Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System
Abstract
:1. Introduction
2. Analysis Methodology for Hydrogen Flame Acceleration
2.1. Numerical Models in the COM3D Version 4.10
2.2. COM3D Validation
2.2.1. The ENACCEF Test
2.2.2. THAI Test
2.3. Proposed Analysis Methodology for the Hydrogen Flame Acceleration
3. Application to the Severe Accident of the APR1400
3.1. Design Feature of the APR1400 Containment
3.2. Calculation of the Hydrogen Distribution by GASFLOW and MAAP
3.3. Calculation of the Hydrogen Flame Acceleration by the COM3D Code
4. Conclusions and Further Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
c | speed of sound [m/s] |
Dα | diffusion coefficient of gas species α [m2/s] |
Da | Damköhler number |
Dt | turbulent diffusion coefficient [m2/s] |
e | internal energy [J] |
f | progressive variable [-] |
g | gravity [m/s2] |
h | enthalpy [J] |
k | turbulent kinetic energy [m2/s2] |
L | integral length scale [m] |
P | pressure [Pa] |
R | gas constant [J/kgK] |
SL | laminar flame speed [m/s] |
St | turbulent flame speed [m/s] |
T | temperature [K] |
u’ | turbulence intensity [m/s] |
Ui | velocity component [m/s] |
Yα | mass fraction of species α [-] |
Greek Letters | |
α, β | correlation constant [-] |
ε | turbulent eddy dissipation [m/s2] |
μ | viscosity [kg/ms] |
λ | thermal conductivity [W/mK] |
ρ | density [kg/m3] |
ω | reaction rate per unit volume [kg/m3s] |
χ | thermal conductivity of mixture gas [W/mK] |
σ | gas expansion coefficient [-] |
Subscripts | |
L | laminar |
tur | turbulence |
t | turbulence |
References
- Severe Accident Research Committee. Status of follow-up action from Fukushima accident. In Proceedings of the Workshop of Korea Nuclear Society, Jeju, Korea, 16–18 May 2012. [Google Scholar]
- Nuclear Safety and Security Commission. Status of follow-up measures and action plan from Fukushima accident. In Proceedings of the 23rd Committee Meeting, Seoul, Korea, 14 March 2014. [Google Scholar]
- Kim, J.; Hong, S.W. Analysis of hydrogen flame acceleration in APR1400 containment by coupling hydrogen distribution and combustion analysis codes. Prog. Nucl. Energy 2015, 78, 101–109. [Google Scholar] [CrossRef]
- Korea Hydro & Nuclear Power. Final Safety Analysis Report of Shin-Kori 1&2; KHNP: Kyungju, Korea, 2012. [Google Scholar]
- Kotchourko, A.; Lelyakin, J.; Yanez, J.; Halmer, G.; Svishchev, Z.; Xu, Z.; Ren, K. COM3D User/Tutorial Guide; Version 4.10; KIT: Karlsruhe, Germany, 2015. [Google Scholar]
- Kang, H.S.; Kim, J.; Hong, S.W. Evaluation and Selection of a Multi-Dimensional Computational Code for a Hydrogen Combustion and Explosion in the Containment of a Nuclear Power Plant; Technical Report; KAERI: Daejeon, Korea, 2013. [Google Scholar]
- Henry, R.E.; Paik, C.Y.; Plys, M.G. MAAP4-Modular Accident Analysis Program for LWR Plants; Fauske and Associates Inc.: Burr Ridge, IL, USA, 1994. [Google Scholar]
- Travis, J.R.; Royal, P.; Xiao, J.; Necker, G.A.; Reflinger, R.; Spore, J.W.; Lam, K.L.; Wilson, T.L.; Muller, C.; Nichols, B.D. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion; KIT: Karlsruhe, Germany, 2011. [Google Scholar]
- Bentaib, A.; Bleyer, A.; Chaumeix, N.; Schramm, B.; Höhne, M.; Kostka, P.; Movahed, M.; Brähler, T.; Kang, H.S.; Kim, S.B.; et al. Final results of the SARNET Hydrogen deflagration Benchmark effect of turbulence of flame acceleration. In Proceedings of the 5th ERMSAR-2012, Cologne, Germany, 21–23 March 2012. [Google Scholar]
- Bentaib, A.; Bleyer, A.; Meynet, N.; Chaumeix, N.; Schramm, B.; Höhne, M.; Kostka, P.; Movahed, M.; Worapittayaporn, S.; Brähler, T.; et al. SARNET Hydrogen deflagration Benchmark: Main outcomes and conclusions. Ann. Nucl. Energy 2014, 74, 143–152. [Google Scholar] [CrossRef]
