Toward Sustainable Energy-Independent Buildings Using Internet of Things
Abstract
:1. Introduction
2. The System Model
2.1. System Design
2.1.1. Photovoltaic Solar Panels
2.1.2. IoT-Based System
2.1.3. The Server
2.2. Web Application
3. The Control Systems
3.1. Electricity Production and Consumption Management
3.2. Lighting Control System
Impact on Electricity Consumption
Algorithm 1 Lighting control system. |
= Last status of motion detector while do for i=0 to length(DataSet [HH:MM]) + 1 do if (mean () then = 1 else = 0 end if if (mean () then = 1 else = 0 end if = × = + if () then = × 1 = × 1 end if if () then = × 0 = × 1 end if if () then = × 0 = × 0 end if end for end while |
4. Results and Analysis
4.1. Performance of the IoT-Based Control System
4.2. Renewable Energy Production and Consumption
4.3. Environmental and Economic Assessment
4.3.1. CO Emission Reduction
4.3.2. Cost Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Cox, S. Cooling a warming planet: A global air conditioning surge. In Yale Environment 360, Features Section; Yale School of the Environment: New Haven, CT, USA, 2012. [Google Scholar]
- Moram, M. Lighting up Lives with Energy Efficient Lighting. 2012. Available online: http://aglobalvillage.org/journal/issue7/waste/lightinguplives/ (accessed on 20 February 2020).
- Nabavi, S.A.; Aslani, A.; Zaidan, M.A.; Zandi, M.; Mohammadi, S.; Hossein Motlagh, N. Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors. Energies 2020, 13, 5171. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; AliKarar, M. A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [Google Scholar] [CrossRef]
- Gad, Y.; Diab, H.; Abdelsalam, M.; Galal, Y. Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique. Energies 2020, 13, 5000. [Google Scholar] [CrossRef]
- Zhao, H.X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; AlWaer, H.; Ghaffarianhoseini, A.; Clements-Croome, D.; Berardi, U.; Raahemifar, K.; Tookey, J. Intelligent or smart cities and buildings: A critical exposition and a way forward. Intell. Build. Int. 2018, 10, 122–129. [Google Scholar] [CrossRef]
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K.C. Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Metallidou, C.K.; Psannis, K.E.; Egyptiadou, E.A. Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access 2020, 8, 63679–63699. [Google Scholar] [CrossRef]
- European Commission. Energy Efficient Buildings: Nearly Zero-Energy Buildings (NZEB). 2020. Available online: https://ec.europa.eu/energy/content/nzeb-24_en (accessed on 5 November 2020).
- Guravaiah, K.; Velusamy, R.L. Prototype of home monitoring device using Internet of Things and river formation dynamics-based multi-hop routing protocol (RFDHM). IEEE Trans. Consum. Electron. 2019, 65, 329–338. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From electricity smart grids to smart energy systems – A market operation based approach and understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Khajavi, S.H.; Jaribion, A.; Holmstrom, J. An IoT-based automation system for older homes: A use case for lighting system. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA), Paris, France, 20–22 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yamauchi, M.; Ohsita, Y.; Murata, M.; Ueda, K.; Kato, Y. Anomaly Detection in Smart Home Operation From User Behaviors and Home Conditions. IEEE Trans. Consum. Electron. 2020, 66, 183–192. [Google Scholar] [CrossRef]
- Kim, S.; Park, M.; Lee, S.; Kim, J. Smart Home Forensics—Data Analysis of IoT Devices. Electronics 2020, 9, 1215. [Google Scholar] [CrossRef]
- Chen, H.; Chou, P.; Duri, S.; Lei, H.; Reason, J. The Design and Implementation of a Smart Building Control System. In Proceedings of the 2009 IEEE International Conference on e-Business Engineering, Macau, China, 21–23 October 2009; pp. 255–262. [Google Scholar]
- Jeong, Y.; Joo, H.; Hong, G.; Shin, D.; Lee, S. AVIoT: Web-based interactive authoring and visualization of indoor internet of things. IEEE Trans. Consum. Electron. 2015, 61, 295–301. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, T.; Zhao, G.; Guizani, M. Efficient Rule Engine for Smart Building Systems. IEEE Trans. Comput. 2015, 64, 1658–1669. [Google Scholar] [CrossRef]
- King, J.; Perry, C. Smart Buildings: Using Smart Technology to Save Energy in Existing Buildings. 2017. Available online: https://www.aceee.org/research-report/a1701 (accessed on 8 October 2020).
