [Google Scholar] [CrossRef]
- Stoeglehner, G.; Niemetz, N.; Kettl, K.H. Spatial dimensions of sustainable energy systems: New visions for integrated spatial and energy planning. EnergySustain. Soc. 2011, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Stoeglehner, G.; Neugebauer, G.; Erker, S.; Narodoslawsky, M. Integrated Spatial and Energy Planning: Supporting Climate Protection and the Energy Turn with Means of Spatial Planning; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- De Pascali, P.; Bagaini, A. Energy Transition and Urban Planning for Local Development. A Critical Review of the Evolution of Integrated Spatial and Energy Planning. Energies 2019, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Asarpota, K.; Nadin, V. Energy Strategies, the Urban Dimension, and Spatial Planning. Energies 2020, 13, 3642. [Google Scholar] [CrossRef]
- Adil, A.M.; Ko, Y. Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy. Renew. Sustain. Energy Rev. 2016, 57, 1025–1037. [Google Scholar] [CrossRef]
- Ziembicki, P.; Klimczak, M.; Bernasiński, J. Optimization of municipal energy systems with the use of an intelligent analytical system. Civil Environ. Eng. Rep. 2018, 28, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Neves, D.; Baptista, P.; Simoes, M.; Silva, C.A.; Figueira, J.R. Designing a municipal sustainable energy strategy using multi-criteria decision analysis. J. Clean. Prod. 2018, 176, 251–260. [Google Scholar] [CrossRef]
- Ceglia, F.; Esposito, P.; Marrasso, E.; Sasso, M. From smart energy community to smart energy municipalities: Literature review, agendas and pathways. J. Clean. Prod. 2020, 254, 120118. [Google Scholar] [CrossRef]
- Young, J.; Brans, M. Fostering a local energy transition in a post-socialist policy setting. Environ. Innov. Soc. Transit. 2020, 36, 221–235. [Google Scholar]
- Neofytou, H.; Nikas, A.; Doukas, H. Sustainable energy transition readiness: A multicriteria assessment index. Renew. Sustain. Energy Rev. 2020, 131, 109988. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J. Przedsiębiorstwa Biogazowe w Rozwoju Lokalnym w Świetle Koncepcji Zakorzenienia; Wydawnictwo Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2019. [Google Scholar]
- Delponte, I.; Schenone, C. RES Implementation in Urban Areas: An Updated Overview. Sustainability 2020, 12, 382. [Google Scholar] [CrossRef] [Green Version]
- Chodkowska-Miszczuk, J. Small-Scale Renewable Energy Systems in the Development of Distributed Generation in Poland. Morav. Geogr. Rep. 2014, 22, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Miralles, A.; Calvillo, C.; Martín, F.; Villar, J. Use of Renewable Energy Systems in Smart Cities. Green Energy Technol. 2014, 2, 341–370. [Google Scholar]
- Ustawa o Odnawialnych Źródła Energii Z; 20 lutego 2015 r., Dz. U. 2015 poz. 478 z późn: Warszawa, Poland, 2015.
- Rejestr Wytwórców Energii w Małej Instalacji (10.09.2020), Urząd Regulacji Energetyki. Available online: https://bip.ure.gov.pl/bip/rejestry-i-bazy/wytworcy-energii-w-male/2138,Rejestr-wytworcow-energii-w-malej-instalacji.html (accessed on 15 September 2020).
- Makowska, M. Analiza Danych Zastanych. Przewodnik dla Studentów; Scholar: Warszawa, Poland, 2012. [Google Scholar]
- Strategia na Rzecz Odpowiedzialnego Rozwoju do Roku 2020 (z Perspektywą do 2030 r.). Available online: https://www.miir.gov.pl/media/48672/SOR.pdf (accessed on 15 September 2020).
- Strategia Rozwoju Miasta Kielce na Lata 2007–2020. Available online: http://www.um.kielce.pl/gfx/kielce2/userfiles/files/pliki/strategia-rozwoju-miasta-kielce-aktualizacja-15092016.pdf (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Sosnowca do 2020 r. Available online: http://www.sosnowiec.pl/_upload/strategia2020.pdf (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Radomia na Lata 2008–2020. Available online: http://www.radom.pl/data/other/strategia_rozwoju_miasta_radomia_na_lata.pdf (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Białegostoku. Available online: https://www.bialystok.pl/pl/dla_biznesu/rozwoj_miasta/ (accessed on 12 September 2020).
