Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodological Framework
3.1. Theoretical Framework
3.2. Model Specification
3.3. Data Gathering
4. Results
4.1. The Granger Causality Test Result
4.2. Variance Decomposition Analysis
4.3. Impulse Response Function Analysis
5. Conclusions and Policy Implication
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FIT | feed-in tariffs |
GCC | Gulf Cooperation Council |
GDP | gross domestic product |
GHG | greenhouse emissions |
NDCs | Nationally Determined Contributions |
OECD | Organisation for Economic Co-operation and Development |
OPEC | Organisation of Petroleum Exporting Countries |
REI | renewable energy investment |
RETs | renewable energy technologies |
RPS | renewable portfolio standards |
TWh | terawatt-hours |
VAR | vector autoregression |
Appendix A
Variance Decomposition of REI: | ||||||
Period | S.E. | REI | OIL | GDP | INTR | OIL_PRICE_VOLATILITY |
1 | 2.491680 | 100.0000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
(0.00000) | (0.00000) | (0.00000) | (0.00000) | (0.00000) | ||
2 | 2.985265 | 99.28687 | 0.317473 | 0.047003 | 0.239605 | 0.109045 |
(1.86286) | (1.23698) | (0.47748) | (0.57489) | (0.79153) | ||
3 | 3.455906 | 98.76426 | 0.452119 | 0.369471 | 0.234492 | 0.179659 |
(2.16223) | (1.29315) | (1.03161) | (0.68343) | (0.76560) | ||
4 | 3.806240 | 98.14612 | 0.714007 | 0.703204 | 0.210173 | 0.226500 |
(2.72229) | (1.65279) | (1.52325) | (0.87525) | (0.89491) | ||
5 | 4.095762 | 97.46663 | 0.949515 | 1.060936 | 0.192342 | 0.330576 |
(3.39799) | (2.05211) | (2.02204) | (1.06357) | (1.13395) | ||
6 | 4.331109 | 96.86671 | 1.144845 | 1.364523 | 0.180375 | 0.443551 |
(4.03149) | (2.44890) | (2.41496) | (1.24302) | (1.36874) | ||
7 | 4.525093 | 96.33973 | 1.291594 | 1.632703 | 0.172702 | 0.563267 |
(4.63262) | (2.80400) | (2.74746) | (1.41440) | (1.59319) | ||
8 | 4.684906 | 95.90549 | 1.396726 | 1.856422 | 0.167880 | 0.673480 |
(5.16149) | (3.11304) | (3.01838) | (1.57826) | (1.78726) | ||
9 | 4.816946 | 95.55067 | 1.468367 | 2.043753 | 0.165209 | 0.772005 |
(5.63017) | (3.37902) | (3.24100) | (1.73360) | (1.95303) | ||
10 | 4.926125 | 95.26685 | 1.514841 | 2.197826 | 0.164055 | 0.856433 |
(6.03412) | (3.60572) | (3.42250) | (1.87850) | (2.09086) | ||
Variance Decomposition of OIL: | ||||||
Period | S.E. | REI | OIL | GDP | INTR | OIL_PRICE_VOLATILITY |
1 | 15.28973 | 0.093067 | 99.90693 | 0.000000 | 0.000000 | 0.000000 |
(0.88102) | (0.88102) | (0.00000) | (0.00000) | (0.00000) | ||
2 | 19.54667 | 0.338880 | 98.74600 | 0.574678 | 0.036380 | 0.304060 |
(1.33959) | (2.04817) | (1.14781) | (0.44481) | (1.03306) | ||
3 | 22.02240 | 0.360005 | 97.61901 | 1.105730 | 0.585911 | 0.329343 |
(1.44050) | (2.85886) | (1.69666) | (1.30483) | (1.04311) | ||
4 | 23.79715 | 0.462311 | 96.01107 | 1.707682 | 1.262090 | 0.556851 |
(1.61592) | (4.17391) | (2.42108) | (2.33613) | (1.60010) | ||
5 | 24.98372 | 0.521755 | 94.92792 | 2.046530 | 1.703971 | 0.799819 |
(1.79795) | (5.11106) | (2.88656) | (3.06822) | (2.14572) | ||
6 | 25.75271 | 0.560401 | 94.13455 | 2.274233 | 1.952095 | 1.078724 |
(1.96548) | (5.81997) | (3.23706) | (3.54058) | (2.62722) | ||
7 | 26.23726 | 0.582450 | 93.58927 | 2.416085 | 2.095551 | 1.316641 |
(2.13370) | (6.36523) | (3.48664) | (3.85715) | (3.00089) | ||
8 | 26.53764 | 0.593805 | 93.21408 | 2.511451 | 2.177685 | 1.502981 |
(2.31180) | (6.79356) | (3.67044) | (4.07007) | (3.28010) | ||
9 | 26.71961 | 0.598684 | 92.96733 | 2.573034 | 2.224801 | 1.636152 |
(2.50287) | (7.12940) | (3.79961) | (4.21388) | (3.47161) | ||
10 | 26.82784 | 0.599991 | 92.80825 | 2.612923 | 2.251343 | 1.727488 |
