Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review
1.3. The Potential Contribution of This Study
2. Methodology
2.1. HOMER Simulation
2.1.1. Description of the XND
2.1.2. Hybrid Energy System Options
2.2. AHP Method
2.2.1. The Calculation Process of Each Indicator
2.2.2. The Process of the AHP Method
2.3. CRITIC Method
2.4. AHP-CRITIC Method
2.5. TOPSIS Method
3. Parameter Setting
3.1. HOMER Model
3.1.1. Electricity Consumption Estimation
3.1.2. Available Renewable Energy Resources in the Research Area
3.1.3. Cost parameters of the HRES options in the research area
3.2. AHP Method
4. Results and Discussion
4.1. HOMER Simulation Results
4.1.1. System Configuration
4.1.2. Technology Analysis
4.1.3. Economic Analysis
4.1.4. Environment Analysis
4.2. AHP Results
4.2.1. Evaluation of the Qualitative Indicators
4.2.2. The Overall Weight of Each Option
4.3. CRITIC Results
4.4. AHP-CRITIC Results
4.5. TOPSIS Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HRES | Hybrid Renewable Energy System |
HOMER | Hybrid Optimization Model for Electric Energy |
PV | Photovoltaic |
AHP | Analytic Hierarchy Process |
TOPSIS | Technique for Order Preference by Similarity to an Ideal Solution |
COE | Cost of Energy |
NPC | Net Present Cost |
XND | Xiongan New District |
Appendix A. Calculation of the AHP Method
Appendix A.1. Saaty Scale Table
Relative Importance of Ai to Aj | Assignment Value |
---|---|
Equal importance | 1 |
Little importance | 3 |
More importance | 5 |
Highly importance | 7 |
Extremely importance | 9 |
Intermediate value of two adjacent judgements | 2; 4; 6; 8 |
Appendix A.2. Consistency Test
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Appendix B. Calculation of the CRITIC Method
Appendix B.1. Dimensionless Treatment
Appendix B.2. Standard Deviation Calculation
Appendix B.3. Correlation Coefficient Calculation
Appendix B.4. Information Value Calculation
Appendix B.5. Indicator Weight Calculation of Each Indicator Element
Appendix C. Calculation of the TOPSIS Method
Appendix C.1. Normalization of the Decision Matrix
Appendix C.2. The Search for Ideal Solutions
Appendix C.3. Calculate the Relative Distances from the Best and Worst Solutions
Appendix C.4. The Calculation of the Closeness Coefficient
References
- National Energy Administration (NEA). Renewable Energy Law of the People’s Republic of China. Available online: http://www.nea.gov.cn/2017-11/02/c_136722869.htm (accessed on 2 November 2017).
- China National Renewable Energy Center (CNREC). China 2050 High Renewable Energy Penetration Scenario and Roadmap Study. 2015. Available online: https://www.efchina.org/Reports-en/china-2050-high-renewable-energy-penetration-scenario-and-roadmap-study-en. (accessed on 20 April 2015).
- National People’s Congress (NPC) and Chinese People’s Political Consultative Conference (CPPCC) Sections, 13th Five-Year Plan. 2016. Available online: http://www.china.org.cn/china/NPC_CPPCC_2016/node_7234656.htm (accessed on 5 March 2016).
- China National Renewable Energy Center (CNREC). China Renewable Energy Outlook. 2017. Available online: http://www.cnrec.org.cn/english/publication/2017-10-18-532.html (accessed on 18 October 2017).