- Szczecin dla Ciebie Strategia Rozwoju Szczecina 2025. Available online: http://bip.um.szczecin.pl/chapter_11124.asp?soid=8ED6AD35235F4C07B05B8D5F81CF4090 (accessed on 12 September 2020).
- Strategia zintegrowanego rozwoju Łodzi 2020+. Available online: https://uml.lodz.pl/dla-mieszkancow/o-miescie/strategia-lodzi-i-planowanie/strategia-rozwoju-lodzi/ (accessed on 12 September 2020).
- Strategia rozwoju Miasta Lublin. Available online: https://bip.lublin.eu/gfx/bip/userfiles/_public/import/urzad-miasta-lublin/ogloszenia/konsultacje-spoleczne/2013/konsultacje-spoleczne-z-mieszk/74685_strategia_rozwoju_lublina_na_lata_2013_2020.diagnoza_sta.pdf (accessed on 12 September 2020).
- Strategia Zintegrowanego i Zrównoważonego Rozwoju Miasta Gliwice do Roku 2022. 2014. Available online: https://bip.gliwice.eu/pub/html/um/files/2014-03-20_Strategia_uchwalona%282%29.pdf (accessed on 12 September 2020).
- Gdańsk 2030 Plus Strategia Rozwoju Miasta. Available online: https://gdansk.xgcmy.pl/s1/d/20150158301/1.pdf (accessed on 12 September 2020).
- Strategia Rozwoju Miasta “Katowice 2030”. Available online: https://bip.katowice.eu/UrzadMiasta/ZamierzeniaIProgramy/dokument.aspx?idr=96518&menu=633 (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Częstochowa 2030+. Available online: http://www.czestochowa.pl/page/4859,strategia-rozwoju-miasta-2030-+-.html (accessed on 12 September 2020).
- Strategia Rozwoju Rzeszowa do 2025. Available online: https://bip.erzeszow.pl/ (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Poznania 2020+. Available online: https://bip.poznan.pl/bip/strategia-rozwoju-miasta-poznania-2020,doc,42/strategia-rozwoju-miasta-poznania-2020,80837.html (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Gdyni 2030. Available online: http://2030.gdynia.pl/cms/fck/uploaded/strategia%20rozwoju%20miasta%20gdyni%202030_folder.pdf (accessed on 12 September 2020).
- Strategia Rozwoju Krakowa. Tu chcę żyć. Kraków 2030. Available online: https://www.bip.krakow.pl/?dok_id=167&sub_dok_id=167&sub=uchwala&query=id%3D23155%26typ%3Du (accessed on 12 September 2020).
- Strategia Rozwoju Miasta Torunia do roku 2020 z uwzględnieniem perspektywy rozwoju do 2028 roku. Available online: https://www.torun.pl/sites/default/files/pliki/1065_02.pdf (accessed on 12 September 2020).
- #Warszawa 2030, Strategia. Available online: http://2030.um.warszawa.pl/wp-content/uploads/2018/06/Strategia-Warszawa2030-final.pdf (accessed on 12 September 2020).
- Strategia Wrocław 2030. Available online: https://www.wroclaw.pl/rozmawia/strategia/Strategia_2030.pdf (accessed on 12 September 2020).
- Zabrze Strategia Rozwoju Miasta. Available online: https://miastozabrze.pl/miasto/dokumenty-strategiczne/strategia-rozwoju-miasta-zabrze-2030/ (accessed on 12 September 2020).
- Bydgoszcz 2030, Strategia Rozwoju. Available online: https://www.bydgoszcz.pl/fileadmin/%40strategia.bydgoszcz.pl/DOKUMENTY/Bydgoszcz_2030._Strategia_Rozwoju.pdf (accessed on 12 September 2020).
