Renewable Energy and Economic Performance in the Context of the European Green Deal
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Empirical Model
- GDP at time t,
- —labor force at time t,
- —capital at time t,
- —parameter (),
- —coefficient including total factor productivity composed by efficiency and technological progress.
- , , , , —parameters,
- , —error terms.
- —t statistic corresponding to .
- —standard panel OLS estimator,
- —individual specific means.
- —long-term dispersion of residual (scalar),
- —contemporaneous covariance,
- —weighted sum of autocovariances,
- —lower triangular decomposition of .
4. Model Estimations and Results
- -
- Investigation of the cointegration relationship between these variables;
- -
- Construction of panel fully modified least squares models to explain GDP and energy consumption from RESs and from non-RESs sources.
5. Discussion of Results
6. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Haines, A.; Scheelbeek, P. European Green Deal: A major opportunity for health improvement. Lancet 2020, 395, 1327–1329. [Google Scholar] [CrossRef]
- Zlaugotne, B.; Ievina, L.; Azis, R.; Baranenko, D.; Blumberga, D. GHG Performance Evaluation in Green Deal Context. Environ. Clim. Technol. 2020, 24, 431–441. [Google Scholar] [CrossRef]
- Pfenninger, S.; Keirstead, J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Appl. Energy 2015, 152, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Cucchiella, F.; Adamo, I.; Gastaldi, M. Biomethane: A renewable resource as vehicle fuel. Resources 2017, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Blazejczak, J.; Braun, F.G.; Edler, D.; Schill, W.P. Economic effects of renewable energy expansion: A model-based analysis for germany. Renew. Sustain. Energy Rev. 2014, 40, 1070–1080. [Google Scholar] [CrossRef] [Green Version]
- Sinn, H.W. Buffering volatility: A study on the limits of Germany’s energy revolution. Eur. Econ. Rev. 2017, 99, 130–150. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhou, J.; Liu, S.; Yang, X.; Ren, H. Multi-objective Optimization of Integrated Renewable Energy System Considering Economics and CO2 Emissions. Energy Procedia 2016, 104, 15–20. [Google Scholar] [CrossRef]
- Kanagawa, M.; Nakata, T. Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy 2008, 36, 2016–2029. [Google Scholar] [CrossRef]
- Oseni, M. Household’s access to electricity and energy consumption pattern in Nigeria. Renew. Sustain. Energy Rev. 2012, 16, 990–995. [Google Scholar] [CrossRef]
- COP25 Summary Report. Available online: https://www.ieta.org/resources/Documents/IETA-COP25-Report_2019.pdf (accessed on 10 April 2020).
- European Commission. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 10 April 2020).
- Bigerna, S.; D’Errico, M.C.; Polinori, P. Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry: A Bayesian shrinkage dynamic analysis. Energy Policy 2020, 142, 111522. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Haas, R.; Resch, G.; Panzer, C.; Busch, S.; Ragwitz, M.; Held, A. Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources—Lessons from EU countries. Energy 2011, 36, 2186–2193. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. Efficiency and allocation of emission allowances and energy consumption over more sustainable European economies. J. Clean. Prod. 2018, 182, 805–817. [Google Scholar] [CrossRef]
- European Parliament. Renewable Energy Sources. 2016. Available online: http://www.europarl.europa.eu/ftu/pdf/lv/FTU_5.7.4.pdf (accessed on 2 June 2020).
- Ruggiero, S.; Lehkonen, H. Renewable energy growth and the financial performance of electric utilities: A panel data study. J. Clean. Product. 2017, 142, 3676–3688. [Google Scholar] [CrossRef] [Green Version]
- Sari, A.; Akkaya, M. Contribution of renewable energy potential to sustainable employment. Procedia Soc. Behav. Sci. 2016, 229, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, X.; Ali, S.; Khan, Z. Eco-innovation and energy productivity: New determinants of renewable energy consumption. J. Environ. Manag. 2020, 271, 111028. [Google Scholar] [CrossRef]
- Šahović, N.; da Silva, P.P. Community Renewable Energy-Research Perspectives. Energy Procedia 2016, 106, 46–58. [Google Scholar] [CrossRef] [Green Version]
- IEA. Energy and Climate Change, World Energy Outlook Special Report. Available online: https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf (accessed on 7 October 2020).