(2.70569) | (7.39921) | (3.88842) | (4.31046) | (3.59744) | ||
Variance Decomposition of GDP: | ||||||
Period | S.E. | REI | OIL | GDP | INTR | OIL_PRICE_VOLATILITY |
1 | 4.070147 | 0.013681 | 3.518800 | 96.46752 | 0.000000 | 0.000000 |
(0.77319) | (2.97917) | (3.08227) | (0.00000) | (0.00000) | ||
2 | 4.225296 | 0.302259 | 4.981631 | 93.01247 | 0.013525 | 1.690117 |
(1.38820) | (3.70481) | (4.21790) | (0.65104) | (2.52146) | ||
3 | 4.463315 | 0.627862 | 4.997585 | 91.08777 | 0.219222 | 3.067565 |
(1.35409) | (3.65553) | (4.38075) | (0.86594) | (2.76721) | ||
4 | 4.503840 | 1.040999 | 5.000528 | 90.49070 | 0.253723 | 3.214053 |
(1.65358) | (3.68665) | (4.53885) | (1.03374) | (2.85042) | ||
5 | 4.549767 | 1.560163 | 4.900109 | 89.62719 | 0.304148 | 3.608391 |
(1.97869) | (3.62377) | (4.70733) | (1.18922) | (3.08303) | ||
6 | 4.570948 | 2.099611 | 4.892435 | 88.98799 | 0.324798 | 3.695161 |
(2.34415) | (3.58100) | (4.80449) | (1.27662) | (3.12457) | ||
7 | 4.590525 | 2.653400 | 4.946251 | 88.31909 | 0.343843 | 3.737417 |
(2.72078) | (3.55091) | (4.95198) | (1.34419) | (3.16687) | ||
8 | 4.607052 | 3.177153 | 5.045856 | 87.69650 | 0.355413 | 3.725082 |
(3.08357) | (3.54288) | (5.11177) | (1.38876) | (3.15758) | ||
9 | 4.622460 | 3.661098 | 5.159362 | 87.11308 | 0.363931 | 3.702525 |
(3.42054) | (3.54432) | (5.29689) | (1.42016) | (3.13977) | ||
10 | 4.636476 | 4.092403 | 5.267427 | 86.59054 | 0.369020 | 3.680613 |
(3.72466) | (3.55207) | (5.48416) | (1.44231) | (3.11357) | ||
Variance Decomposition of INTR: | ||||||
Period | S.E. | REI | OIL | GDP | INTR | OIL_PRICE_VOLATILITY |
1 | 12.83066 | 0.049022 | 5.586691 | 0.185838 | 94.17845 | 0.000000 |
(0.90185) | (3.43839) | (1.04933) | (3.72956) | (0.00000) | ||
2 | 14.95729 | 0.037133 | 6.547661 | 0.180695 | 93.23444 | 7.02 × 10−5 |
(1.06629) | (2.42413) | (1.11671) | (3.06548) | (0.45603) | ||
3 | 15.51151 | 0.094985 | 7.768503 | 2.082924 | 89.88109 | 0.172498 |
(1.04579) | (3.18935) | (2.13748) | (3.92580) | (0.89685) | ||
4 | 15.66859 | 0.192469 | 8.145631 | 2.911161 | 88.51143 | 0.239306 |
(1.12104) | (3.60918) | (2.91073) | (4.70948) | (1.18592) | ||
5 | 15.75602 | 0.251299 | 8.326291 | 3.460647 | 87.72118 | 0.240580 |
(1.20336) | (3.86726) | (3.50242) | (5.11359) | (1.44350) | ||
6 | 15.79889 | 0.293118 | 8.481800 | 3.641065 | 87.34467 | 0.239351 |
(1.30822) | (4.08533) | (3.75746) | (5.36204) | (1.61455) | ||
7 | 15.82661 | 0.319711 | 8.611548 | 3.727914 | 87.09958 | 0.241247 |
(1.41369) | (4.26494) | (3.94250) | (5.56204) | (1.69688) | ||
8 | 15.84411 | 0.337795 | 8.719984 | 3.757100 | 86.94289 | 0.242235 |
(1.52584) | (4.41079) | (4.04053) | (5.72843) | (1.74780) | ||
9 | 15.85619 | 0.349919 | 8.806437 | 3.767650 | 86.83321 | 0.242786 |
(1.64259) | (4.52332) | (4.11186) | (5.87196) | (1.77522) | ||
10 | 15.86456 | 0.358503 | 8.873159 | 3.769532 | 86.75610 | 0.242703 |
(1.76453) | (4.60532) | (4.15107) | (5.99127) | (1.79130) | ||
Variance Decomposition of OIL_PRICE_VOLATILITY: | ||||||
Period | S.E. | REI | OIL | GDP | INTR | OIL_PRICE_VOLATILITY |
1 | 18.66401 | 0.170972 | 74.75745 | 0.215044 | 0.031823 | 24.82471 |
(1.17844) | (3.56149) | (0.42180) | (0.19782) | (3.17795) | ||
2 | 23.26884 | 0.166593 | 80.16496 | 0.355860 | 0.057286 | 19.25530 |
(1.35348) | (4.11004) | (0.81753) | (0.52350) | (3.81810) | ||
3 | 26.16733 | 0.229357 | 83.02632 | 0.614337 | 0.718536 | 15.41145 |
(1.32477) | (4.24605) | (1.21857) | (1.37156) | (3.56674) | ||
4 | 28.35834 | 0.362196 | 83.98412 | 1.063908 | 1.451554 | 13.13823 |
(1.45613) | (4.67037) | (1.82449) | (2.41792) | (3.23160) | ||
5 | 29.89428 | 0.467205 | 84.31734 | 1.341104 | 1.940597 | 11.93375 |