- Islam, M.T.; Huda, N.; Abdullah, A.B.; Saidur, R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev. 2018, 91, 987–1018. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; El Hassan, Z.; Thompson, J.; Soudan, B.; Olabi, A.G. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies. Sci. Total Environ. 2019, 659, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberschelp, C.; Pfister, S.; Raptis, C.E.; Hellweg, S. Global emission hotspots of coal power generation. Nat. Sustain. 2019, 2, 113–121. [Google Scholar] [CrossRef]
- Song, Y.; Liu, T.; Ye, B.; Li, Y. Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China. Energy 2020, 211. [Google Scholar] [CrossRef]
- Kammen, D.M.; Sunter, D.A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Kazem, H.A.; Khatib, T.; Sopian, K. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy Build. 2013, 61, 108–115. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renew. Sustain. Energy Rev. 2015, 50, 755–769. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, M. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew. Sustain. Energy Rev. 2014, 38, 47–63. [Google Scholar] [CrossRef]
- Kornelakis, A.; Marinakis, Y. Contribution for optimal sizing of grid-connected PV-systems using PSO. Renew. Energy 2010, 35, 1333–1341. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Ghasemi, M.H.; Heyns, S. Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems. Renew. Energy 2020, 160, 323–332. [Google Scholar] [CrossRef]
- Ahmad, J.; Imran, M.; Khalid, A.; Iqbal, W.; Ashraf, S.R.; Adnan, M.; Ali, S.F.; Khokhar, K.S. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of KallarKahar. Energy 2018, 148, 208–234. [Google Scholar] [CrossRef]
- Ye, B.; Yang, P.; Jiang, J.; Miao, L.; Shen, B.; Li, J. Feasibility and economic analysis of a renewable energy powered special town in China. Resour. Conserv. Recycl. 2017, 121, 40–50. [Google Scholar] [CrossRef]
- Enongene, K.E.; Abanda, F.H.; Otene, I.J.J.; Obi, S.I.; Okafor, C. The potential of solar photovoltaic systems for residential homes in Lagos city of Nigeria. J. Environ. Manag. 2019, 244, 247–256. [Google Scholar] [CrossRef]
- Baseer, M.A.; Alqahtani, A.; Rehman, S. Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city. J. Clean. Prod. 2019, 237, 117806. [Google Scholar] [CrossRef]
- Das, H.S.; Tan, C.W.; Yatim, A.H.M.; Lau, K.Y. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew. Sustain. Energy Rev. 2017, 76, 1332–1347. [Google Scholar] [CrossRef]
- Rohit, A.K.; Devi, K.P.; Rangnekar, S. An overview of energy storage and its importance in Indian renewable energy sector. J. Energy Storage 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Abdin, Z.; Mérida, W. Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Convers. Manag. 2019, 196, 1068–1079. [Google Scholar] [CrossRef]
- Park, E. Potentiality of renewable resources: Economic feasibility perspectives in South Korea. Renew. Sustain. Energy Rev. 2017, 79, 61–70. [Google Scholar] [CrossRef]
- Das, B.K.; Zaman, F. Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy 2019, 169, 263–276. [Google Scholar] [CrossRef]
- Babatunde, M.; Ighravwe, D.E. A CRITIC-TOPSIS framework for hybrid renewable energy systems evaluation under techno-economic requirements. J. Proj. Manag. 2019, 4, 109–126. [Google Scholar] [CrossRef]
- Diemuodeke, E.O.; Hamilton, S.; Addo, A. Multi-criteria assessment of hybrid renewable energy systems for Nigeria’s coastline communities. Energy Sustain. Soc. 2016, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Hebei Xiongan New District area Working Committee of the Communist Party of China; Administrative Committee Member of Xiongan New District Area in Hebei Province. Detailed Control Planning for the Start-Up Area of Xiongan New District Area and the Controlling Planning of the Starting Area of Xiongan District New Area in Hebei Province. Available online: http://www.xiongan.gov.cn/2019-06/01/c_1210149257.htm (accessed on 1 June 2019).
- Hebei Provincial Party Committee of the Communist Party of China and People’s Government of Hebei Province. The Planning Outline of the Xiongan New District Area in Hebei Province. Available online: www.scio.gov.cn/tt/zdgz/document/1627988/1627988.htm (accessed on 22 January 2017).