- Frankfurt School UNEP Centre; Bloomberg New Energy Finance (BNEF). Global Trends in Renewable Energy Investment. Frankfurt School-UNEP Centre. 2016. Available online: http://fs-unep-centre.org/sites/default/files/attachments/press_release_gtr_2016_in_english.pdf (accessed on 2 October 2020).
- Thellufsen, J.Z.; Lund, H. Cross-border versus cross-sector interconnectivity in renewable energy systems. Energy 2017, 124, 492–501. [Google Scholar] [CrossRef]
- EUR-Lex. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=RO (accessed on 2 October 2020).
- Eurostat Statistics Explained. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Gross_inland_energy_consumption (accessed on 2 April 2020).
- Engelken, M.; Römer, B.; Drescher, M.; Welpe, I.M.; Picot, A. Comparing drivers, barriers, and opportunities of business models for renewable energies: A review. Renew. Sustain. Energy Rev. 2016, 60, 795–809. [Google Scholar] [CrossRef]
- Soava, G.; Mehedintu, A.; Sterpu, M.; Raduteanu, M. Impact of renewable energy consumption on economic growth: Evidence from European Union countries. Technol. Econ. Dev. Econ. 2018, 24, 1197–1215. [Google Scholar] [CrossRef]
- Pappas, S.S.; Ekonomou, L.; Karamousantas, D.C.; Chatzarakis, G.; Katsikas, S.; Liatsis, P. Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models. Energy 2008, 33, 1353–1360. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Shiau, T.A.; Lin, C.Y. Application of multicriteria decision making to the evaluation of new energy system development in Taiwan. Energy 1992, 17, 983–992. [Google Scholar] [CrossRef]
- Ozturk, S.; Ozturk, F. Forecasting Energy Consumption of Turkey by Arima Model. J. Asian Sci. Res. 2018, 8, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Svenfelt, Å.; Engström, R.; Svane, Ö. Decreasing energy use in buildings by 50% by 2050—A backcasting study using stakeholder groups. Technol. Forecast. Soc. Chang. 2011, 78, 785–796. [Google Scholar] [CrossRef]
- Aslan, A. The causal relationship between biomass energy use and economic growth in the United States. Renew. Sustain. Energy Rev. 2016, 57, 362–366. [Google Scholar] [CrossRef]
- Sasana, H.; Ghozali, I. The impact of fossil and renewable energy consumption on the economic growth in Brazil, Russia, India, China and South Africa. Int. J. Energy Econ. Policy 2017, 7, 194–200. [Google Scholar] [CrossRef]
- Destek, M.A.; Aslan, A. Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality. Renew. Energy 2017, 111, 757–763. [Google Scholar] [CrossRef]
- Rezitis, A.N.; Ahammad, S.M. The relationship between energy consumption and economic growth in South and Southeast Asian countries: A panel vector autoregression approach and causality analysis. Int. J. Energy Econ. Policy 2015, 5, 704–715. [Google Scholar] [CrossRef]
- Resch, G.; Gephart, M.; Steinhilber, S.; Klessmann, C.; del Rio, P.; Ragwitz, M. Coordination or harmonisation? Feasible pathways for a European res strategy beyond 2020. Energy Environ. 2013, 24, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Fumon, N.; Biswas, M.A.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Salim, R.A.; Shafiei, S. Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis. Econ. Model. 2014, 38, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Klessmann, C.; Rathmann, M.; de Jager, D.; Gazzo, A.; Resch, G.; Busch, S.; Ragwitz, M. Policy options for reducing the costs of reaching the European renewables target. Renew. Energy 2013, 57, 390–403. [Google Scholar] [CrossRef]
- Collins, S.; Deane, J.P.; Gallachóir, B.Ó. Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model. Energy 2017, 130, 433–447. [Google Scholar] [CrossRef]
- Tsai, S.B.; Xue, Y.; Zang, J.; Chen, Q.; Liu, Y.; Zhou, J.; Dong, W. Models for forecasting growth trends in renewable energy. Renew. Sustain. Energy Rev. 2017, 77, 1169–1178. [Google Scholar] [CrossRef]
- Liu, Y. Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model). Energy 2009, 34, 1846–1854. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bentley, UK, 2001. [Google Scholar]
- Deryugina, T.; MacKay, A.; Reif, J. The long-run dynamics of electricity demand: Evidence from municipal aggregation. Am. Econ. J. Appl. Econ. 2020, 12, 86–114. [Google Scholar] [CrossRef] [Green Version]
- OECD. Real GDP Forecast (Indicator). 2020. Available online: https://data.oecd.org/gdp/real-gdp-forecast.htm (accessed on 23 June 2020).