- Plan Gospodarki Niskoemisyjnej dla m.st. Warszawy. Available online: http://infrastruktura.um.warszawa.pl/sites/infrastruktura.um.warszawa.pl/files/dokumenty/plan_gospodarki_niskoemisyjnej_dla_m.st_._warszawy.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Gminy Miejskiej Kraków. 2017. Available online: https://www.bip.krakow.pl/_inc/rada/posiedzenia/show_pdfdoc.php?id=90606 (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Łodzi. 2017. Available online: https://bip.uml.lodz.pl/files/bip/public/BIP_SS/WGK_zaktplan_20180122.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Gminy Wrocław. 2017. Available online: https://www.wroclaw.pl/files/files/pdf-y/PGN_Wroclaw.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Poznania. 2017. Available online: https://bip.poznan.pl/bip/uchwaly/uchwala-nr-lii-924-vii-2017-z-dnia-2017-07-11,69323/ (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Gdańska. 2015. Available online: https://gdansk.xgcmy.pl/s1/d/20151164677/Plan-gospodarki-niskoemisyjnej-dla-Miasta-Gdanska.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla gminy miasto Szczecin. 2020. Available online: http://bip.um.szczecin.pl/files/42F6132C31634108BA29A4CECD84CF2E/576.pdf (accessed on 18 September 2020).
- Plan działań na Rzecz Zrównoważonej Energii—Plan Gospodarki Niskoemisyjnej dla Miasta Bydgoszczy na lata 2014–2020+. 2016. Available online: https://www.czystabydgoszcz.pl/wp-content/uploads/2018/04/PGN_BYDGOSZCZ_Aktualizacja_2016.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Lublin. 2020. Available online: https://lublin.eu/gfx/lublin/userfiles/_public/mieszkancy/srodowisko/energia/pgn/ii_aktualizacja_pgn_dla_miasta_lublin_2020.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Białegostoku i Gmin Choroszcz, Czarna Białostocka, Dobrzyniewo Duże, Juchnowiec Kościelny, Łapy, Supraśl, Wasilków, Zabłudów do roku 2020. 2015. Available online: https://www.bialystok.pl/pl/dla_mieszkancow/ochrona_srodowiska/plan-gospodarki-niskoemisyjnej-dla-miasta-bialegostoku-i-gmin-choroszcz-czarna-bialostocka-dobrzyniewo-duze-juchnowiec-koscielny-lapy-suprasl-wasilkow-zabludow-do-roku-2020-1.html (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Katowice. 2018. Available online: https://bip.katowice.eu/Lists/Dokumenty/Attachments/105488/sesja%20LII-1060-18.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Gminy Miasta Gdyni na Lata 2015–2020. 2016. Available online: https://static.um.gdynia.pl/storage/__old/gdynia.pl//g2/2016_10/113049_fileot.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Radomia. 2015. Available online: http://bip.radom.pl/ra/srodowisko/plany-i-programy/plan-gospodarki-niskoem/33950,Aktualizacja-planu-gospodarki-niskoemisyjnej-dla-miasta-Radomia.html (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Gminy Miasta Toruń na Lata 2015–2020. 2016. Available online: http://bip.torun.pl/dokumenty.php?Kod=1246692 (accessed on 18 September 2020).
- Kompleksowy Plan Gospodarki Niskoemisyjnej dla Miasta Sosnowiec. 2015. Available online: http://www.sosnowiec.pl/_upload/PGN%20Sosnowiec%2011.09.2015%20a.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Rzeszowa. 2017. Available online: https://bip.erzeszow.pl/static/img/k02/SR/SR/Plan%20Gospodarki%20Niskoemisyjnej%20dla%20miasta%20Rzeszowa.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Kielce. 2018. Available online: http://www.um.kielce.pl/gfx/kielce2/userfiles/files/gospodarka-niskoemisyjna/plan_gosp_niskoem_2018.pdf (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Gliwice. 2019. Available online: https://bip.gliwice.eu/prawo_lokalne/uchwaly_rady_miasta,12840,1 (accessed on 18 September 2020).
