Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Work Conditions
3.2. Harmful Exhaust Gas Emissions
3.3. Composition of the Fuel-Air Mixture
3.4. Fuel Consumption and Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EU. Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the Deploy-Ment of Alternative Fuels Infrastructure Text with EEA Relevance; EU: Strasbourg, France, 2014. [Google Scholar]
- Dziewiatkowski, M.; Szpica, D.; Borawski, A. Evaluation of impact of combustion engine controller adaptation process on level of exhaust gas emissions in gasoline and compressed natural gas supply process. Eng. Rural Dev. 2020, 541–548. [Google Scholar] [CrossRef]
- Szpica, D. Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage. Transport 2018, 33, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Kuczyński, S.; Łaciak, M.; Szurlej, A.; Włodek, T. Impact of Liquefied Natural Gas Composition Changes on Methane Number as a Fuel Quality Requirement. Energies 2020, 13, 5060. [Google Scholar] [CrossRef]
- Merkisz, J.; Fuc, P.; Bajerlein, M.; Dobrzynski, M.; Rymaniak, Ł.; Ziółkowski, A. Reducing the Negative Impact of Public Transport on the Environment by Using CNG as a Fuel. J. KONBiN 2012, 22, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Quintili, A.; Castellani, B. The Energy and Carbon Footprint of an Urban Waste Collection Fleet: A Case Study in Central Italy. Recycling 2020, 5, 25. [Google Scholar] [CrossRef]
- Usman, M.; Hayat, N. Use of CNG and Hi-octane gasoline in SI engine: A comparative study of performance, emission, and lubrication oil deterioration. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1–15. [Google Scholar] [CrossRef]
- Evans, R.L.; Blaszczyk, J. A comparative study of the performance and exhaust emissions of a spark ignition engine fuelled by natural gas and gasoline. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1997, 211, 39–47. [Google Scholar] [CrossRef]
- Ahmet, A.Y.; Yahya, D. Effects of equivalence ratio and CNG addition on engine performance and emissions in a dual sequential ignition engine. Int. J. Engine Res. 2019, 21, 1067–1082. [Google Scholar] [CrossRef]
- Ahmet, A.Y.; Yahya, D. Experimental and numerical investigation of effects of CNG and gasoline fuels on engine performance and emissions in a dual sequential spark ignition engine. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 2176–2192. [Google Scholar] [CrossRef]
- Bae, J.W.; Park, C.W.; Lee, J.W.; Kim, Y.R.; Kim, C.G.; Lee, S.Y.; Lee, J.W. A study on the full load operation characteristics and thermal efficiency of the 1.4L turbo CNG SI engine. J. Korean Inst. Gas 2018, 22, 34–39. [Google Scholar]
- Gonca, G.; Cakir, M.; Sahin, B. Performance characteristics and emission formations of a Spark Ignition (SI) engine fueled with different gaseous fuels. Arab. J. Sci. Eng. 2018, 43, 4487–4499. [Google Scholar] [CrossRef]
- Pan, J.; Wei, H.; Shu, G.Q.; Feng, D. Experimental study on combustion characteristics of methane/gasoline dual-fuel in a SI engine at different load conditions. SAE Tech. Paper 2018, 1–7. [Google Scholar] [CrossRef]
- Shamekhi, A.; Khatibzadeh, N.; Shamekhi, A.H. Performance and emissions characteristics investigation of a bi-fuel SI engine fuelled by CNG and gasoline. In Proceedings of the ASME Internal Combustion Engine Division Spring Technical Conference, 2006 Spring Technical Conference, Aachen, Germany, 7–10 May 2006; pp. 393–400. [Google Scholar] [CrossRef]
- Ou, X.; Zhang, X.; Zhang, X.; Zhang, Q. Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China. Energies 2013, 6, 2644–2662. [Google Scholar] [CrossRef] [Green Version]
- Banaszkiewicz, T.; Chorowski, M.; Gizicki, W.; Jedrusyna, A.; Kielar, J.; Malecha, Z.; Piotrowska, A.; Polinski, J.; Rogala, Z.; Sierpowski, K.; et al. Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges. Energies 2020, 13, 5673. [Google Scholar] [CrossRef]
- Saggu, M.H.; Sheikh, N.A.; Muhamad Niazi, U.; Irfan, M.; Glowacz, A.; Legutko, S. Improved Analysis on the Fin Reliability of a Plate Fin Heat Exchanger for Usage in LNG Applications. Energies 2020, 13, 3624. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, S.; Zou, J.; Shreka, M. A Numerical Study on the Pilot Injection Conditions of a Marine 2-Stroke Lean-Burn Dual Fuel Engine. Processes 2020, 8, 1396. [Google Scholar] [CrossRef]