- Barak, S.; Sadegh, S. Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. Electr. Power Energy Syst. 2016, 82, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Borozan, D. Exploring the relationship between energy consumption and GDP: Evidence from Croatia. Energy Policy 2013, 59, 373–381. [Google Scholar] [CrossRef]
- Câmpeanu, V.; Pencea, S. Renewable energy sources in Romania: From a “paradise” of investors to a possible abandon or to another boom? The impact of a new paradigm in Romanian renewable sources policy. Procedia Econ. Financ. 2014, 8, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- APREN. Renewable Electricity in Portugal. 2017. Available online: https://apren.pt/.../06-renewable-electricity-in-portugal-2.pdf (accessed on 1 September 2020).
- Štreimikienė, D.; Balezentis, T. Kaya identity for analysis of the main drivers of ghg emissions and feasibility to implement eu “20–20–20” targets in the Baltic States. Renew. Sustain. Energy Rev. 2016, 58, 1108–1113. [Google Scholar] [CrossRef]
- Proença, S.; Aubyn, M.S. Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal. Energy Econ. 2013, 38, 176–185. [Google Scholar] [CrossRef]
- Armeanu, D.Ş.; Gherghina, Ş.C.; Pasmangiu, G. Exploring the causal nexus between energy consumption, environmental pollution and economic growth: Empirical evidence from central and Eastern Europe. Energies 2019, 12, 3704. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef]
- Oei, P.Y.; Hermann, H.; Herpich, P.; Holtemöller, O.; Lünenbürger, B.; Schult, C. Coal phase-out in Germany–Implications and policies for affected regions. Energy 2020, 196, 117004. [Google Scholar] [CrossRef]
- Armeanu, D.Ş.; Vintilă, G.; Gherghina, Ş.C. Does renewable energy drive sustainable economic growth? multivariate panel data evidence for EU-28 countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Elkerbout, M.; Egenhofer, C.; Núñez Ferrer, J.; Catuti, M.; Kustova, I.; Rizos, V. The European Green Deal after Corona: Implications for EU climate policy. CEPS Policy Insights 2020. [Google Scholar]
- Spash, C.L. ‘The economy’as if people mattered: Revisiting critiques of economic growth in a time of crisis. Globalizations 2020, 1–18. [Google Scholar] [CrossRef]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy. Resources 2020, 9, 55. [Google Scholar] [CrossRef]
Variable | Notation | Type of Method | Dependent Variable | Explanatory Variables |
---|---|---|---|---|
logarithm of GDP | ln_GDP | Panel data models | ln_GDP | ln_K ln_L ln_ER |
logarithm of energy consumption from renewable sources and energy | ln_ER | Panel data models | ln_GDP | ln_K ln_L ln_EN |