- Plan Gospodarki Niskoemisyjnej dla Miasta Zabrze. 2016. Available online: https://miastozabrze.pl/dla-mieszkancow/5457-2/plany-i-programy/plan-gospodarki-niskoemisyjnej-dla-miasta-zabrze/ (accessed on 18 September 2020).
- Babbie, E. Badania Społeczne w Praktyce; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007. [Google Scholar]
- Angrosino, M. Badania Etnograficzne i Obserwacyjne; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2010. [Google Scholar]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 140, 5–55. [Google Scholar]
- Krok, E. Budowa kwestionariusza ankietowego a wyniki badań. Studia Inform. Pomerania 2015, 37, 55–73. [Google Scholar]
- Lisiecka, K.; Kostka-Bochenek, A. Case study research jako metoda badań naukowych. Przegląd Organ. 2009, 10, 5–23. [Google Scholar] [CrossRef]
- Nowicki, M. Nadchodzi era Słońca; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012. [Google Scholar]
- Urbaniec, K.; Mikulčić, H.; Rosen, M.A.; Duić, N. A holistic approach to sustainable development of energy, water and environment systems. J. Clean. Prod. 2017, 155, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Łucki, Z.; Misiak, W. Energetyka a Społeczeństwo. Aspekty socjologiczne; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2010. [Google Scholar]
- Szymańska, D.; Korolko, M.; Chodkowska-Miszczuk, J.; Lewandowska, A. Biogospodarka w Miastach; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2017. [Google Scholar]
- DSRK, 2013, Polska Długookresowa Strategia Rozwoju Kraju. Trzecia fala Nowoczesności. Available online: http://kigeit.org.pl/FTP/PRCIP/Literatura/002_Strategia_DSRK_PL2030_RM.pdf (accessed on 17 September 2020).
- Warszawa w Kierunku Smart City. Available online: https://content.knightfrank.com/research/1500/documents/pl/warszawa-w-kierunku-smart-city-april-2018-5463.pdf (accessed on 17 September 2020).
- Strategia SMART_KOM, Czyli Mapa Drogowa dla Inteligentnych Rozwiązań w Krakowskim Obszarze Metropolitalnym. Available online: http://www.kpt.krakow.pl/wp-content/uploads/2015/03/raport_smart_kom_sklad_kor10_aktywny.pdf (accessed on 10 September 2020).
- Smart City Wrocław. Available online: https://www.wroclaw.pl/smartcity/ (accessed on 10 September 2020).
- Smart City Poznań. Available online: https://www.poznan.pl/mim/smartcity/ (accessed on 11 September 2020).
- Rekomendacje do Strategii Rozwoju Miasta Kielce 2030+. W kierunku Smart City. Available online: http://www.um.kielce.pl/gfx/kielce2/userfiles/files/strategia/rekomendacje_kielce.pdf (accessed on 12 September 2020).
- Chwieduk, D. Solar energy use for thermal application in Poland. Pol. J. Environ. Stud. 2010, 19, 473–477. [Google Scholar]
- Zeibote, Z.; Volkova, T.; Todorov, K. The impact of globalization on regional development and competitiveness: Cases of selected regions. Insights Reg. Dev. 2019, 1, 33–47. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Ahshan, R.; Hosseinzadeh, N.; Ghorbani, R.; Hossain, E. Survey of smart grid concepts and technological demonstrations worldwide emphasizing on the Oman perspective. Appl. Syst. Innov. 2020, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Local Data Bank Statistical Poland. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (accessed on 5 October 2020).
- Członkowie Zwyczajni Stowarzyszenia Gmin Polska Sieć “Energie Cités”. Available online: http://www.pnec.org.pl/pl/stowarzyszenie/czlonkowie-zwyczajni (accessed on 5 October 2020).
- Które miasta dołączyły do grona zwycięzców konkursu Eco-Miasto? Available online: https://www.eco-miasto.pl/ktore-miasta-dolaczyly-do-grona-zwyciezcow-konkursu-eco-miasto (accessed on 5 October 2020).