- Lindstad, E.; Eskeland, G.S.; Rialland, A.; Valland, A. Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. Sustainability 2020, 12, 8793. [Google Scholar] [CrossRef]
- Pelić, V.; Mrakovčić, T.; Radonja, R.; Valčić, M. Analysis of the Impact of Split Injection on Fuel Consumption and NOx Emissions of Marine Medium-Speed Diesel Engine. J. Mar. Sci. Eng. 2020, 8, 820. [Google Scholar] [CrossRef]
- Sui, C.; de Vos, P.; Stapersma, D.; Visser, K.; Ding, Y. Fuel Consumption and Emissions of Ocean-Going Cargo Ship with Hybrid Propulsion and Different Fuels over Voyage. J. Mar. Sci. Eng. 2020, 8, 588. [Google Scholar] [CrossRef]
- Stelmasiak, Z.; Larisch, J.; Pielecha, J.; Pietras, D. Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Pol. Marit. Res. 2017, 24, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, A.; Stravinskas, S.; Matijošius, J. Comparative study on the energetic and ecologic parameters of dual fuels (diesel–NG and HVO–biogas) and conventional diesel fuel in a CI engine. Appl. Sci. 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Gutarevych, Y.; Shuba, Y.; Matijošius, J.; Karev, S.; Sokolovskij, E.; Rimkus, A. Intensification of the combustion process in a gasoline engine by adding a hydrogen-containing gas. Int. J. Hydrogen Energy 2018, 43, 16334–16343. [Google Scholar] [CrossRef]
- Saaidia, R.; Jemni, M.A.; Abid, M.S. Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend. Energies 2018, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Park, B.Y.; Lee, K.-H.; Park, J. Conceptual Approach on Feasible Hydrogen Contents for Retrofit of CNG to HCNG under Heavy-Duty Spark Ignition Engine at Low-to-Middle Speed Ranges. Energies 2020, 13, 3861. [Google Scholar] [CrossRef]
- Regulation (EU). On Requirements for Emission Limit Values of Gaseous and Particulate Pollutants and Type-approval with Respect to Internal Combustion Engines for Mobile Machines Non-road, Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013 and Amending and Repealing Directive 97/68/WE. No 2016/1628 of the European Parliament and of the Council of 14 September 2016. Off. J. Eur. Union. 2016, 252, 53–117. [Google Scholar]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal regulations of restrictions of air pollution made by non-road mobile machinery—The case study for Europe: A review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł. Innovative injection-ignition system in a non-road small engine—Construction system. In Proceedings of the 23rd International Scientific Conference, Palanga, Lithuania, 2–4 October 2019; pp. 931–935. [Google Scholar]
- Mahmoudzadeh Andwari, A.; Said, M.F.M.; Aziz, A.A.; Esfahanian, V.; Salavati-Zadeh, A.; Idris, M.A.; Perang, M.R.M.; Jamil, H.M. Design, modeling and simulation of a high-pressure gasoline direct injection (GDI) pump for small engine applications. J. Mech. Eng. 2018, 6, 107–120. [Google Scholar]
- Niinikoski, J.; Ewalds, J.; Heikkinen, E.; Kotilainen, J.; Kääriäinen, M.; Tammi, K.; Kiviluoma, P.; Korhonen, A.; Kuosmanen, P. Methods for reducing emissions of small internal combustion engines. In Proceedings of the 11th International DAAAM Baltic Conference, Industrial Engineering, Tallinn, Estonia, 20–22 April 2016. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Warguła, Ł.; Wojtkowiak, D.; Waluś, K.J.; Krawiec, P.; Wieczorek, B. The analysis of the efficiency of the control system of wood chipper’s driver with spark-ignition engine based on Skoda combustion engine 1.459 kW. In Proceedings of the 21st International Scientific Conference, Juodkrante, Lithuania, 20–22 September 2017; pp. 452–458. [Google Scholar]
- Warguła, Ł.; Waluś, J.K.; Krawiec, P. Determination of working conditions of mobile chipping wood machines in the aspect of innovative drive control systems. Sylwan 2019, 163, 765–772. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Impact of Number of Operators and Distance to Branch Piles on Woodchipper Operation. Forests 2020, 11, 598. [Google Scholar] [CrossRef]
- Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Z.; Deng, B.; Han, Y.; Wang, H. Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine. SAE Technical Paper 01-1738. 2002. Available online: https://www.sae.org/publications/technical-papers/content/2002-01-1738/ (accessed on 4 November 2020).