logarithm of energy consumption from non-renewable sources | ln_EN | Panel data models | ln_GCI | ln_K ln_L ln_ER |
logarithm of GCI | ln_GCI | Panel data models | ln_GCI | ln_K ln_L ln_EN |
logarithm of share of environmental taxes in total tax revenues | ln_ET | Panel data models | ln_ER | ln_GDP ln_ET |
logarithm of gross capital formation | ln_K | Panel data models | ln_EN | ln_GDP ln_ET |
logarithm of number of employed people (labor force) | ln_L | Cluster analysis (K-means method) | Groups of countries according to share of RESs in energy consumption |
ln_GDP | ln_GCI | ln_K | ln_L | ln_EN | ln_ER | ln_ET | |
---|---|---|---|---|---|---|---|
Mean | 12.06906 | 1.556995 | 3.074276 | 8.208306 | 10.49143 | 8.597901 | 1.982199 |
Median | 12.12941 | 1.526056 | 3.077312 | 8.348064 | 10.51414 | 8.674551 | 1.998774 |
Maximum | 14.98566 | 1.806648 | 3.723281 | 10.64766 | 13.17182 | 11.32660 | 2.463853 |
Minimum | 8.853994 | 1.350667 | 2.322388 | 5.068904 | 7.440493 | 1.226712 | 1.463255 |
Std. Dev. | 1.567587 | 0.107930 | 0.201214 | 1.411044 | 1.443351 | 1.792421 | 0.231666 |
Skewness | 0.084980 | 0.186539 | −0.257684 | −0.241339 | −0.038446 | −1.167402 | −0.230086 |
Kurtosis | 2.190994 | 1.763169 | 4.536494 | 2.547196 | 2.279723 | 5.505523 | 2.304829 |
Jarque–Bera | 9.538805 | 23.29559 | 36.66043 | 6.113889 | 7.324102 | 163.7166 | 9.701326 |
Probability | 0.008485 | 0.000009 | 0.000000 | 0.047031 | 0.025680 | 0.000000 | 0.007823 |
Sum | 4043.136 | 521.5934 | 1029.882 | 2749.783 | 3514.628 | 2880.297 | 664.0368 |
Sum Sq. Dev. | 820.7483 | 3.890763 | 13.52270 | 665.0087 | 695.8094 | 1073.066 | 17.92546 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_L | 0.149895 | 0.033589 | 4.462591 | 0.0000 |
ln_K | 1.350711 | 0.117257 | 11.51926 | 0.0000 |
ln_ER | 0.782169 | 0.027571 | 28.36944 | 0.0000 |
Coeff. of determination | 0.607611 | Mean for dep. variable | 12.11521 | |
Adjusted coef. of determination | 0.605038 | Standard dev. for dep. variable | 1.594043 | |
Std. Error for regression | 1.001792 | Sum of squared residuals | 306.0944 | |
Long-term variance | 1.128353 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_L | 0.028586 | 0.012915 | 2.213477 | 0.0276 |
ln_K | 0.227072 | 0.049753 | 4.563947 | 0.0000 |
ln_EN | 1.062056 | 0.011820 | 89.84871 | 0.0000 |
Coeff. of determination | 0.937389 | Mean for dep. variable | 12.11521 | |
Adjusted coef. of determination | 0.936978 | Standard dev. for dep. variable | 1.594043 | |
Std. Error for regression | 0.400170 | Sum of squared residuals | 48.84147 | |
Long-term variance | 0.162120 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_L | 0.029648 | 0.007585 | 3.908883 | 0.0001 |
ln_K | 0.389238 | 0.025788 | 15.09382 | 0.0000 |
ln_ER | 0.014947 | 0.005880 | 2.542232 | 0.0115 |
