Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets
Abstract
:1. Introduction
2. Rural Housing and Sustainable Growth
3. Methodology
3.1. House Construction Scenarios
3.2. Building Model
3.3. Construction Costs
3.4. Evaluation of CO2 Reduction Emission
3.5. Calculation of Reduction of Other GHG and Particulate Emissions
4. Results
4.1. Construction and Thermal Insulation Costs
4.2. Heating System and Electricity Supply
4.3. Total Cost Differences
4.4. Heating Energy Needs under Alternative Construction Scenarios and Retrofit Options
4.5. Changes in CO2 Emission
4.6. Changes in Toxic GHG and Particulate Emissions
5. Discussion
Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Cost Category | Units | Traditional House (Coal) | Traditional House (Natural Gas) | Traditional House (Wood Pellet) | Energy-Saving House (Natural Gas + Solar Panels) | Energy-Neutral House (Heat Pump + PV) |
---|---|---|---|---|---|---|
Heating energy | kWh/year | 31,909 | 19,923 | 27,350 | 5300 | 4481 |
Price per kWh from a given heat source | PLN | 0.13 | 0.25 | 0.21 | 0.12 | 0.12 |
Energy production costs | PLN | 4148 | 4981 | 5744 | 636 | 538 |
Auxiliary electrical power supply | kWh/year | 334 | 363 | 179 | 351 | 351 |
Price per kWh a | PLN | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
Energy production costs | PLN | 255 | 234 | 116 | 228 | 228 |
Total costs | PLN/EUR | 4404/1039 | 5217/1219 | 5860/1369 | 864/202 | 766/179 |
Cost Category | Units | Traditional House (Coal) | Traditional House (Natural Gas) | Traditional House (Wood Pellet) | Energy-Saving House | Energy-Neutral House |
---|---|---|---|---|---|---|
Heat demand | kWh/year | 29,396 | 14,409 | 23,706 | 14,409 | 4105.5 |
Price 1kWh from a given heat source | PLN | 0.13 | 0.25 | 0.21 | 0.25 | 0 |
Cost of Energy production | PLN | 3821 | 3602 | 4978 | 3602 | 0 |
Auxiliary electrical power supply | kWh/year | 169 | 272 | 215 | 272 | 247 |
Price for 1 kWh of (GUS, 2016) | PLN | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
Energy production costs | PLN | 110 | 177 | 140 | 177 | 161 |
Total costs | PLN/EUR | 4007/936 | 3779/883 | 5118/1196 | 3779/883 | 148/34 |
References
- Gawlikowska-Fyk, A. Coping with the challenges of decarbonization and diversification. In New Political Economy of Energy in Europe; International Political Economy Series; Palgrave Macmillan: London, UK, 2018; pp. 195–2014. [Google Scholar]
- European Commission National Energy and Climate Plans. Executive Summary of Poland’s National Energy and Climate Plan for the Years 2021–2030. 2020. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/pl_final_necp_summary_en.pdf (accessed on 28 September 2020).
- KOBiZE. Wartości Opałowe (WO) i Wskaźniki Emisji CO2 (WE) w Roku 2015 do Raportowania w Ramach Systemu Handlu Uprawnieniami do Emisji za Rok 2018; KOBiZE: Warszawa, Poland, 2017.
- Emissions (Metric Tons per Capita)–Poland. 2020. Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=PL (accessed on 27 October 2020).
- Canales, F.A.; Jadwiszczak, P.; Jurasz, J.; Wdowikowski, M.; Ciapała, B.; Kaźmierczak, B. The impact of long-term changes in air temperature on renewable energy in Poland. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef] [PubMed]
- Czym Polacy Ogrzewają Domy? Najnowsze Dane GUS. 2019. Available online: https://www.gramwzielone.pl/trendy/102011/czym-polacy-ogrzewaja-domy-najnowsze-dane-gus (accessed on 22 October 2020).