- Li, L.; Liu, Z.; Wang, H.; Deng, B.; Wang, Z.; Xiao, Z.; Su, Y.; Jiang, B. Development of a Gas-phase LPG Injection System for a Small SI Engine. SAE Technical Paper 01-3260. 2003. Available online: https://www.sae.org/publications/technical-papers/content/2003-01-3260/ (accessed on 4 November 2020).
- Sulaiman, M.Y.; Ayob, M.R.; Meran, I. Performance of single cylinder spark ignition engine fueled by LPG. Procedia Eng. 2013, 53, 579–585. [Google Scholar] [CrossRef] [Green Version]
- bin Mohd Zain, M.S.; bin Mohamed Soid, S.N.; bin Mior Abd Majid, M.F.; bin Zahelem, M.N. Performance characteristics of a small engine fueled by liquefied petroleum gas. In Advanced Engineering for Processes and Technologies; Ismail, A., Abu Bakar, M., Öchsner, A., Eds.; Advanced Structured Materials; Springer: Berlin, Germany; Cham, Germany, 2019; Volume 102, pp. 207–214. [Google Scholar]
- Sabariah, M.S.; Nabilah, A.S.; Rosli, A.B.; Junaidi, Z.Z.; Mustafar, M.T. Analysis and simulation of combustion and emission on small engine. In IOP Conference Series: Materials Science and Engineering; UMP Pekan: Pahang, Malaysia, 2019; Volume 469. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel. Energies 2020, 13, 2995. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies 2020, 13, 5773. [Google Scholar] [CrossRef]
- Schirmer, W.N.; Olanyk, L.Z.; Guedes, C.L.B.; Quessada, T.P.; Ribeiro, C.B.; Capanema, M.A. Effects of air/fuel ratio on gas emissions in a small spark-ignited non-road engine operating with different gasoline/ethanol blends. Environ. Sci. Pollut. Res. 2017, 24, 20354–20359. [Google Scholar] [CrossRef]
- Ribeiro, C.B.; Martins, K.G.; Gueri, M.V.D.; Pavanello, G.P.; Schirmer, W.N. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines. Environ. Sci. Pollut. Res. 2018, 25, 24192–24200. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Li, Z.; Huang, K.; Liu, F. Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel 2020, 260, 116403. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P.; Polasik, J. Electronic control injection-ignition systems in propulsion of non-road mobile machinery. J. Mech. Trans. Eng. 2018, 70, 61–78. [Google Scholar]
- Magagnotti, N.; Picchi, G.; Sciarra, G.; Spinelli, R. Exposure of mobile chipper operators to diesel exhaust. Ann. Occup. Hyg. 2014, 58, 217–226. [Google Scholar]
- Liška, S.; Safarik, D.; Klvač, R.; Kupcak, V.; Jirousek, R. General assessment of Jenz Hem 420 D chipper operating in the Czech Republic conditions. In Proceedings of the FORMEC 2010, Forest Engineering: Meeting the Needs of the Society and the Environment, Padova, Italy, 11–14 July 2010. [Google Scholar]
- Spinelli, R.; de Arruda Moura, A.C.; da Silva, P.M. Decreasing the diesel fuel consumption and CO2 emissions of industrial in-field chipping operations. J. Clean. Prod. 2018, 172, 2174–2181. [Google Scholar] [CrossRef]