Coeff. of determination | −0.524890 | Mean for dep. Variable | 1.557964 | |
Adjusted coef. of determination | −0.534923 | Standard dev. for dep. Variable | 0.107850 | |
Std. Error for regression | 0.133618 | Sum of squared residuals | 5.427554 | |
Long-term variance | 0.039286 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_L | 0.025830 | 0.007432 | 3.475677 | 0.0006 |
ln_K | 0.345429 | 0.029141 | 11.85366 | 0.0000 |
ln_ER | 0.027956 | 0.006864 | 4.072923 | 0.0001 |
Coeff. of determination | 0.486382 | Mean for dep. Variable | 1.557964 | |
Adjusted coef. of determination | 0.496161 | Standard dev. for dep. Variable | 0.107850 | |
Std. Error for regression | 0.131920 | Sum of squared residuals | 5.290492 | |
Long-term variance | 0.037243 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_GDP | 0.917428 | 0.014214 | 64.54523 | 0.0000 |
ln_environmental taxes | 0.167739 | 0.097050 | 1.728381 | 0.0850 |
Coeff. of determination | 0.943176 | Mean for dep. Variable | 10.52574 | |
Adjusted coef. of determination | 0.937249 | Standard dev. for dep. Variable | 1.465211 | |
Std. Error for regression | 0.367039 | Sum of squared residuals | 37.45151 | |
Long-term variance | 0.113156 |
Explanatory Variable | Estimate | Standard Error | Value of Statistic | p-Value |
---|---|---|---|---|
ln_GDP | 0.849983 | 0.021311 | 39.88457 | 0.0000 |
ln_environmental taxes | −0.826354 | 0.132386 | −6.242018 | 0.0000 |
Coeff. of determination | 0.628467 | Mean for dep. Variable | 8.609721 | |
Adjusted coef. of determination | 0.627253 | Standard dev. for dep. Variable | 1.817364 | |
Std. Error for regression | 1.109556 | Sum of squared residuals | 376.7211 | |
Long-term variance | 1.320084 |
Country | Cluster | Distance |
---|---|---|
Austria | 1 | 2.833 |
Belgium | 2 | 4.095 |
Bulgaria | 2 | 1.095 |
Croatia | 2 | 3.005 |
Cyprus | 2 | 4.095 |
Czech Republic | 2 | 4.095 |
Denmark | 1 | 7.033 |
Estonia | 2 | 7.905 |
Finland | 1 | 0.967 |
France | 2 | 5.905 |
Germany | 2 | 0.905 |
Greece | 2 | 0.905 |
Hungary | 2 | 4.095 |
Ireland | 2 | 1.095 |
Italy | 2 | 0.095 |
Latvia | 1 | 2.967 |
Lithuania | 2 | 5.905 |
Luxembourg | 2 | 6.095 |
Malta | 2 | 7.095 |
Netherlands | 2 | 3.095 |
Poland | 2 | 2.095 |
Portugal | 1 | 6.033 |
Romania | 2 | 6.905 |
Slovakia | 2 | 3.095 |
Slovenia | 2 | 7.905 |
Spain | 2 | 2.905 |
Sweden | 1 | 11.967 |
United Kingdom | 2 | 2.095 |
Country | Real GDP Growth (%) | RES Share in GFEC (%) | ||
---|---|---|---|---|
Own Scenarios | OECD Forecasts | Own Scenarios | Targets | |
Austria | 8.68 | −4.98 | 31.68 | 34.2 |
Belgium | 7.02 | −8.92 | 10.52 | 13 |
Bulgaria | 2.58 | −7.11 | 9.42 | 16 |
Croatia | 1.53 | −4.08 | 18.70 | 20.1 |