- McCann, R.; Le, A.T.; Traore, D. Stochastic Sliding Mode Arbitration for Energy Management in Smart Building Systems. In Proceedings of the 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 5–9 October 2008; pp. 1–4. [Google Scholar]
- Zou, H.; Zhou, Y.; Yang, J.; Spanos, C.J. Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning. Energy Build. 2018, 177, 12–22. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Turgut, Z.; Aydin, G.Z.G.; Sertbas, A. Indoor Localization Techniques for Smart Building Environment. Procedia Comput. Sci. 2016, 83, 1176–1181. [Google Scholar] [CrossRef] [Green Version]
- Bradfield, K.; Allen, C. User Perceptions of and Needs for Smart Home Technology in South Africa. In Advances in Informatics and Computing in Civil and Construction Engineering; Mutis, I., Hartmann, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 255–262. [Google Scholar]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horizons 2015, 58, 431–440. [Google Scholar] [CrossRef]
- AlFaris, F.; Juaidi, A.; Manzano-Agugliaro, F. Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energy Build. 2017, 153, 262–274. [Google Scholar] [CrossRef]
- Gray, C.; Ayre, R.; Hinton, K.; Campbell, L. ‘Smart’ Is Not Free: Energy Consumption of Consumer Home Automation Systems. IEEE Trans. Consum. Electron. 2019, 66, 87–95. [Google Scholar] [CrossRef]
- Lohr, C.; Kerdreux, J. Improvements of the xAAL Home Automation System. Future Internet 2020, 12, 104. [Google Scholar] [CrossRef]
- Oh, E.; Son, S.Y. A framework for consumer electronics as a service (CEaaS): A case of clustered energy storage systems. IEEE Trans. Consum. Electron. 2017, 63, 162–168. [Google Scholar] [CrossRef]
- Kumar, N.M.; Atluri, K.; Palaparthi, S. Internet of Things (IoT) in Photovoltaic Systems. In Proceedings of the 2018 National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018; pp. 1–4. [Google Scholar]
- Aslani, A.; Naaranoja, M.; Zakeri, B. The prime criteria for private sector participation in renewable energy investment in the Middle East (case study: Iran). Renew. Sustain. Energy Rev. 2012, 16, 1977–1987. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Zaidan, M.A.; Lagerspetz, E.; Varjonen, S.; Toivonen, J.; Mineraud, J.; Rebeiro-Hargrave, A.; Siekkinen, M.; Hussein, T.; Nurmi, P.; et al. Indoor air quality monitoring using infrastructure-based motion detectors. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 902–907. [Google Scholar]
- Ghasemzadeh, H.; Maerefat, M.; Azimi, A. Design of a combined cooling, heating and power system for a five-storey residential building in the hot climate of iran. In Proceedings of the SEBUA-12 ICHMT International Symposium on Sustainable Energy in Buildings and Urban Areas, Kusadasi, Turkey, 14–20 July 2012. [Google Scholar]
- Weather Atlas. Tehran, Iran—Detailed Climate Information and Monthly Weather Forecast. Available online: https://www.weather-atlas.com/en/iran/tehran-climate (accessed on 22 April 2020).
- Sharp, T.R. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100; Technical Report; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2014. [Google Scholar]
- Zaidan, M.A.; Motlagh, N.H.; Fung, P.L.; Lu, D.; Timonen, H.; Kuula, J.; Niemi, J.V.; Tarkoma, S.; Petäjä, T.; Kulmala, M.; et al. Intelligent calibration and virtual sensing for integrated low-cost air quality sensors. IEEE Sensors J. 2020, 20, 13638–13652. [Google Scholar] [CrossRef]
- Atilgan, B.; Azapagic, A. Life cycle environmental impacts of electricity from fossil fuels in Turkey. J. Clean. Prod. 2015, 106, 555–564. [Google Scholar] [CrossRef]
- Motlagh, N.H.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; Rebeiro-Hargrave, A.; Hussein, T.; Petaja, T.; et al. Toward massive scale air quality monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? 2020. Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 (accessed on 20 February 2020).
- Talari, S.; Shafie-Khah, M.; Osório, G.J.; Aghaei, J.; Catalão, J.P. Stochastic modelling of renewable energy sources from operators’ point-of-view: A survey. Renew. Sustain. Energy Rev. 2018, 81, 1953–1965. [Google Scholar] [CrossRef]
- Zakaria, A.; Ismail, F.B.; Lipu, M.H.; Hannan, M.A. Uncertainty models for stochastic optimization in renewable energy applications. Renew. Energy 2020, 145, 1543–1571. [Google Scholar] [CrossRef]
- Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Int. Things J. 2019, 7, 6481–6494. [Google Scholar] [CrossRef]
Property | Description |
---|---|
Laptop Model | Lenovo Ideapad 330-F |
OS | Linux CentOS 7.5 |
Hard Drive | HDD 1 TB 5400 RPM |
CPU | Intel Celeron 3867U 2.0 GHz |
RAM | 4 GB |
Web Server | APACHE 2.4.34 |
IP | Local |
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Daylight | 10.0 | 10.6 | 11.6 | 13.1 | 14.1 | 14.4 | 14.2 | 13.3 | 12.3 | 11.2 | 10.2 | 9.5 |
Sunshine | 5.7 | 6.7 | 5.9 | 8.0 | 9.3 | 11.5 | 11.0 | 11.3 | 10.4 | 7.7 | 6.0 | 5.4 |
June | Whole Year | |
---|---|---|
Emission Reductions | 31.1 kg | 373.25 kg |
3.3 USD/kw | 235.32 USD/kw | |
1.65 USD/kw | 10.2 USD/kw |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossein Motlagh, N.; Khatibi, A.; Aslani, A. Toward Sustainable Energy-Independent Buildings Using Internet of Things. Energies 2020, 13, 5954. https://doi.org/10.3390/en13225954
Hossein Motlagh N, Khatibi A, Aslani A. Toward Sustainable Energy-Independent Buildings Using Internet of Things. Energies. 2020; 13(22):5954. https://doi.org/10.3390/en13225954
Chicago/Turabian StyleHossein Motlagh, Naser, Ali Khatibi, and Alireza Aslani. 2020. "Toward Sustainable Energy-Independent Buildings Using Internet of Things" Energies 13, no. 22: 5954. https://doi.org/10.3390/en13225954
APA StyleHossein Motlagh, N., Khatibi, A., & Aslani, A. (2020). Toward Sustainable Energy-Independent Buildings Using Internet of Things. Energies, 13(22), 5954. https://doi.org/10.3390/en13225954