- Wąs, A.; Sulewski, P.; Krupin, V.; Popadynets, N.; Malak-Rawlikowska, A.; Szymańska, M.; Skorokhod, I.; Wysokiński, M. The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production. Energies 2020, 13, 5755. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Wiszumirska, K.; Garbacz, T. Films LDPE/LLDPE made from post–consumer plastics: Processing, structure, mechanical properties. Adv. Sci. Technol. Res. J. 2018, 12, 134–142. [Google Scholar] [CrossRef]
- Knitter, M.; Czarnecka-Komorowska, D.; Czaja-Jagielska, N.; Szymanowska-Powalowska, D. Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles. In Advances in Manufacturing II. Volume 4—Mechanical Engineering; Gapinski, B., Szostak, M., Ivanov, V., Eds.; Springer: Berlin, Germany, 2019; pp. 610–624. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Wiszumirska, K. Sustainability design of plastic packaging for the Circular Economy. Polimery 2020, 65, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Kuczyński, S.; Liszka, K.; Łaciak, M.; Olijnyk, A.; Szurlej, A. Experimental Investigations and Operational Performance Analysis on Compressed Natural Gas Home Refueling System (CNG-HRS). Energies 2019, 12, 4511. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P.; Kukla, M. Research of the ignition advance angle characteristics on the example of a German GX 390 combustion engine. Autobusy Technol. Eksploat. Syst. Transp. 2017, 12, 1387–1391. [Google Scholar]
- Merkisz, J.; Dobrzyński, M.; Kozak, M.; Lijewski, P.; Fuć, P. Environmental aspects of the use of cng in public urban transport. Altern. Fuels Technol. Environ. Cond. 2016, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Dorosz, P. Compressed and liquefied natural gas as an alternative for petroleum derived fuels used in transport (original text in Polish: Sprężony i skroplony gaz ziemny jako alternatywa dla paliw ropopochodnych wykorzystywanych w transporcie). Polit. Energetyczna-Energy Policy J. 2018, 21, 85–98. [Google Scholar]
- Warowny, W.; Tkacz, A. Natural gas and its characteristics as fuel for wheeled vehicles (original text in Polish: Gaz ziemny i jego charakterystyka jako paliwa do pojazdów kołowych). Gaz Woda i Technika Sanitarna 2001, 75, 267–272. [Google Scholar]
- Wołoszyn, R. Natural gas as a vehicle fuel (original text in Polish: Gaz ziemny jako paliwo do napędu pojazdów). Eksploatacja i Niezawodność 2003, 3, 19–22. [Google Scholar]
- Warguła, Ł.; Kaczmarzyk, P.; Dziechciarz, A. The assessment of fire risk of non-road mobile wood chopping machines. J. Res. Appl. Agric. Eng. 2019, 64, 58–64. [Google Scholar]
- Bektas, I.; Alma, M.H.; As, N. Determination of the relationships between Brinell and Janka hardness of eastern beech (Fagus orientalis Lipsky). For. Prod. J. 2001, 51, 84. [Google Scholar]
- Green, D.W.; Begel, M.; Nelson, W. Janka Hardness Using Nonstandard Specimens; US Department of Agriculture, Forest Service, Forest Product Laboratory: Washington, DC, USA, 2006; p. 303.