- Kamińska, W.; Heffner, K. Polityka Spójności UE a Rozwój Obszarów Wiejskich. Stare Problemy i Nowe Wyzwania; KPZK PAN: Warszawa, Poland, 2014; pp. 267–282. [Google Scholar]
- Klepacka, A.M.; Florkowski, W.J.; Meng, T. Clean, Accessible, and Cost-Saving: Reasons for Rural Household Investment in Solar Panels in Poland. Resour. Conserv. Recy. 2018, 139, 338–350. [Google Scholar] [CrossRef]
- Część Druga Programu dla Beneficjentów Uprawnionych do Podwyższonego Poziomu Dofinansowania. Available online: http://czystepowietrze.gov.pl/wez-dofinansowanie/ (accessed on 14 August 2020).
- Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. Available online: https://eur-lex.europa.eu/legal-content/pl/TXT/?uri=CELEX%3A32018L0844 (accessed on 27 October 2020).
- Act of 13 February 2020 Amending the Act-Building Law and Certain Other Acts. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000471 (accessed on 27 October 2020).
- Gałązka, T. Krajowy Plan Mający Na Celu Zwiększenie Liczby Budynków O Niskim Zużyciu Energii; Wydawnictwa Uczelniane UTP w Bydgoszczy: Bydgoszcz, Poland, 2015. [Google Scholar]
- Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wires Clim. Chang. 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Eurostat. GDP per Capita in PPS. 2020. Available online: https://ec.europa.eu/eurostat/databrowser/view/tec00114/default/table?lang=en (accessed on 23 October 2020).
- Capros, P.; Paroussos, L.; Fragkos, P.; Tsani, S.; Boitier, B.; Wagner, F.; Busch, S.; Resch, G.; Blesl, M.; Bollen, J. European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis. Energy Strateg. Rev. 2014, 2, 231–245. [Google Scholar] [CrossRef]
- GUS. Zużycie Energii w Gospodarstwach Domowych w 2018 Roku; GUS: Warszawa, Poland, 2019.
- Porozumienie Branżowe na Rzecz Efektywności Energetycznej POBE. Jak Spełnić Wymagania, jakim Powinny Odpowiadać Budynki od 2021 Roku? Poradnik dla Architektów, Projektantów i Inwestorów. Available online: https://www.nibe.pl/Documents/nibe_pl/12_Poradnik_POBE_WT_2021_jak_spelnic_wymagania.pdf (accessed on 14 August 2020).
- Grudzińska, M.; Jakusik, E. Energy performance of buildings in Poland on the basis of different climatic data. Indoor Built Environ. 2017, 26, 561–566. [Google Scholar] [CrossRef]
- Krawczyk, D.A. International Scientific Conference “Environmental and Climate Technologies”, CONECT 2015, 14–16 October 2015, Riga, Latvia Analysis of energy consumption for heating in a residential house in Poland. Energy Procedia 2015, 95, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Pater, S. Field measurements and energy performance analysis of renewable energy source devises in a heating and cooling system in a residential building in southern Poland. Energy Build. 2019, 199, 115–125. [Google Scholar] [CrossRef]
- Pantoutsou, C.; Bauen, A.; Böttcher, H.; Alexopoulou, E.; Fritsche, U.; Uslu, A.; van Stralen, J.N.P.; Elbersen, B.; Kretschmer, B.; Capros, P.; et al. Biomass futures: An integrated approach for estimating the future contribution of biomass value chains to the European energy system and inform future policy formation. Biofuel Bioporducts Biorefin. 2013, 7, 106–114. [Google Scholar] [CrossRef]
- European Commission. Energy Road Map 2050; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Mocny Trend. Polacy Przeprowadzają się do Domów i Szeregowców. 2017. Available online: https://tvn24.pl/biznes/z-kraju/gus-spada-ilosc-gospodarstw-domowych-w-domach-wielorodzinnych-ra775548-4486182 (accessed on 26 October 2020).