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- AbdelAzim, A.I.; Ibrahim, A.M.; Aboul-Zahab, E.M. Development of an energy efficiency rating system for existing buildings using Analytic Hierarchy Process—The case of Egypt. Renew. Sustain. Energy Rev. 2017, 71, 414–425. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; University of Pittsburgh: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Saaty, T.L. Time dependent decision-making; dynamic priorities in the AHP/ANP: Generalizing from points to functions and from real to complex variables. Math. Comput. Model. 2007, 46, 860–891. [Google Scholar] [CrossRef]
- Yoon, K. A Reconciliation among Discrete Compromise Solutions. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Liang, L.; Cao, J.; Liu, B. Future population trend forecast and policy Suggestions of Xiongan New area. Contem. Econ. Manag. 2019, 41, 59–67. [Google Scholar]
- Ye, B.; Jiang, J.; Cang, Y. Technical and economic feasibility analysis of an energy and fresh water coupling model for an isolated island. Energy Procedia 2019, 158, 6373–6377. [Google Scholar] [CrossRef]
- Ye, B.; Zhang, K.; Jiang, J.; Miao, L.; Li, J. Towards a 90% renewable energy future: A case study of an island in the South China Sea. Energy Convers. Manag. 2017, 142, 28–41. [Google Scholar] [CrossRef]
- Bigum, M.; Damgaard, A.; Scheutz, C.; Christensen, T.H. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resour. Conserv. Recycl. 2017, 122, 251–260. [Google Scholar] [CrossRef]
- Gökçek, M.; Kale, C. Optimal design of a Hydrogen Refuelling Station (HRFS) powered by Hybrid Power System. Energy Convers. Manag. 2018, 161, 215–224. [Google Scholar] [CrossRef]
- De Benedetto, L.; Klemeš, J. The Environmental Performance Strategy Map: An integrated LCA approach to support the strategic decision-making process. J. Clean. Prod. 2009, 17, 900–906. [Google Scholar] [CrossRef]
Option | PV(m2) | Wind Turbines (m2) | Area Requirement (m2) | Proportion |
---|---|---|---|---|
I | 504,367.50 | 0.00 | 504,367.50 | 0.02 |
II | 1,063,440.00 | 0.00 | 1,063,440.00 | 0.04 |
III | 1,007,962.50 | 0.00 | 1,007,962.50 | 0.04 |
IV | 800,850.00 | 45,061.00 | 845,911.00 | 0.03 |
V | 1,263,187.50 | 28.00 | 1,263,215.50 | 0.05 |
Indicator | Technology | Economy | Society | Environment | Weight |
---|---|---|---|---|---|
Technology | 1 | 1/3 | 1/7 | 1/5 | 0.06 |
Economy | 3 | 1 | 1/5 | 1/3 | 0.12 |
Society | 7 | 5 | 1 | 3 | 0.56 |
Environment | 5 | 3 | 1/3 | 1 | 0.26 |
Indicator | Renewable Fraction | Ease of Installation | Excess Electricity | Weight |
---|---|---|---|---|
Renewable fraction | 1 | 5 | 3 | 0.63 |
Ease of installation | 1/5 | 1 | 1/3 | 0.11 |
Excess electricity | 1/3 | 3 | 1 | 0.26 |
Indicator | Initial Cost | O&M Cost | Cost of Energy | Weight |
---|---|---|---|---|
Initial Cost | 1 | 3 | 1/3 | 0.26 |
O&M Cost | 1/3 | 1 | 1/5 | 0.11 |
Cost of Energy | 3 | 5 | 1 | 0.63 |
Indicator | CO2 Emissions | Area Requirement | Environment Impact | Weight |
---|---|---|---|---|
CO2 emissions | 1 | 5 | 3 | 0.63 |
Area requirement | 1/5 | 1 | 1/3 | 0.11 |
Environment impact | 1/3 | 3 | 1 | 0.26 |
Indicator | Acceptability | Willingness to Pay | Weight |
---|---|---|---|
Acceptability | 1 | 3 | 0.75 |
Willingness to pay | 1/3 | 1 | 0.25 |
Indicator | Option I | Option II | Option III | Option IV | Option V |