- Krawiec, P. Analysis of selected dynamic features of a two-whwwled transmission system. J. Theor. Appl. Mech. 2017, 55, 461–467. [Google Scholar] [CrossRef]
- Krawiec, P.; Marlewski, A. Profile design of noncircular belt pulleys. J. Theor. Appl. Mech. 2016, 54, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Krawiec, P.; Marlewski, A. Spline description of not typical gears for belt transmissions. J. Theor. Appl. Mech. 2011, 49, 355–367. [Google Scholar]
- Krawiec, P.; Pajtášová, M.; Meler, F.; Warguła, Ł. Testing functional features of V-belt transmissions. In IOP Conference Series: Materials Science and Engineering; UMP Pekan: Pahang, Malaysia, 2020; Volume 776, p. 012008. [Google Scholar] [CrossRef]
- Lijewski, P.; Fuć, P.; Markiewicz, F.; Dobrzański, M. Problems of exhaust emissions testing from machines and mobile devices in real operating conditions. Combust. Engines 2019, 179, 292–296. [Google Scholar]
- Warguła, Ł.; Kukla, M. Determination of m a ximum torque during carpentry waste comminution. Wood Res. 2020, 65, 771–784. [Google Scholar] [CrossRef]
- Warguła, Ł.; Adamiec, J.M.; Waluś, K.J.; Krawiec, P. The characteristics analysis of torque and rotation speed of working unit of branch grinder-introductory research. In MATEC Web of Conferences, Proceedings of the Machine Modelling and Simulations, Sklené Teplice, Slovak Republic, 5–8 September 2017; EDP Sciences: Lez Ili, France, 2018; Volume 157, p. 01021. [Google Scholar]
- Warguła, Ł.; Krawiec, P. The research on the characteristic of the cutting force while chipping of the Caucasian Fir (Abies Nordmanniana) with a single-shaft wood chipper. In IOP Conference Series: Materials Science and Engineering; UMP Pekan: Pahang, Malaysia, 2020; Volume 776, p. 012012. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine. Appl. Therm. Eng. 2010, 30, 2219–2226. [Google Scholar] [CrossRef]
- Yasar, A.; Haider, R.; Tabinda, A.B.; Kausar, F.; Khan, M. A comparison of engine emissions from heavy, medium, and light vehicles for CNG, diesel, and gasoline fuels. Pol. J. Environ. Stud. 2013, 22, 1277–1281. [Google Scholar]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG. In IOP Conference Series: Materials Science and Engineering; UMP Pekan: Pahang, Malaysia, 2016; Volume 148, p. 012060. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Xie, Y.L.; Wang, F.S.; Ma, Z.Y.; Qi, D.H.; Qiu, Z.W. Emission comparison of light-duty in-use flexible-fuel vehicles fuelled with gasoline and compressed natural gas based on the ECE 15 driving cycle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 90–98. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J.; Gis, W.; Gis, M.; Jasiński, R. Comparative assessment of exhaust emission buses: Powered CNG and Diesel. Combust. Engines 2015, 162, 775–781. [Google Scholar]
- Alrazen, H.A.; Ahmad, K.A. HCNG fueled spark-ignition (SI) engine with its effects on performance and emissions. Renew. Sustain. Energy Rev. 2018, 82, 324–342. [Google Scholar] [CrossRef]
- Hu, E.; Huang, Z.; Zheng, J.; Li, Q.; He, J. Numerical study on laminar burning velocity and NO formation of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy 2009, 34, 6545–6557. [Google Scholar] [CrossRef]
- De Simio, L.; Gambino, M.; Iannaccone, S. Experimental and numerical study of hydrogen addition in a natural gas heavy duty engine for a bus vehicle. Int. J. Hydrogen Energy 2013, 38, 6865–6873. [Google Scholar] [CrossRef]
- Lim, G.; Lee, S.; Park, C.; Choi, Y.; Kim, C. Effect of ignition timing retard strategy on NOx reduction in hydrogen-compressed natural gas blend engine with increased compression ratio. Int. J. Hydrogen Energy 2014, 39, 2399–2408. [Google Scholar] [CrossRef]
- Lim, G.; Lee, S.; Park, C.; Choi, Y.; Kim, C. Effects of compression ratio on performance and emission characteristics of heavy-duty SI engine fuelled with HCNG. Int. J. Hydrogen Energy 2013, 38, 4831–4838. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J.; Fuc, P.; Lijewski, P. The analysis of the PEMS measurements of the exhaust emissions from city buses using different research procedures. In Proceedings of the 2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea, 9–12 October 2012; pp. 903–907. [Google Scholar]
- Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Krakow, Poland, 22–23 September 2016; Volume 148. [Google Scholar] [CrossRef] [Green Version]
- Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Weymann, S. The use of the PEMS equipment for the assessment of farm fieldwork energy consumption. Appl. Eng. Agric. 2015, 31, 875–879. [Google Scholar]
- Lijewski, P.; Fuc, P.; Dobrzynski, M.; Markiewicz, F. Exhaust emissions from small engines in handheld devices. MATEC Web Conf. 2017, 118, 00016. [Google Scholar] [CrossRef] [Green Version]
- Romaniszyn, K.M. The dynamics of the acceleration of a car fuelled with petrol and CNG. Silniki Spalinowe 2006, 45, 67–72. [Google Scholar]
- Parczewski, K.; Romaniszyn, K.M.; Wnęk, H. A dynamic test of a vehicle in motion and exhaust gas emissions during alternative fuelling with gasoline and compressed natural gas (CNG). Silniki Spalinowe 2008, 47, 52–60. [Google Scholar]
- Gasoline Price. Available online: https://www.autocentrum.pl/stacje-paliw/pkn-orlen/ (accessed on 11 November 2020).