- Bauermann, K. German Energiewende and the heating market–Impact and limits of policy. Energy Policy 2016, 94, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Del Río, P.; Burguillo, M. An empirical analysis of the impact of renewable energy deployment on the local sustainability. Renew. Sust. Energ. Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Moula, M.M.E.; Maula, J.; Hamdy, M.; Fang, T.; Jung, N.; Lahdelma, R. Researching social acceptability of renewable energy technologies in Finland. Int. J. Sustain. Built Environ. 2013, 2, 89–98. [Google Scholar] [CrossRef]
- Bertsch, V.; Hall, M.; Weinhardt, C.; Fichtner, W. Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights from Germany. Energy 2016, 114, 465–477. [Google Scholar] [CrossRef]
- GUS. Obszary Wiejskie w Polsce w 2018 Roku; GUS: Warszawa, Poland, 2020.
- GUS. Zużycie Energii w Gospodarstwach Domowych w 2015 r; GUS: Warszawa, Poland, 2017.
- Bochnia, K. Budynki Niemal Zeroenergetyczne. Builder 2017, 65, 64–65. [Google Scholar]
- Tomsej, T.; Horak, J.; Tomsejova, S.; Krpec, K.; Klanova, J.; Dej, M.; Hopan, F. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene. Chemosphere 2018, 196, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Stecuła, K.; Tutak, M. Causes and effects of low-stack emission in selected regions of Poland. 18th International Multidisciplinary Scientific Geo-Conference SGEM 2018. Sect. Air Pollut. Clim. Chang. 2018, 18, 357–364. [Google Scholar] [CrossRef]
- Krause, P.; Steidl, T.; Wojewódka, D. Kierunki Termomodernizacji. Builder 2015, 46, 46–48. [Google Scholar]
- Dziennik Ustaw. Minister of Transportation, Construction and Maritime Regulation of 5 July 2013, Regarding the Technical Conditions Pertaining to Buildings and Their Location. Item 926, August 2013. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000926 (accessed on 30 April 2020).
- Dziennik Ustaw. Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z Dnia 7 Czerwca 2018 r. w Sprawie Ogłoszenia Jednolitego Tekstu Ustawy-Prawo Budowlane. Item 1202. 2018. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180001202 (accessed on 8 September 2020).
- GUS. Zamieszkane Budynki. Narodowy Spis Powszechny Ludności i Mieszkań w 2011; GUS: Warszawa, Poland, 2013.
- GUS. Budownictwo w 2020 Roku; GUS: Warszawa, Poland, 2020.
- Dziennik Ustaw. Minister of Infrastructure and Development Regulation of 27 February 2015, Regards the Methodology of Determining Energy Features of Buildings and Buildings Parts and Building Features certification. Item 376, 18 March 2015. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000376/O/D20150376.pdf (accessed on 10 November 2020).
- Krochmal, D.; Kalina, A. Measurements of nitrogen dioxide and sulphur dioxide concentrations in urban and rural areas of Poland using passive sampling method. Environ. Pollut. 1997, 96, 401–407. [Google Scholar] [CrossRef]
- Hławiczka, S.; Kubica, K.; Zielonka, U. Partitioning factor of mercury during coal combustion in low capacity domestic heating units. Sci. Total Environ. 2003, 302, 261–265. [Google Scholar] [CrossRef]
- Tainio, M.; Juda-Rezler, K.; Reizer, M.; Warchałowski, A.; Trapp, W.; Skotak, K. Future climate and adverse health effects caused by fine particulate matter air pollution: Case study for Poland. Reg. Environ. Chang. 2013, 13, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Jędrak, J.; Konduracka, E.; Badyda, A.J.; Dąbrowiecki, P. Influence of air pollution on health. Polskiego Towarzystwa Medycyny Środowiskowej, Wojskowego Instytutu Medycznego, Polskiej Federacji Stowarzyszeń Chorych na Astmę, Alergię i POChP; Krakowski Alarm Smogowy: Krakow, Poland, 2017; ISBN 978-83-943065-0-2. [Google Scholar]
- Wang, Q.; Xu, X.; Zeng, Z.; Zheng, X.; Ye, K.; Huo, X. Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. Sci. Total Environ. 2020, 732. [Google Scholar] [CrossRef]
- Kalkulator Budowlany-Cennik Płyt Fundamentowych 2020 w Ponad 150 Miastach w Polsce. Available online: https://kb.pl/cenniki/plyta-fundamentowa/ (accessed on 15 November 2020).
