Food Security in the Context of Liquid Biofuels Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Impact of Liquid Biofuels Production on the Market of Cereals and Vegetable Oils
3.2. Perspectives on First Generation Liquid Biofuels
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Escobar, J.A.; Lora, E.E.; Venturini, O.J.; Yánez, E.; Castillo, E.F.; Almazán, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2018 Report. Available online: https://www.eea.europa.eu/airs/2018 (accessed on 30 April 2020).
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Cherubini, F.; Strømman, A.H. Principles of biorefining. In Biofuels—Alternative Feedstocks and Conversion Processes; Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E., Eds.; Academic Press: Oxford, UK, 2011; pp. 3–24. [Google Scholar] [CrossRef]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Bielski, S. Conditions of biomass production for energy generation purposes in Poland. Folia Oecon. Stetin. 2011, 10, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Bielski, S. Economic and legal aspects of biofuel production for own use. Acta Scintiarum Pol. Oecono. 2012, 11, 5–15. [Google Scholar]
- Kurowska, K.; Kryszk, H.; Bielski, S. Determinants of biomass production for energy purposes in north-eastern Poland. Proc. Eng. Rural Dev. 2014, 13, 417–422. [Google Scholar]
- Brodziński, Z.; Kryszk, H.; Kurowska, K. Market of Producers and Processors of Agricultural Biomass for Energy Purposes. P. J. Environ. Stud. 2014, 23, 619–627. [Google Scholar]
- Bielski, S.; Jankowski, K.; Budzyński, W. The energy efficiency of oil seed crops production and their biomass conversion into liquid fuels. Przem. Chem. 2014, 93, 2270–2273. [Google Scholar]
- Bielski, S.; Dubis, B.; Jankowski, K. The energy efficiency of production and conversion of winter triticale biomass into biofuels. Przem. Chem. 2015, 94, 1798–1801. [Google Scholar]
- Marks-Bielska, R.; Bielski, S.; Kurowska, K.; Kryszk, H. Potential ability to increase the area of winter rapeseed cultivation for biofuel production in Poland. Proc. Eng. Rural Dev. 2015, 14, 330–335. [Google Scholar]
- Bielski, S.; Romaneckas, K.; Novikova, A.; Šarauskis, E. Are higher input levels to triticale growing technologies effective in biofuel production system? Sustainability 2019, 11, 5915. [Google Scholar] [CrossRef] [Green Version]
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef] [Green Version]
- Klikocka, H.; Kasztelan, A.; Zakrzewska, A.; Wyłupek, T.; Szostak, B.; Skwaryło-Bednarz, B. The energy efficiency of the production and conversion of spring triticale grain into bioethanol. Agronomy 2019, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Chavez, E.; Liu, D.H.; Zhao, X.B. Biofuels production development and prospects in China. J. Biobased Mater. Bioenergy 2010, 4, 221–242. [Google Scholar] [CrossRef]
- Muresan, A.A.; Attia, S. Energy efficiency in the romanian residential building stock: A literature review. Renew. Sustain. Energy Rev. 2017, 74, 349–363. [Google Scholar] [CrossRef] [Green Version]
- Mehedintu, A.; Sterpu, M.; Soava, G. Estimation and forecasts for the share of renewable energy consumption in final energy consumption by 2020 in the European Union. Sustainability 2018, 10, 1515. [Google Scholar] [CrossRef] [Green Version]
- Contescu, C.I.; Adhikari, S.P.; Gallego, N.C.; Evans, N.D.; Biss, B.E. Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass. C. J. Carbon Res. 2018, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Food and Agricultural Organization (FAO). Report of the World Food Summit. Rome, Italy. 1996. Available online: http://www.fao.org/economic/ess/ess-fs/en (accessed on 30 April 2020).