- Kotchourko, A.; Bentaib, A.; Fischer, K.; Chaumeix, N.; Yanez, J.; Benz, S.; Kudryakov, S. ISP-49 on Hydrogen Combustion; Technical Report, NEA/CSNI/R (2011); OECD-NEA: Paris, France, 2012. [Google Scholar]
- Kanzleiter, T.; Gupta, S.; Fisher, K.; Ahrens, G.; Langer, G.; Kuhnel, A.; Poss, G. Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions; Final Report, 1501326-FR 1, OECD-NEA THAI Project; OECD-NEA: Paris, France, 2010. [Google Scholar]
- Launder, B.E.; Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1974, 1, 131–138. [Google Scholar] [CrossRef]
- Kang, H.S.; No, H.C.; Kim, S.B.; Kim, M.H. Methodology of CFD analysis for evaluating H2 explosion accidents in an open space. Int. J. Hydrog. Energy 2015, 40, 3075–3090. [Google Scholar] [CrossRef]
- Kang, H.S.; No, H.C.; Kim, S.B. Application of the developed CFD analysis methodology to H2 explosion accidents in an open space. Int. J. Hydrog. Energy 2017, 42, 1306–1317. [Google Scholar] [CrossRef]
- Kang, H.S.; Hong, S.W. CFD analysis of hydrogen combustion under spray operation with a modified TFC model. Presented at the OECD/NEA THAI2 Project 6th Meeting, Eschborn, Germany, 10–12 June 2014. [Google Scholar]
- Yanez, J.; Kotchourko, A.; Lelyakin, J. Hydrogen deflagration simulations under typical containment conditions for nuclear safety. Nucl. Eng. Des. 2012, 250, 678–686. [Google Scholar] [CrossRef]
- Movahed-Shariat-Panahi, M.A. Recommendation for maximum allowable mesh size for plant combustion analyses with CFD codes. Nucl. Eng. Des. 2012, 253, 360–366. [Google Scholar] [CrossRef]
- Kotchourko, A.; Lelyakin, J.; KIT, Karlsruhe, Land Baden-Württemberg, Germany. Personal communication, 2016.
- Bentaib, A.; Cataldo, C.; Chaumont, B.; Chevalier-Jabet, K. Evaluation of the impact PARs have on the hydrogen risk in the reactor containment: Methodology and application to PSA level 2. Sci. Technol. Nuclear Install. 2010, 2010, 1–7. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, J.; Kim, S.B.; Hong, S.W. Numerical analysis for a hydrogen combustion phenomenon in the APR1400 containment during severe accidents using a multi-dimensional hydrogen analysis system. In Proceedings of the WORTH-8, Yeosu, Korea, 22–24 October 2017. [Google Scholar]
Case | H2 Con. (%) | Steam Con. (%) | Air Con. (%) | Temp (℃) | Pressure (bar) |
---|---|---|---|---|---|
RUN153 | 13 | 0 | 87 | 25 | 1.0 |
Case | H2 Con. (%) | Steam Con. (%) | Air Con. (%) | Temp (℃) | Pressure (bar) |
---|---|---|---|---|---|
HD-15 | 9.93 | 0 | 90.07 | 92.5 | 1.50 |
HD-22 | 9.90 | 25 | 65.10 | 91.9 | 1.48 |
Parameter | Model |
---|---|
| 2nd order Total Variation Diminishing |
| KYLCOM+ |
| Kawanabe |
| Low Re number |
| < 0.9 |
| < 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.S.; Kim, J.; Hong, S.W.; Kim, S.B. Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System. Energies 2020, 13, 6151. https://doi.org/10.3390/en13226151
Kang HS, Kim J, Hong SW, Kim SB. Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System. Energies. 2020; 13(22):6151. https://doi.org/10.3390/en13226151
Chicago/Turabian StyleKang, Hyung Seok, Jongtae Kim, Seong Wan Hong, and Sang Baik Kim. 2020. "Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System" Energies 13, no. 22: 6151. https://doi.org/10.3390/en13226151
APA StyleKang, H. S., Kim, J., Hong, S. W., & Kim, S. B. (2020). Numerical Analysis for Hydrogen Flame Acceleration during a Severe Accident in the APR1400 Containment Using a Multi-Dimensional Hydrogen Analysis System. Energies, 13(22), 6151. https://doi.org/10.3390/en13226151