---|---|---|---|---|---|
Renewable fraction (%) | 51.7 | 59.9 | 92.8 | 65.6 | 99.9 |
Ease of installation | 11.9 | 12.9 | 17.7 | 23.8 | 11.9 |
Excess electricity (%) | 3.04 | 3.59 | 8.96 | 5.34 | 3.04 |
Initial cost (B $) | 91 | 87 | 444 | 37 | 91 |
O&M cost (M $) | 0.148 | 0.176 | 0.328 | 0.213 | 0.148 |
Cost of energy ($/kWh) | 560,000 | 102,000 | 891,000 | 1062 | 560,000 |
CO2 emission (t/yr) | 1 | 5 | 3 | 2 | 1 |
Area requirement | 3 | 4 | 2 | 5 | 3 |
Environment impact | 1 | 1 | 1 | 3 | 1 |
Acceptability | 3 | 1 | 3 | 3 | 3 |
Willingness to pay | 1 | 3 | 3 | 3 | 1 |
Indicator | Option I | Option II | Option III | Option IV | Option V |
---|---|---|---|---|---|
Renewable fraction | 0.3028 | 0.3508 | 0.5435 | 0.3842 | 0.5851 |
Ease of installation | 0.5394 | 0.1348 | 0.6742 | 0.4045 | 0.2697 |
Excess electricity | 0.0232 | 0.3452 | 0.3742 | 0.5134 | 0.6904 |
Initial cost | 0.1571 | 0.2624 | 0.3099 | 0.7733 | 0.4609 |
O&M cost | 0.4387 | 0.1766 | 0.1689 | 0.8618 | 0.0718 |
Cost of energy | 0.3158 | 0.3095 | 0.3681 | 0.6860 | 0.4455 |
CO2 emission | 0.5750 | 0.4333 | 0.0789 | 0.6895 | 0.0008 |
Area requirement | 0.1348 | 0.4045 | 0.5394 | 0.2697 | 0.6742 |
Environment impact | 0.6547 | 0.2182 | 0.2182 | 0.2182 | 0.6547 |
Acceptability | 0.1857 | 0.5571 | 0.1857 | 0.5571 | 0.5571 |
Willingness to pay | 0.1857 | 0.1857 | 0.5571 | 0.5571 | 0.5571 |
System Component | |
---|---|
Photovoltaic Panels unit (Generic flat plate) | |
Capital cost ($/kW) | 1615 |
Operation and maintenance cost ($/year/kW) | 2 |
Lifetime (year) | 25 |
Derating factor (%) | 80 |
Ground reflectance (%) | 20 |
Wind turbine system unit (Generic) | |
Capital cost ($/kw) | 1410 |
Operation and maintenance cost ($/year/kW) | 3 |
Lifetime (year) | 20 |
Hub height (m) | 50 |
Batteries (EnerStore 50 Agile Flow Battery) | |
Type | Zinc-bromine flow |
Nominal voltage (V) | 100 |
Nominal capacity (kWh) | 50 |
Nominal capacity (Ah) | 500 |
Roundtrip efficiency (%) | 72 |
Maximum Charge Current (A) | 150 |
Maximum Discharge Current (A) | 300 |
Capital cost ($/unit) | 550 |
Replacement cost ($/unit) | 495 |
Operation and maintenance cost ($/unit) | 0 |
Lifetime (year) | 10 |
String size | 700 |
Voltage (V) | 70,000 |
Initial state of charge (%) | 100 |
Minimum state of charge (%) | 10 |
Converter | |
Capital cost ($/kW) | 300 |
Replacement cost ($/kW) | 300 |
Operation and maintenance cost ($/year) | 0 |
Lifetime (year) | 15 |
Efficiency (%) | 95 |
Electrolyser (generic) | |
Capital cost ($/kW) | 600 |
Replacement cost ($/kW) | 500 |
Operation and maintenance cost ($/year) | 15 |
Lifetime (year) | 10 |
Efficiency (%) | 75 |
Hydrogen storage tank (generic) | |
Capital cost ($/kW) | 470 |
Replacement cost ($/kW) | 400 |
Operation and maintenance cost ($/year) | 20 |
Fuel cell (Generic) | |
Capital cost ($/kW) | 550 |
Replacement cost ($/kW) | 400 |
Operation and maintenance cost ($/hour) | 0.03 |
Lifetime (hour) | 60,000 |
Fuel | Stored hydrogen |
Diesel generator (Generic) | |
Capital cost ($/kW) | 550 |
Replacement cost ($/kW) | 495 |
Operation and maintenance cost ($/hour) | 0.03 |
Lifetime (hour) | 219,000 |
Diesel fuel price ($/l) | 1 |
Minimum load ratio (%) | 25 |
Option | PV (MW) | Wind Turbine (kW) | Diesel Generator (MW) | Batter (MW) | Converter (MW) | Fuel Cell (MW) | Electrolyser (MW) | Hydrogen Tank (t) |