(1.67338) | (5.10504) | (2.26904) | (3.16063) | (3.08859) | ||
6 | 30.93377 | 0.546078 | 84.31619 | 1.555324 | 2.223757 | 11.35865 |
(1.88633) | (5.50218) | (2.62998) | (3.65260) | (3.08987) | ||
7 | 31.61593 | 0.601754 | 84.20741 | 1.700989 | 2.391750 | 11.09810 |
(2.09862) | (5.85889) | (2.89927) | (3.99179) | (3.16746) | ||
8 | 32.05509 | 0.639112 | 84.06935 | 1.807114 | 2.489317 | 10.99511 |
(2.30515) | (6.15874) | (3.10624) | (4.22369) | (3.26843) | ||
9 | 32.33110 | 0.663284 | 83.94763 | 1.880403 | 2.545864 | 10.96282 |
(2.50939) | (6.40452) | (3.25847) | (4.38260) | (3.35964) | ||
10 | 32.50131 | 0.678250 | 83.85159 | 1.931001 | 2.577898 | 10.96126 |
(2.71143) | (6.60682) | (3.36907) | (4.49040) | (3.43224) | ||
Cholesky Ordering: REI OIL GDP INTR OIL_PRICE_VOLATILITY | ||||||
Standard Errors: Monte Carlo (100 repetitions) |
References
- Oyewo, A.S.; Aghahosseini, A.; Ram, A.M.; Breyer, C. Transition towards decarbonised power systems and its socio-economic impacts in West Africa. Renew. Energy 2020, 154, 1092–1112. [Google Scholar] [CrossRef]
- Sterl, S.; Vanderkelen, I.; Chawanda, C.J.; Russo, D.; Brecha, R.J.; van Griensven, A.; van Lipzig, N.P.; Thiery, W. Smart renewable electricity portfolios in West Africa. Nat. Sustain. 2020, 1–10. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization (UNIDO). Scaling up Renewable. Google Scholar. Available online: https://www.uncclearn.org/wp-content/uploads/library/unido11.pdf (accessed on 15 April 2020).
- Olanrewaju, B.T.; Olususoye, E.; Adenikinju, A.; Akintande, J.O. A panel data analysis of renewable energy consumption in Africa. Renew. Energy 2019, 140, 668–679. [Google Scholar] [CrossRef]
- Delina, L.L.; Sovacool, K.B. Of temporality and plurality: An epistemic and governance agenda for accelerating just transitions for energy access and sustainable development. Curr. Opin. Environ. Sustain. 2018, 34, 1–6. [Google Scholar] [CrossRef]
- Adams, S.; Acheampong, A.O. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Bouraiou, A.; Necaibia, A.; Boutasseta, N.; Mekhilef, S.; Touaba, O. Status of renewable energy potential and utilization in Algeria. J. Clean. Prod. 2019, 246. [Google Scholar] [CrossRef]
- Gorgulu, S. Investigation of renewable energy potential and usage in TR 61 region. J. Clean. Prod. 2019, 236, 117698. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod. 2019, 235, 1338–1352. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model. Energy Econ. 2014, 42, 226–232. [Google Scholar] [CrossRef]
- Griffith-Jones, S.; Spratt, S.; Rade, R.; Griffith-Jones, E. Investment in Renewable Energy, Fossil Fuel Prices and Policy Implications for Latin America and the Caribbean; Financing for Development UN-ECLAC Series No. 264; Economic Commission for Latin America and the Caribbean: Santiago, Chile, 2017. [Google Scholar]
- Shah, I.; Hiles, C.; Morley, B. How do oil prices, macroeconomic factors and policies affect the market for renewable energy? Appl. Energy 2018, 215, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Kebede, E.; Kagochi, J.; Jolly, C.M. Energy consumption and economic development in Sub-Saharan Africa. Energy Econ. 2010, 32, 532–537. [Google Scholar] [CrossRef]
- Tiwari, A.K. A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India. Econ. Bull. 2011, 31, 1793–1806. [Google Scholar]
- Karlsson, S. Handbook of Economic Forecasting; Elsevier: London, UK, 2013. [Google Scholar]
- International Trade Centre. ITC by Country Report, 05/12/2015. Available online: https://www.intracen.org/country/ethiopia/#:~:text=Country%20Brief,growing%20economies%20in%20the%20world (accessed on 15 April 2020).