- Nugraha, A.R.; Subekti, P.; Romli, R.; Novianti, E. Public services optimizing through the communication and information technology application of local governments as an effort to form environmentally friendly smart city branding. J. Phys. Conf. Ser. 2019, 1363, 012055. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Kammen, D.M.; Sunter, D.A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.L.G.; Pérez, E.M. Spanish renewable energy: Successes and untapped potential. In Renewable Energy Policy and Politics: A Handbook for Decision-Making; Earthscan: London, UK, 2006; pp. 215–227. [Google Scholar]
- Ajayi, O.O.; Ajanaku, K.O. Nigeria’s energy challenge and power development: The way forward. Energy Environ. 2009, 20, 411–413. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, S.; Sunter, D.A.; Kammen, D.M. Rooftop solar photovoltaic potential in cities: How scalable are assessment approaches? Env. Res. Lett. 2017, 12, 125005. [Google Scholar] [CrossRef]
- Kusch-Brandt, S. Underutilised Resources in Urban Environments. Resources 2020, 9, 38. [Google Scholar]
- Sait, M.A.; Chigbu, U.E.; Hamiduddin, I.; de Vries, W.T. Renewable energy as an underutilised resource in cities: Germany’s ‘Energiewende’and lessons for post-brexit cities in the United Kingdom. Resources 2019, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, D.; Lewandowska, A. Biogas power plants in Poland—structure, capacity, and spatial distribution. Sustainability 2015, 7, 16801–16819. [Google Scholar] [CrossRef] [Green Version]
- Jurasz, J.K.; Dąbek, P.B.; Campana, P.E. Can a city reach energy self-sufficiency by means of rooftop photovoltaics? Case study from Poland. J. Clean. Prod. 2020, 245, 118813. [Google Scholar] [CrossRef]
- Moss, T.; Becker, S.; Naumann, M. Whose energy transition is it, anyway? Organisation and ownership of the Energiewende in villages, cities and regions. Local Environ. 2015, 20, 1547–1563. [Google Scholar]
- Paul, F.C. Deep entanglements: History, space and (energy) struggle in the German Energiewende. Geoforum 2018, 91, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abrao, R.R.; Paschoareli, D.; Silva, A.A.; Lourenco, M. Economic viability of installations of photovoltaic microgeneration in residencies of a smart city. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 785–787. [Google Scholar]
- IRENA. Renewable Energy in Cities; International Renewable Energy Agency (IRENA): Abu Dhabi, The United Arab Emirates, 2016. Available online: www.irena.org (accessed on 17 October 2020).
- RENRenewables. 2019 Global Status Report; REN21 Secretariat: Paris, France, 2019; Available online: http://www.ren21.net/gsr-2019/ (accessed on 17 October 2020).
Region | References |
---|---|
Europe | Eicker (2012) [24]; Gerpott and Paukert (2013) [25]; Gabillet (2015 [26]); Kılkış (2016) [27]; Petersen (2016) [28]; Kazak, et al. (2017) [29]; Ahas, et al. (2019) [30]; Bahers, et al. (2020) [31]. |
North America | Hammer (2008) [32]; Denis and Parker (2009) [33]; Moscovici et al. (2015) [34]; Bagheri et al. (2018) [35]; DeRolph et al. (2019) [36]; Hess and Gentry (2019) [37]; Kouhestani et al. (2019) [38]. |
Central and South America | Ramírez et al. (2000) [39]; Huacuz (2005) [40]; De Araújo et al. (2008) [41]; Fonseca and Schlueter (2013) [42]; Cedeno et al. (2017) [43]; Pérez-Denicia et al. (2017) [44]; Lino and Ismail (2018) [45]. |