- Kalkulator Budowlany-Styropian EPS czy Styropian XPS? A Może Grafitowy? Available online: https://kb.pl/porady/styropian-eps-czy-styropian-xps-moze-grafitowy-sprawdzamy/ (accessed on 15 November 2020).
- Retail Price List of Blachotrapez. Available online: https://www.blachotrapez.eu/pl/pliki/cennik-detaliczny-blachotrapez?gclid=Cj0KCQiAnb79BRDgARIsAOVbhRpeXyhqgmnfebqFBiWhrlcKc4hLyg4yJvmL3V2gzxgNxoQrv7UpzvMaAuS7EALw_wcB (accessed on 15 November 2020).
- Budujemy Dom-Dach Kryty Dachówką Ceramiczna Przykładowa Wycena. Available online: https://budujemydom.pl/stan-surowy/dachy-i-rynny/a/17293-dach-kryty-dachowka-ceramiczna-przykladowa-wycena (accessed on 12 November 2020).
- Kalkulator Budowlany-Okna Trzyszybowe czy Dwuszybowe-Porady i Ceny. Available online: https://kb.pl/porady/okna-trzyszybowe-czy-dwuszybowe-porady-i-ceny-dla-kazdego/ (accessed on 10 November 2020).
- Kalkulator Budowlany-Montaż Drzwi- Cennik po Województwach. Available online: https://kb.pl/porady/montaz-drzwi-cennik-po-wojewodztwach/ (accessed on 9 November 2020).
- Kalkulator Budowlany-Cennik Ocieplenia Poddasza Użytkowego 2020 w Ponad 150 Miastach w Polsce. Available online: https://kb.pl/cenniki/ocieplenie-poddasza-uzytkowego/ (accessed on 10 November 2020).
- Available online: https://www.hurtowniastyropianu.pl/sklep/styropian/plyty-pir/ (accessed on 10 November 2020).
- Strop Monolityczny–Ile Kosztuje? Aktualne Ceny i Charakterystyka. Available online: https://jakbudowac.pl/Strop-monolityczny-ile-kosztuje-Aktualne-ceny-icharakterystyka (accessed on 10 November 2020).
- Koszty Różnych Rodzajów Kominów. Available online: https://www.instalacjebudowlane.pl/6533-23-12396-koszty-roznych-rodzajow-kominow.html (accessed on 10 November 2020).
- Strona Internetowa Firmy Regulus Wraz z Cennikami. Available online: https://www.regulus.com.pl/news/grzejniki-niskotemperaturowe (accessed on 13 November 2020).
- Wentylacja Grawitacyjna- co to Jest i Ile Kosztuje? Available online: https://wentylacja.com.pl/news/wentylacja-grawitacyjna-co-to-jest-i-ile-kosztuje-67245.html (accessed on 10 November 2020).
- Wentylacja Grawitacyjna czy Mechaniczna? Available online: https://www.rekuperatory.pl/wentylacja-grawitacyjna-czy-mechaniczna (accessed on 13 November 2020).
- Kalkulator budowlany-Koszt Budowy Domu 2020- Wyliczenia Krok po Kroku. Available online: https://kb.pl/porady/koszt-budowy-domu-dokladne-wyliczenia/ (accessed on 12 November 2020).
- Lorenc, H. Atlas Klimatyczny Polski; Instytut Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 2005. [Google Scholar]
- NBP. Tabela A kursów Średnich Walut Obcych. Tabela nr 221/A/NBP/2019 z Dnia 2019-11-15. 2020. Available online: http://rss.nbp.pl/kursy/TabRss.aspx?n=2019/a/19a221 (accessed on 15 November 2020).