- Jiren, T.S.; Dorresteijn, I.; Hanspach, J.; Schultner, J.; Bergsten, A.M.; Jager, N.; Senbeta, F.; Fischer, J. Alternative discourses around the governance of food security: A case study from Ethiopia. Glob. Food Secur. 2020, 24, 100338. [Google Scholar] [CrossRef]
- Van Meijla, H.; Shutes, L.; Valin, H.; Stehfest, E.; van Dijk, M.; Kuiper, M.; Tabeau, A.; Zeist, W.-J.; Hasegawa, T.; Havlikc, P. Modelling alternative futures of global food security: Insights from FOODSECURE. Glob. Food Secur. 2020, 25, 100358. [Google Scholar] [CrossRef]
- Burchi, F.; Fanzo, J.; Frison, E. The Role of Food and Nutrition System Approaches in Tackling Hidden Hunger. Int. J. Environ. Res. Public Health 2011, 8, 358–373. [Google Scholar] [CrossRef]
- Tirado, M.C.; Cohen, M.J.; Aberman, N.; Meerman, J.; Thompson, B. Addressing the challenges of climate change and biofuel production for food and nutrition security. Food Res. Int. 2010, 43, 1729–1744. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Sustainable Food Systems: Concept and Framework 2018. Available online: http://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 13 November 2020).
- Mowlds, S. The EU’s farm to fork strategy: Missing links for transformation. Acta Innov. 2020, 36, 17–32. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food system. 2020. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 13 November 2020).
- COM (2020) 80: Proposal for a Regulation of The European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law). Available online: https://eur-lex.europa.eu/procedure/EN/2020_36 (accessed on 13 November 2020).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Dale, B.E. Indirect land use change for biofuels: Testing predictions and improving analytical methodologies. Biomass Bioenergy 2011, 35, 3235–3240. [Google Scholar] [CrossRef]
- Johansson, D.J.A.; Azar, C. A scenario based analysis of land competition between food and bioenergy production in the US. Clim. Change 2007, 82, 267–291. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Biofuels: Ethics and concern for the limits of human appropriation of ecosystem services. J. Agric. Environ. Ethics 2010, 23, 403–434. [Google Scholar] [CrossRef]
- OECD-FAO Agricultural Outlook. Available online: https://stats.oecd.org/Index.aspx?datasetcode=HIGH_AGLINK_2019# (accessed on 13 November 2020).
- IndexMundi. Available online: https://www.indexmundi.com/commodities/?commodity=crude-oil&months=180 (accessed on 13 November 2020).
- Baffes, J.; Dennis, A. Long-Term Drivers of Food Prices; Policy Research Working Paper no. 6455; World Bank: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Oladosu, G.; Msangi, S. Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings. Agriculture 2013, 3, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Simon, J. The Ultimate Resource II: People, Materials, and Environment; Princeton University Press: Princeton, MA, USA, 1998. [Google Scholar]
- McPhail, L.L.; Babcock, B.A. Impact of US biofuel policy on US corn and gasoline price variability. Energy 2012, 37, 505–513. [Google Scholar] [CrossRef]
- Tyner, W.E.; Taheripour, F.; Hurt, C. Potential Impacts of a Partial Waiver of the Ethanol Blending Rules; Farm Foundation: Oak Brook, IL, USA, 2012; pp. 1–13. [Google Scholar]
- Serra, T.; Zilberman, D.; Gil, J.M.; Goodwin, B.K. Nonlinearities in the U.S. corn-ethanol-oilgasoline price system. Agric. Econ. 2011, 42, 35–45. [Google Scholar] [CrossRef]
- Hamulczuk, M. Biofuel policy and agricultural commodity prices—Selected issues. Rocz. Nauk. SERiA 2014, 16, 82–87. [Google Scholar]
- Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; Technical Report for the Economic Research Service United States Department of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2008.
- Mueller, S.A.; Anderson, J.E.; Wallington, T.J. Impact of biofuel production and other supply and demand factors on food price increases in 2008. Biomass Bioenergy 2011, 35, 1623–1632. [Google Scholar] [CrossRef]
- Trostle, R.; Marti, D.; Rosen, S.; Westcott, P. Why Have Food Commodity Prices Risen Again? Technical Report for the Economic Research Service; United States Department of Agriculture: Washington, DC, USA, 2011.
- Szajner, P. (Ed.) World Biofuel Production in the Context of Food Security; Wyd–IEiGŻ: Warszawa, Poland, 2013. (In Polish) [Google Scholar]
- Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 Amending Directive 98/70/EC relating to the Quality of Petrol and Diesel Fuels and Amending Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32015L1513 (accessed on 13 November 2020).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 13 November 2020).