Cyprus | 2.52 | −7.16 | 10.19 | 13 |
Czech Republic | 5.97 | −9.58 | 9.53 | 13 |
Denmark | 3.40 | −5.78 | 23.79 | 30 |
Estonia | 3.84 | −8.37 | 19.63 | 25 |
Finland | 4.01 | −7.87 | 40.57 | 38 |
France | 6.12 | −11.37 | 19.40 | 23 |
Germany | 5.70 | −6.6 | 12.69 | 18 |
Greece | 1.19 | −7.99 | 10.14 | 18 |
Hungary | 2.09 | -7.98 | 9.59 | 13 |
Ireland | 2.19 | −6.79 | 13.83 | 16 |
Italy | 1.33 | −11.27 | 11.47 | 17 |
Latvia | 2.04 | −8.06 | 30.63 | 40 |
Lithuania | 2.90 | −8.07 | 19.46 | 23 |
Luxembourg | 6.47 | −6.49 | 12.68 | 11 |
Malta | 2.34 | −6.78 | 10.19 | 10 |
Netherlands | 6.09 | −8.01 | 9.68 | 14 |
Poland | 2.90 | −7.44 | 13.90 | 15 |
Portugal | 4.65 | −9.35 | 29.47 | 31 |
Romania | 3.07 | −6.47 | 19.71 | 24 |
Slovakia | 2.21 | −9.28 | 9.56 | 14 |
Slovenia | 1.75 | −7.81 | 18.74 | 25 |
Spain | 2.69 | −11.13 | 20.28 | 20 |
Sweden | 3.10 | −6.68 | 39.76 | 49 |
United Kingdom | 3.01 | −11.49 | 13.94 | 15 |
Country | Real GDP Growth (%) | RES share in GFEC (%) | |
---|---|---|---|
Own Scenarios | OECD Forecasts | Own Scenarios | |
Austria | 2.98 | 4.12 | 32.22 |
Belgium | 7.80 | 6.43 | 11.59 |
Bulgaria | 3.77 | 2.42 | 10.35 |
Croatia | 1.55 | 2.68 | 19.86 |
Cyprus | 1.43 | 1.67 | 10.22 |
Czech Republic | 6.61 | 7.13 | 10.67 |
Denmark | 2.81 | 3.65 | 24.29 |
Estonia | 3.70 | 4.26 | 20.44 |
Finland | 4.83 | 3.66 | 41.91 |
France | 3.59 | 7.7 | 20.55 |
Germany | 3.54 | 5.76 | 13.74 |
Greece | 1.46 | 4.46 | 11.22 |
Hungary | 5.60 | 4.58 | 9.65 |
Ireland | 5.86 | 4.82 | 14.90 |
Italy | 4.35 | 7.72 | 13.54 |
Latvia | 7.82 | 6.34 | 32.33 |
Lithuania | 6.69 | 6.36 | 20.15 |
Luxembourg | 5.60 | 3.89 | 13.29 |
Malta | 3.28 | 5.22 | 11.22 |
Netherlands | 6.55 | 6.56 | 9.48 |
Poland | 4.92 | 4.76 | 14.18 |
Portugal | 5.38 | 6.26 | 30.49 |
Romania | 3.94 | 4.71 | 20.88 |
Slovakia | 6.72 | 6.42 | 10.66 |
Slovenia | 5.69 | 4.53 | 19.89 |
Spain | 7.33 | 7.48 | 21.46 |
Sweden | 3.70 | 1.65 | 40.15 |
United Kingdom | 9.01 | 8.99 | 14.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M.; Păuna, C.B.; Diaconescu, T. Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies 2020, 13, 6440. https://doi.org/10.3390/en13236440
Simionescu M, Păuna CB, Diaconescu T. Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies. 2020; 13(23):6440. https://doi.org/10.3390/en13236440
Chicago/Turabian StyleSimionescu, Mihaela, Carmen Beatrice Păuna, and Tiberiu Diaconescu. 2020. "Renewable Energy and Economic Performance in the Context of the European Green Deal" Energies 13, no. 23: 6440. https://doi.org/10.3390/en13236440
APA StyleSimionescu, M., Păuna, C. B., & Diaconescu, T. (2020). Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies, 13(23), 6440. https://doi.org/10.3390/en13236440