- Park, N.D.; Rutherford, P.M.; Thring, R.W.; Helle, S.S. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa). Chemosphere 2012, 86, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Kerimray, A.; Rojas-Solorzano, L.; Torkmahalleh, M.A.; Hopke, P.H.; O Gallachoir, B.P. Coal use for residential heating: Patterns, health implications and lessons learned. Energy Sustain. Dev. 2017, 40, 19–30. [Google Scholar] [CrossRef]
- Petersen Raymer, A.K. A comparison of avoided greenhouse gas emissions when using different kinds of woo energy. Biomass Bioenerg. 2006, 30, 605–617. [Google Scholar] [CrossRef]
- Michalska, M.; Zorena, K.; Waz, P.; Bartoszewicz, M.; Brandt-Varma, A.; Slezak, D.; Robakowska, M. Gasous pollutant and particulate matter in ambient air and the number of new cases of Type 1 diabetes in children and adolescents in the Pomeranian Voivodeship, Poland. Biomed Res. Int. 2020. [Google Scholar] [CrossRef] [Green Version]
- Właściwości Paliwa. 2020. Available online: http://www.pelet.info.pl/x.php/1,439/Wlasciwosci-paliwa.html%202020 (accessed on 19 November 2020).
- Available online: https://vaillant-partner.pl/kalkulatory-on-line/kalkulator-emisji-zanieczyszczen/ (accessed on 19 November 2020).
- Audenaert, A.; De Cleyn, S.H.; Vanckerkhove, B. Economic analysis of passive houses and low-energy houses compared with standard houses. Energy Policy 2008, 36, 47–55. [Google Scholar] [CrossRef]
- Schnieders, J.; Hemerlink, A. CEPHEUS results: Measurements and occupants’ satisfaction provide evidence for Passive Houses being an option for sustainable building. Energy Policy 2006, 34, 151–171. [Google Scholar] [CrossRef]
- Szopiński, T. Kontrowersje wokół “walutowych” kredytów hipotecznych. Konsumpcja Rozw. 2018, 22, 79–84. [Google Scholar]
- Manganelli, B.; Morano, P.; Tajani, F.; Salvo, F. Affordability assessment of energy-efficient building construction in Italy. Sustainability 2019, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- De Ruggiero, M.; Forestiero, G.; Manganelli, B.; Salvo, F. Buildings energy performance in a market comparison approach. Buildings 2017, 7, 16. [Google Scholar] [CrossRef]
- Cennik Firmy Viessmann. 2020. Available online: https://www.broetje.pl/wp-content/uploads/2017/04/Cennik-Brotje-2019-wydrukowany.pdf (accessed on 24 October 2020).
Construction Stage | Traditional Construction | Energy-Efficient Construction | Energy Neutral Construction |
---|---|---|---|
Ground preparation, foundations, insulated floor on the ground | Concrete sleeper on compacted soil, moisture barrier, a 5 cm Styrofoam layer, floor screed M = 16,000 PLN; L = 22,000 PLN; M + L = 38,000 PLN (8877 EUR) | Concrete base on compacted soil, moisture barrier, a 15 cm extruded polystyrene EXP layer, floor screed M = 27,500 PLN; L = 22,000 PLN; M + L = 49,500 PLN (11,563 EUR) | Foundation plate with thermal insulation performing the floor function set on the ground surface M = 31,000 PLN; L = 20,000 PLN; M + L = 51,000 PLN (11,915 EUR) |