Africa | Bugaje (2006) [46]; Cloutier and Rowley (2011) [47]; Zawilska and Brooks (2011) [48]; Gumbo (2014) [49]; Akuru et al. (2017) [50]; Bouhal el at. (2018) [51]. |
Asia | Jebaraj and Iniyan (2006) [52]; Bilgen el al. (2008) [53]; Cheng and Hu (2010) [54]; Farooq and Kumar (2013) [55]; Schroeder and Chapman (2014) [56]; Madakam and Ramaswamy (2016) [57]; Noorollahi et al. (2017) [58]; Yuan et al. (2018) [59]; Awan (2019) [60]; Fraser (2019) [61]; Meng et al. (2019) [62]. |
Australia | Mithraratne (2009) [63]; Martin and Rice (2012) [64]; White et al. (2013) [65]; Dowling et al. (2014) [66]; Imteaz and Ahsan (2018) [67]; Li et al. (2020) [68]. |
City | Population | RES Installations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of RES Installations | Total Installed RES Capacity (MW) | Average Power of RES Installations (MW) | Small RES Installations * | |||||||
Number of Installations by RES | ||||||||||
Sum | Biogas | Biomass | Sun | Water | Wind | |||||
Warsaw | 1,790,658 | 14 | 180.60 | 12.90 | 4 | 0 | 0 | 4 | 0 | 0 |
Kraków | 779,115 | 5 | 19.85 | 3.97 | 3 | 0 | 0 | 3 | 0 | 0 |
Łódź | 679,941 | 4 | 59.36 | 14.84 | 5 | 0 | 0 | 5 | 0 | 0 |
Wrocław | 642,869 | 1 | 0.07 | 0.07 | 2 | 0 | 0 | 0 | 2 | 0 |
Poznań | 534,813 | 2 | 2.13 | 1.07 | 2 | 0 | 0 | 2 | 0 | 0 |
Gdańsk | 470,907 | 7 | 4.97 | 0.71 | 4 | 0 | 0 | 3 | 0 | 1 |
Szczecin | 401,907 | 12 | 93.47 | 7.79 | 11 | 2 | 0 | 7 | 2 | 0 |
Bydgoszcz | 348,190 | 5 | 6.51 | 1.30 | 3 | 1 | 0 | 0 | 2 | 0 |
Lublin | 339,784 | 3 | 1.73 | 0,58 | 1 | 0 | 0 | 1 | 0 | 0 |
Białystok | 297,554 | no data | 2 | 0 | 0 | 2 | 0 | 0 | ||
Katowice | 292,774 | 18 | 1.15 | 0.06 | 6 | 0 | 0 | 6 | 0 | 0 |
Gdynia | 246,348 | 3 | 0.07 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 |
Częstochowa | 220,433 | 9 | 2.21 | 0.25 | 4 | 0 | 0 | 3 | 1 | 0 |
Radom | 211,371 | 4 | 0.95 | 0.24 | 1 | 0 | 0 | 0 | 0 | 1 |
Toruń | 201,447 | 1 | 0.93 | 0.93 | 1 | 0 | 0 | 1 | 0 | 0 |
Sosnowiec | 199,974 | 7 | 1.75 | 0.25 | 2 | 0 | 0 | 2 | 0 | 0 |
Rzeszów | 196,208 | no data | 2 | 0 | 0 | 2 | 0 | 0 | ||
Kielce | 194,852 | 2 | 6.73 | 3.36 | 0 | 0 | 0 | 0 | 0 | 0 |
Gliwice | 178,603 | 12 | 1.35 | 0.11 | 6 | 1 | 0 | 3 | 2 | 0 |
Zabrze | 172,360 | 11 | 78.33 | 7.12 | 5 | 2 | 0 | 3 | 0 | 0 |
Sum | 120 | 462.15 | 3.85 | 60 | 6 | 0 | 43 | 9 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, A.; Chodkowska-Miszczuk, J.; Rogatka, K.; Starczewski, T. Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland. Energies 2020, 13, 5795. https://doi.org/10.3390/en13215795
Lewandowska A, Chodkowska-Miszczuk J, Rogatka K, Starczewski T. Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland. Energies. 2020; 13(21):5795. https://doi.org/10.3390/en13215795
Chicago/Turabian StyleLewandowska, Aleksandra, Justyna Chodkowska-Miszczuk, Krzysztof Rogatka, and Tomasz Starczewski. 2020. "Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland" Energies 13, no. 21: 5795. https://doi.org/10.3390/en13215795
APA StyleLewandowska, A., Chodkowska-Miszczuk, J., Rogatka, K., & Starczewski, T. (2020). Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland. Energies, 13(21), 5795. https://doi.org/10.3390/en13215795