- CNG Price. Available online: http://pgnig.pl/cng (accessed on 11 November 2020).
- Nyamukamba, P.; Mukumba, P.; Chikukwa, E.S.; Makaka, G. Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review. Energies 2020, 13, 6088. [Google Scholar] [CrossRef]
- Macor, A.; Benato, A. A Human Health Toxicity Assessment of Biogas Engines Regulated and Unregulated Emissions. Appl. Sci. 2020, 10, 7048. [Google Scholar] [CrossRef]
- Macor, A.; Benato, A. Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health. Energies 2020, 13, 1044. [Google Scholar] [CrossRef] [Green Version]
- Riley, D.M.; Tian, J.; Güngör-Demirci, G.; Phelan, P.; Villalobos, J.R.; Milcarek, R.J. Techno-Economic Assessment of CHP Systems in Wastewater Treatment Plants. Environments 2020, 7, 74. [Google Scholar] [CrossRef]
- Ciuła, J.; Kozik, V.; Generowicz, A.; Gaska, K.; Bak, A.; Paździor, M.; Barbusiński, K. Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies 2020, 13, 6254. [Google Scholar] [CrossRef]
- Urbanowska, A.; Polowczyk, I.; Kabsch-Korbutowicz, M.; Seruga, P. Characteristics of Changes in Particle Size and Zeta Potential of the Digestate Fraction from the Municipal Waste Biogas Plant Treated with the Use of Chemical Coagulation/Precipitation Processes. Energies 2020, 13, 5861. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Zhou, S.; Zhu, Y.; Tsegay, A.S.; Feng, Y.; Ahmad, N.; Malik, A. Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines. Energies 2020, 13, 889. [Google Scholar] [CrossRef] [Green Version]
- Oreggioni, G.D.; Gowreesunker, B.L.; Tassou, S.A.; Bianchi, G.; Reilly, M.; Kirby, M.E.; Toop, T.A.; Theodorou, M.K. Potential for Energy Production from Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants. Energies 2017, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kusch-Brandt, S.; Heaven, S.; Banks, C.J. Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion. Processes 2020, 8, 1351. [Google Scholar] [CrossRef]
- Kral, I.; Piringer, G.; Saylor, M.K.; Lizasoain, J.; Gronauer, A.; Bauer, A. Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method. Sustainability 2020, 12, 9945. [Google Scholar] [CrossRef]
- Rosén, T.; Ödlund, L. System Perspective on Biogas Use for Transport and Electricity Production. Energies 2019, 12, 4159. [Google Scholar] [CrossRef] [Green Version]
- Owczuk, M.; Matuszewska, A.; Kruczyński, S.; Kamela, W. Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor. Energies 2019, 12, 1071. [Google Scholar] [CrossRef] [Green Version]
- Benato, A.; Macor, A. Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. Energies 2019, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Smith, S. Waste Management and Minimization, in Waste Management and Minimization; Smith, S., Cheeseman, C., Blakey, N., Eds.; EOLSS: Paris, France, 2009. [Google Scholar]
Red Dragon RS-100 wood chipper | |
Parameter | Characteristic |
Cutting mechanism type | Cylindrical |
Cut branches maximal diameter | 100 mm |