External walls | Single layer wall made of blocks of autoclave aerated concrete (AAC) 36.5 cm in length with U = 0.035 W/m2K and covered with cement-gypsum M = 12,000 PLN; L = 9500 PLN; M + L = 21,500 PLN (5023 EUR); External wall U = 0.28 W/m2K | Double layer wall of ceramic blocks 25 cm P + W with U = 0.31 m2K + 12 cm Styrofoam with U = 0.035 W/m2K + thin-layer plaster M = 25,000 PLN; L = 18,000 PLN; M + L = 43,000 PLN (10,045 EUR); External wall U = 0.23 W/m2K | Double layer wall of ceramic blocks 25 cm P + W, U = 0.31 W/m2K + layer of graphite polysterene 18 cm thick and U = 0.031 W/m2K + thin-layer plaster M = 34,000 PLN; L = 18,000 PLN; M + L = 52,000 PLN (12,147 EUR); External wall U = 0.15 W/m2K |
Chimneys | M = 6000 PLN; | M = 3500 PLN; | M = 3500 PLN; |
L = 2000 PLN; | L = 500 PLN; | L = 500 PLN; | |
L + M = 8000 PLN | L + M = 4000 PLN | L + M = 4000 PLN | |
(1869 EUR) | (934 EUR) | (934 EUR) | |
Monolithic ceiling, reinforced concrete | M = 26,000 PLN; | M = 26,000 PLN; | M = 26,000 PLN; |
L = 9000 PLN; | L = 9000 PLN; | L = 9000 PLN; | |
L + M = 35,000 PLN | L + M = 35,000 PLN | L + M = 35,000 PLN | |
(8176 EUR) | (8176 EUR) | (8176 EUR) | |
Timber roof truss | M = 7500 PLN; | M = 7500 PLN; | M = 7500 PLN; |
L = 8000 PLN; | L = 8000 PLN; | L = 8000 PLN; | |
L + M = 15,500 PLN | L + M = 15,500 PLN | L + M = 15,500 PLN | |
(3621 EUR) | (3621 EUR) | (3621 EUR) | |
Roof initial covering, soffit boards, gutters, etc. | M = 4500 PLN; | M = 4500 PLN; | M = 4500 PLN; |
L = 5500 PLN; | L = 5500 PLN; | L = 5500 PLN; | |
M + L = 10,000 PLN | M + L = 10,000 PLN | M + L = 10,000 PLN | |
(2336 EUR) | (2336 EUR) | (2336 EUR) | |
Roofing | Steel tile | Ceramic tile | Ceramic tile |
M = 6150 PLN; | M = 9500 PLN; | M = 9550 PLN; | |
L = 4100 PLN; | L = 9500 PLN; | L = 9500 PLN; | |
L + M = 10,250 PLN | L + M = 19,000 PLN | L + M = 19,000 PLN | |
(2394 EUR) | (4439 EUR) | (4439 EUR) | |
Closed house shell | |||
Windows | Double-pane PCV windows, k = 1.4 | Double-pane PCV windows, k = 1.1 | Triple-pane PCV windows, k = 0.85 |
M = 7480 PLN; L = 2500 PLN; M + L = 9980 PLN (2331 EUR) | M-12,950 PLN; L = 2500 PLN L + M = 15,450 PLN (3610 EUR) | M-24,050 PLN; L = 3000 PLN; (warm assembly), L + M = 31,550 PLN (7370 EUR) | |
Entrance door | Door with k = 1.7 | Door with k = 1.5 | Door with k = 1.3 |
M = 1850 PLN; L = 450 PLN L + M = 2300 PLN (537 EUR) | M-3100 PLN; L = 600 PLN L + M = 3700 PLN (864 EUR) | M = 5500 PLN; L = 600 PLN; L + M = 6100 PLN (1425 EUR) | |
Garage door | Up-and-over garage door with a drive, U = 1.6 W/m2K | Sectional garage door with a drive, U = 1.1 W/m2K | Sectional garage door with a drive, U = 0.9 W/m2K |
M = 2250 PLN; L = 1000 PLN, M + L = 3250 PLN (759 EUR) | M = 4650 PLN; L = 1000 PLN, M + L = 5650 PLN (1320 EUR) | M = 9600 PLN; L = 1000 PLN M + L = 10,600 PLN (2475 EUR) | |
Attic insulation | Mineral wool, 10 cm layer, U = 0.036 W/m2K | Mineral wool, 15 cm layer, U = 0.033 W/m2K | Rigid PIR foam board 10 cm thick, U = 0.023 W/m2K |
M = 2500 PLN; L = 4350 PLN L + M = 6850 PLN (1600 EUR) | M = 3200 PLN; L = 4350 PLN L + M = 7550 PLN (1765 EUR) | M = 10,693 PLN; L = 4350 PLN; L + M = 15,043 PLN (3515 EUR) | |
Heating and supplementary energy equipment installation | |||