- Marks-Bielska, R.; Bielski, S.; Pik, K.; Kurowska, K. The importance of renewable energy sources in Poland’s energy mix. Energies 2020, 13, 4624. [Google Scholar] [CrossRef]
- Consolidated Version of the Treaty on the Functioning of the European Union. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:12012E/TXT:en:PDF (accessed on 13 November 2020).
- Rastogi, M.; Shrivastava, S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew. Sustain. Energy Rev. 2017, 80, 330–340. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Balan, V.; Dale, B.E. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol. Bioeng. 2008, 99, 1281–1294. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.; Carter, B.T.; Lin, H.; Tao, H.; Cornish, V.W. High-throughput selection for cellulase catalysts using chemical complementation. J. Am. Chem. Soc. 2008, 130, 17446–17452. [Google Scholar] [CrossRef] [Green Version]
- Rubin, E.M. Genomics of cellulosic biofuels. Nature 2008, 454, 841–845. [Google Scholar] [CrossRef]
- Galbe, M.; Zacchi, G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. [Google Scholar] [CrossRef]
- Tilman, D.G.; Hill, J.M.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.G.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, W.W.; Johnson, J.M.F.; Karlen, D.L.; Lightle, D.T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 2007, 99, 1665–1667. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Patzek, T.; Cecil, G. Ethanol production: Energy, economic, and environmental losses. Rev. Environ. Contam. Toxicol. 2007, 189, 2541. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.P.; Owens, L.B. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron. J. 2006, 98, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Kenney, I.; Blanco-Canqui, H.; Presley, D.R.; Rice, C.W.; Janssen, K.; Olson, B. Soil and crop response to stover removal from rainfed and irrigated corn. Glob. Chang. Biol. Bioenergy 2014, 7, 219–230. [Google Scholar] [CrossRef]
- Linden, D.R.; Clapp, C.E.; Dowdy, R.H. Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res. 2000, 56, 167–174. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Alvira, P.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for lignocellulose-to-bioethanol conversion. In Biofuels—Alternative Feedstocks and Conversion Processes; Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.G., Gnansounou, E., Eds.; Academic Press: Oxford, UK, 2011; pp. 149–176. [Google Scholar] [CrossRef]
- Chovau, S.; Degrauwe, D.; Van der Bruggen, B. Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew. Sustain. Energy Rev. 2013, 26, 307–321. [Google Scholar] [CrossRef]
- Huang, H.J.; Ramaswamy, S.; Al-Dajani, W.; Tschirner, U.; Cairncross, R.A. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenergy 2009, 33, 234–246. [Google Scholar] [CrossRef]
- Dubis, B.; Bułkowska, K.; Lewandowska, M.; Szempliński, W.; Jankowski, K.J.; Idźkowski, J.; Kordala, N.; Szymańska, K. Effect of different nitrogen fertilizer treatments on the conversion of Miscanthus × giganteus to ethanol. Bioresour. Technol. 2017, 243, 731–737. [Google Scholar] [CrossRef]