Cut branches length (mechanism has 4 knives) | 140 ± 50 mm |
Average mass flow rate [35] | 0.66 t/h |
Average volumetric flow rate [35] | 3.5 m3/h |
Lifan GX390 engine | |
Parameter | Characteristic |
Swept volume | 389 cm3 |
Engine maximal power at 3600 rpm | 9.56 kW/13 HP |
Engine maximal torque at 2500 rpm | 26.5 Nm |
Bore/Stroke | 88 mm/64 mm |
Engine type | Four-stroke, OHV (Over Head Valve) |
Number of cylinders | 1 |
Ignition | Electronic, without ignition timing adjustment [56] |
Weight | 31 kg |
Average cost (on the Polish market in 2020) | EUR 270 * |
System Components and Service | Cost |
---|---|
Carburetor | € 46 |
CNG gas regulator with pressure gauge (second-stage) | € 7 |
CNG high- pressure gas regulator (first-stage) | € 20 |
Installation hose | € 6 |
Gas heater | € 75 |
10 l gas tank | € 70 |
Working time spent on the modernization of the design and system adjustment 1 h * | € 23 |
Properties | Gasoline | Compressed natural Gas |
---|---|---|
Density under reference conditions (liquid phase) (kg/m3) | 720–775 | 450 |
Density under reference conditions (gas phase) (kg/m3) | 0.74 | 0.72 |
Fuel calorific value (MJ/kg) | 42.6 | 48 |
Boiling temperature (°C) | 40–210 | −161 |
Excess air coefficient λ up to the ignitability boundaries | 0.4–1.4 | 0.7–2.1 |
Octane number MON (RON) | 85 (95) | 105(110) |
Air fuel ratio (AFR) for stoichiometric mixture (mass) | 14.7:1 | 17.2:1 |
Natural gas composition at a CNG refuelling station in Poland (% by volume) | - | CH4 96.6% |
- | N2 2.1% | |
- | O2 0.1% | |
- | CO2 0.1% | |
- | C2H6 1.1% |
Symbol | Physical Quantity | Value |
---|---|---|
Elastic slip of the belt | 0.02 (-) | |
Rolling bearing performance | 0.99 (-) | |
Clutch performance | 0.99 (-) | |
Link transmission performance | 0.96 (-) | |
Transmission driving pulley diameter | 60 (mm) | |
Transmission driven pulley diameter | 300 (mm) |
Gas | Measurement Range | Sensitivity | Characteristic |
---|---|---|---|
HC Propane | 0–4000 ppm | ±3% | 1 ppm |
CO | 0–10% | ±3% | 0.01 vol.% |
CO2 | 0–16% | ±3% | 0.01 vol.% |
NOx | 0–4000 ppm | ±4% | 1 ppm |
O2 | 0–25% | ±3% | 0.01 vol.% |
Category | Power () | Engine Displacement () | Date | Permitted Emission | |
---|---|---|---|---|---|
CO | HC + NOx | ||||
NRS-vr/vi-1b | < 19 kW | 225 cm3 | 2019 | 610 g/kWh | 8 g/kWh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies 2020, 13, 6709. https://doi.org/10.3390/en13246709
Warguła Ł, Kukla M, Lijewski P, Dobrzyński M, Markiewicz F. Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies. 2020; 13(24):6709. https://doi.org/10.3390/en13246709
Chicago/Turabian StyleWarguła, Łukasz, Mateusz Kukla, Piotr Lijewski, Michał Dobrzyński, and Filip Markiewicz. 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption" Energies 13, no. 24: 6709. https://doi.org/10.3390/en13246709
APA StyleWarguła, Ł., Kukla, M., Lijewski, P., Dobrzyński, M., & Markiewicz, F. (2020). Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies, 13(24), 6709. https://doi.org/10.3390/en13246709