Central heating | Central heating installation with a gas boiler for natural gas | Central heating system with a gas condensing natural gas boiler | Central heating installation with a ground heat pump |
M = 7200 PLN; L = 8000 PLN L + M = 15,200 PLN (3551 EUR) | M = 13,000 PLN; L = 8000 PLN L + M = 21,000 PLN (4905 EUR) | M = 28,000 PLN; L = 8000 PLN L + M = 36,000 PLN (8411 EUR) | |
Supplementary energy supply sources | None | Thermal solar panels | PV panels, 6 kW capacity |
M = 22,000 PLN; L = 5000 PLN | M = 28,000 PLN; L = 7000 M + L = 35,000 PLN | ||
M + L = 27,000 PLN (6310 EUR) | (8175 EUR) | ||
Radiators | Radiators | Radiators | Low-temperature radiators, preferably flat |
M = 4500 PLN; L = 3000 PLN L + M = 7500 PLN (1750 EUR) | M = 4500 PLN; L = 3000 PLN L + M =7500 PLN (1750 EUR) | M = 8000 PLN; L = 3000 PLN L + M = 11,000 PLN (2570 EUR) | |
Ventilation | Gravity ventilation L + M = 1000 PLN (233 EUR) | Mechanical ventilation M = 11,000 PLN; L = 3000 PLN; M + L = 14,000 PLN (3271 EUR) | Mechanical ventilation + heat exchangerM = 11,000 PLN + 9420 PLN; L = 3000 PLN; M + L = 23,420 PLN (5472 EUR) |
Construction Costs | Traditional House | Energy-Saving House | Energy-Neutral House |
---|---|---|---|
Closed unfinished house | 22,380/5229 | 32,350/7558 | 63,293/14,788 |
Heating and supplementary energy equipment installation | 23,700/5537 | 69,500/16,238 | 107,420/25,100 |
Total cost a | 183,830/42,951 | 272,850/63,750 | 356,713/81,650 |
Heating Purpose | Traditional House (Coal) | Traditional House (Natural Gas) | Traditional House (Wood Pellet) | Energy Saving House (Natural Gas + Solar Panels) | Energy-Neutral House (Heat Pump + PV) |
---|---|---|---|---|---|
Domestic water system | 4404/1029 | 3779/883 a | 5118/1196 | 3779/883 | 148/34 |
Central heating system | 4007/936 | 5217 b/1219 | 5860/1369 | 864/198 | 766/179 |
Construction Technology | CO2 kg/m2/year | SO2 kg/year | NO2 kg/year | PM2.5 kg/year | PM10 kg/year |
---|---|---|---|---|---|
Traditional house (coal) | 199 | 23.8 | 20.4 | 6.7 | 7.6 |
Traditional house (natural gas) | 75 | 15.1 | 6.4 | 6.5 | 8.3 |
Traditional house (wood pellet) | 0.8 | 0 | 0 | 1.9 a | 2.1 a |
Energy-saving house (natural gas and passive solar panels) | 25 | 10.5 | 5.25 | 4.7 | 6.3 |
Energy-neutral house (geothermal heat pump and PV panels) | 5 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siudek, A.; Klepacka, A.M.; Florkowski, W.J.; Gradziuk, P. Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies 2020, 13, 6637. https://doi.org/10.3390/en13246637
Siudek A, Klepacka AM, Florkowski WJ, Gradziuk P. Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies. 2020; 13(24):6637. https://doi.org/10.3390/en13246637
Chicago/Turabian StyleSiudek, Aleksandra, Anna M. Klepacka, Wojciech J. Florkowski, and Piotr Gradziuk. 2020. "Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets" Energies 13, no. 24: 6637. https://doi.org/10.3390/en13246637
APA StyleSiudek, A., Klepacka, A. M., Florkowski, W. J., & Gradziuk, P. (2020). Renewable Energy Utilization in Rural Residential Housing: Economic and Environmental Facets. Energies, 13(24), 6637. https://doi.org/10.3390/en13246637