- Bankoviü-Iliü, I.B.; Stamenkoviü, O.S.; Veljkoviü, V.B. Biodiesel production from non-edible plant oils. Renew. Sust. Energ. Rev. 2012, 16, 3621–3647. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwathb, N.; Azada, A.K.M.; Hazrata, A. Second generation biodiesel: Potential alternative to-edible oil-derived biodiesel. Energy Proc. 2014, 61, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Chong, W.T.; Boosroh, M.H. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 2013, 22, 346–360. [Google Scholar] [CrossRef]
- Kumar, N.V.; Chauhan, S.R. Performance and emission characteristics of biodiesel from different origins: A review. Renew. Sustain. Energy Rev. 2013, 21, 633–658. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagosa, F.Y.; Mamata, R.; Abdul Adama, A.; Ishak, W.F.W.; Alenezic, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—A review. Renew. Sustain. Energy Rev. 2017, 72, 479–509. [Google Scholar] [CrossRef]
Specification | 2005 | 2010 | 2015 | 2017 | 2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
UE | World | UE | World | UE | World | UE | World | UE | World | |
Bioethanol | ||||||||||
Production | 2.4 | 45.8 | 5.4 | 103.7 | 6.5 | 118.2 | 6.5 | 120.8 | 6.9 | 127.6 |
Dynamic (%) | 100 | 100 | 225 | 226 | 271 | 258 | 271 | 264 | 288 | 279 |
Biodiesel | ||||||||||
Production | 3.5 | 4.1 | 10.7 | 20.0 | 13.3 | 30.7 | 13.2 | 35.5 | 13.5 | 40.3 |
Dynamic (%) | 100 | 100 | 306 | 488 | 380 | 749 | 377 | 866 | 386 | 983 |
Specification | 2005 | 2010 | 2015 | 2017 | 2018 | |||||
---|---|---|---|---|---|---|---|---|---|---|
UE | World | UE | World | UE | World | UE | World | UE | World | |
Wheat (M. tons) | ||||||||||
Production | 120.9 | 626.9 | 122.4 | 652.6 | 144.5 | 737.2 | 137.7 | 761.3 | 124.9 | 734.0 |
Dynamic prod. (%) | 100 | 100 | 101 | 104 | 120 | 118 | 114 | 121 | 103 | 117 |
Ending stocks | 25.6 | 174.1 | 9.5 | 211.7 | 12.7 | 258.4 | 16.0 | 297.0 | 9.9 | 286.8 |
Dynamic (%) | 100 | 100 | 37 | 122 | 50 | 148 | 63 | 171 | 39 | 165 |
Food | 48.6 | 440.5 | 48.9 | 460.5 | 49.5 | 490.6 | 49.9 | 503.6 | 50.1 | 509.7 |
Dynamic (%) | 100 | 100 | 101 | 105 | 102 | 111 | 103 | 114 | 103 | 116 |
Bioethanol use | 1.8 | 7.4 | 4.1 | 11.5 | 4.6 | 12.3 | 4.5 | 12.3 | 5.1 | 12.5 |
Dynamic use (%) | 100 | 100 | 228 | 155 | 256 | 166 | 250 | 166 | 283 | 170 |
% for bioethanol | 1.5 | 1.2 | 3.3 | 1.8 | 3.2 | 1.7 | 3.3 | 1.6 | 4.1 | 1.7 |
Maize (M. tons) | ||||||||||
Production | 65.0 | 716.1 | 59.9 | 869.7 | 59.3 | 1038.2 | 65.7 | 1114.8 | 62.1 | 1132.0 |
Dynamic (%) | 100 | 100 | 92 | 121 | 91 | 145 | 101 | 156 | 96 | 158 |
Ending stocks | 17.7 | 137.3 | 13.9 | 136.2 | 11.4 | 341.3 | 19.9 | 388.1 | 15.9 | 358.2 |
Food | 3.9 | 105.6 | 4.5 | 117.9 | 4.4 | 129.1 | 4.4 | 134.0 | 4.4 | 137.0 |
Bioethanol use | 1.8 | 51.3 | 4.1 | 148.7 | 6.4 | 169.4 | 6.4 | 179.9 | 6.4 | 181.7 |
Dynamic use (%) | 100 | 100 | 228 | 290 | 356 | 330 | 356 | 351 | 356 | 354 |