---|---|---|---|---|---|---|---|---|
I | 67 | 0 | 24 | 0.7 | 45.0 | 0 | 0 | 0 |
II | 141 | 0 | 24 | 20.3 | 15.4 | 25 | 20 | 10 |
III | 134 | 0 | 24 | 19.6 | 38.4 | 0 | 0 | 0 |
IV | 107 | 45,061 | 20 | 0 | 8.1 | 20 | 35 | 20 |
V | 168 | 28 | 15 | 75.6 | 39.2 | 20 | 10 | 10 |
Item | I | II | III | IV | V |
---|---|---|---|---|---|
Renewable fraction | 51.20% | 75.8% | 85.8% | 69.7% | 99.7% |
Excess electricity | 0.83% | 13.8% | 6.77% | 29.2% | 25.1% |
Grid power fraction | 48.5% | 16.3% | 0 | 0 | 0 |
Candidate option | Initial Cost (M $) | O&M Cost (M $) | Cost of Energy ($/kWh) |
---|---|---|---|
I | 130 | 15.6 | 0.159 |
II | 288 | 7.68 | 0.188 |
III | 253 | 9.35 | 0.203 |
IV | 291 | 30.3 | 0.38 |
V | 355 | 2.24 | 0.209 |
Indicator | I | II | III | IV | V |
---|---|---|---|---|---|
Ease of installation | 4 | 1 | 5 | 3 | 2 |
Environment impact | 3 | 1 | 1 | 1 | 3 |
Acceptability | 1 | 3 | 1 | 3 | 3 |
Willingness to pay | 1 | 1 | 3 | 3 | 3 |
Evaluation Index | Wbi | The Weight of Each Indicator | |||
---|---|---|---|---|---|
P1 | P2 | P3 | P4 | ||
0.06 | 0.12 | 0.56 | 0.26 | ||
Wbi~Pi | |||||
Renewable fraction | 0.63 | 0.038 | |||
Ease of installation | 0.11 | 0.007 | |||
Excess electricity | 0.26 | 0.016 | |||
Initial cost | 0.26 | 0.031 | |||
O&M cost | 0.11 | 0.013 | |||
Cost of energy | 0.63 | 0.076 | |||
CO2 emission | 0.63 | 0.353 | |||
Area requirement | 0.11 | 0.062 | |||
Environment impact | 0.26 | 0.146 | |||
Acceptability | 0.75 | 0.195 | |||
Willingness to pay | 0.25 | 0.065 |
Indicator | Standard Deviation | Information Value | Weight |
---|---|---|---|
Renewable fraction | 0.37 | 4.30 | 0.10 |
Ease of installation | 0.39 | 3.49 | 0.08 |
Excess electricity | 0.42 | 2.84 | 0.07 |
Initial cost | 0.36 | 3.09 | 0.07 |
O&M cost | 0.38 | 3.17 | 0.07 |
Cost of energy | 0.39 | 2.70 | 0.06 |
CO2 emission | 0.42 | 3.97 | 0.09 |
Area requirement | 0.37 | 3.75 | 0.09 |
Environment impact | 0.55 | 3.95 | 0.09 |
Acceptability | 0.55 | 3.95 | 0.09 |
Willingness to pay | 0.55 | 8.10 | 0.19 |
Indicator | AHP Method | CRITIC Method | AHP-CRITIC Method |
---|---|---|---|
Renewable fraction | 0.038 | 0.100 | 0.040 |
Ease of installation | 0.007 | 0.080 | 0.005 |
Excess electricity | 0.016 | 0.065 | 0.010 |
Initial cost | 0.031 | 0.071 | 0.023 |
O&M cost | 0.013 | 0.073 | 0.010 |
Cost of energy | 0.076 | 0.062 | 0.050 |
CO2 emission | 0.353 | 0.092 | 0.343 |
Area requirement | 0.062 | 0.087 | 0.057 |
Environment impact | 0.146 | 0.091 | 0.141 |
Acceptability | 0.195 | 0.091 | 0.189 |
Willingness to pay | 0.065 | 0.187 | 0.129 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, B.; Zhou, M.; Yan, D.; Li, Y. Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China. Energies 2020, 13, 6223. https://doi.org/10.3390/en13236223
Ye B, Zhou M, Yan D, Li Y. Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China. Energies. 2020; 13(23):6223. https://doi.org/10.3390/en13236223
Chicago/Turabian StyleYe, Bin, Minhua Zhou, Dan Yan, and Yin Li. 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China" Energies 13, no. 23: 6223. https://doi.org/10.3390/en13236223
APA StyleYe, B., Zhou, M., Yan, D., & Li, Y. (2020). Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China. Energies, 13(23), 6223. https://doi.org/10.3390/en13236223