% for bioethanol | 2.8 | 7.2 | 6.8 | 17.1 | 10.8 | 16.3 | 9.7 | 16.1 | 10.3 | 16.1 |
Other cereals (M. tons) | ||||||||||
Production | 79.9 | 279.3 | 78.0 | 272.3 | 86.2 | 299.9 | 83.5 | 292.5 | 78.8 | 284.9 |
Dynamic (%) | 100 | 100 | 98 | 97 | 108 | 107 | 105 | 105 | 99 | 102 |
Ending stocks | 14.2 | 54.7 | 13.4 | 59.8 | 13.9 | 60.4 | 6.5 | 52.8 | 5.6 | 53.0 |
Food | 4.0 | 66.9 | 4.2 | 71.5 | 4.2 | 76.5 | 4.2 | 77.6 | 4.2 | 79.1 |
Bioethanol use | 0.9 | 3.4 | 2.1 | 6.7 | 1.6 | 9.6 | 1.5 | 9.5 | 1.5 | 9.4 |
Dynamic use (%) | 100 | 100 | 233 | 197 | 178 | 282 | 167 | 279 | 167 | 276 |
% for bioethanol | 1.1 | 1.2 | 2.7 | 2.5 | 1.9 | 3.2 | 1.8 | 3.2 | 1.9 | 3.3 |
Sugar beet (M. tons) | ||||||||||
Production | 128.3 | 248.6 | 98.5 | 228.1 | 95.8 | 245.3 | 134.4 | 311.1 | 110.7 | 281.6 |
Dynamic (%) | 100 | 100 | 77 | 92 | 75 | 99 | 105 | 125 | 86 | 113 |
Bioethanol use | 8.6 | 9.3 | 12.2 | 13.1 | 11.9 | 12.7 | 13.1 | 14.0 | 13.1 | 14.0 |
Dynamic use (%) | 100 | 100 | 142 | 141 | 138 | 137 | 152 | 151 | 152 | 151 |
% for bioethanol | 6.7 | 3.7 | 12.4 | 5.7 | 12.4 | 5.2 | 9.7 | 4.5 | 11.8 | 5.0 |
Sugar cane (M. tons) | ||||||||||
Production | 0.0 | 1302.6 | 0.0 | 1572.7 | 0.0 | 1798.8 | 0.0 | 1754.9 | 0.0 | 1746.4 |
Dynamic (%) | 100 | 100 | 129 | 125 | 144 | 147 | 147 | 165 | 138 | 169 |
Bioethanol use | 0.0 | 176.5 | 0.0 | 325.9 | 0.0 | 368.3 | 0.0 | 338.3 | 0.0 | 397.4 |
Dynamic use (%) | 0.0 | 100 | 0.0 | 185 | 0.0 | 209 | 0.0 | 192 | 0.0 | 225 |
% for bioethanol | 0.0 | 13.5 | 0.0 | 20.7 | 0.0 | 20.5 | 0.0 | 19.3 | 0.0 | 22.8 |
Vegetable oil (M. tons) | ||||||||||
Production | 10.3 | 123.3 | 13.3 | 153.6 | 14.8 | 180.7 | 15.1 | 203.7 | 14.2 | 207.8 |
Dynamic (%) | 100 | 100 | 129 | 125 | 144 | 147 | 147 | 165 | 138 | 169 |
Ending stocks | 0.9 | 12.3 | 1.1 | 20.4 | 1.4 | 22.1 | 0.9 | 23.3 | 0.9 | 21.4 |
Food | 11.5 | 76.8 | 9.6 | 108.7 | 10.3 | 126.7 | 11.1 | 136.8 | 11.2 | 139.2 |
Biodiesel use | 2.9 | 3.1 | 8.9 | 15.3 | 10.3 | 21.3 | 10.1 | 24.4 | 10.3 | 28.0 |
Dynamic use (%) | 100 | 100 | 307 | 494 | 355 | 687 | 348 | 787 | 355 | 903 |
% for biodiesel | 28.2 | 2.5 | 66.9 | 10.0 | 69.6 | 11.8 | 66.9 | 12.0 | 72.5 | 13.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurowska, K.; Marks-Bielska, R.; Bielski, S.; Kryszk, H.; Jasinskas, A. Food Security in the Context of Liquid Biofuels Production. Energies 2020, 13, 6247. https://doi.org/10.3390/en13236247
Kurowska K, Marks-Bielska R, Bielski S, Kryszk H, Jasinskas A. Food Security in the Context of Liquid Biofuels Production. Energies. 2020; 13(23):6247. https://doi.org/10.3390/en13236247
Chicago/Turabian StyleKurowska, Krystyna, Renata Marks-Bielska, Stanisław Bielski, Hubert Kryszk, and Algirdas Jasinskas. 2020. "Food Security in the Context of Liquid Biofuels Production" Energies 13, no. 23: 6247. https://doi.org/10.3390/en13236247
APA StyleKurowska, K., Marks-Bielska, R., Bielski, S., Kryszk, H., & Jasinskas, A. (2020). Food Security in the Context of Liquid Biofuels Production. Energies, 13(23), 6247. https://doi.org/10.3390/en13236247