- International Energy Agency. World Energy Balances. 2019. Available online: https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics (accessed on 15 April 2020).
- Fitiwi, D.Z.; de Cuadra, F.; Olmos, L.; Rivier, M. A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty. Energy 2015, 90, 130–1376. [Google Scholar] [CrossRef]
- Ergun, S.J.; Owusu, P.A.; Rivas, M.F. Determinants of renewable energy consumption in Africa. Environ. Sci. Pollut. Res. 2019, 26, 15390–15405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zeng, M. Renewable energy investment risk evaluation model based on system dynamics. Renew. Sustain. Energy Rev. 2017, 73, 782–788. [Google Scholar] [CrossRef]
- Dominioni, G.; Romano, A.; Sotis, C. A quantitative study of the interaction between oil price and renewable energy sources stock prices. Energies 2019, 12, 1693. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ. 2012, 34, 215–226. [Google Scholar] [CrossRef]
- Sadorsky, P. Modelling Renewable Energy Consumption for a Greener Global Economy. Planet Earth 2011—Global Warming Challenges and Opportunities for Policy and Practice; Carayannis, E., Ed.; InTech: Rijeka, Croatia; Shanghai, China, 2011; pp. 507–524. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1089.2871&rep=rep1&type=pdf (accessed on 15 April 2020).
- Inchauspe, J.; Ripple, R.D.; Truck, S. The dynamics of returns on renewable energy companies: A state-space approach. Energy Econ. 2015, 48, 235–335. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Rivera-Castro, M.A.; Ugolini, A. Wavelet-based test of co-movement and causality between oil and renewable energy stock prices. Energy Econ. 2017, 61, 241–252. [Google Scholar] [CrossRef]
- Zhao, X. Do the stock returns of clean energy corporations respond to oil price shocks and policy uncertainty? J. Econ. Struct. 2020, 53, 1–16. [Google Scholar] [CrossRef]
- Kyritsis, E.; Serletis, A. Oil prices and the renewable energy sector. Electron. J. 2017. [Google Scholar] [CrossRef] [Green Version]
- Eregha, P.B.; Mesagan, E. Energy consumption, oil price and macroeconomic performance in energy dependent African countries. Appl. Econom. 2017, 46, 74–89. [Google Scholar]
- Troster, V.; Shahbaz, M.; Uddin, S.G. Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Econs. 2018, 70, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Yasmeen, T.; Shakoor, A.; Khan, N.B.; Muhammad, R. 2014 oil plunge: Causes and impacts on renewable energy. Renew. Sustain. Energy Rev. 2017, 68 Pt 1, 609–622. [Google Scholar] [CrossRef]
- Miketa, A.; Merven, B. West African Power Pool: Planning and Prospects for Renewable Energy. U.S. Department of Energy Office of Scientific and Technical Information. 2013. Available online: https://www.osti.gov/etdeweb/biblio/22110312 (accessed on 15 April 2020).
- Aldarraji, M.H.H.; Bakir, A. The Impact of Renewable Energy Investment on Economic Growth. J. Soc. Sci. 2020, 9. Available online: http://centreofexcellence.net/J/JSS/PDFs/jss.2020.9.2.234.248.pdf (accessed on 15 April 2020). [CrossRef]
- Singh, N.; Nyuur, R.; Richmond, B. Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis. Sustainability 2019, 11, 2418. [Google Scholar] [CrossRef] [Green Version]
- Marinas, M.; Dinu, M. Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries. PLoS ONE 2018, 13, e0202951. [Google Scholar] [CrossRef] [Green Version]
- Maji, I.K.; Sulaiman, C.; Abdul-Rahim, A.S. Renewable energy consumption and economic growth nexus: A fresh evidence from West Africa. Energy Rep. 2019, 5, 384–392. [Google Scholar] [CrossRef]
- Sweerts, B.; Loga, F.D.; van der Zwaan, B. Financial de-risking to unlock Africa’s renewable energy potential. Renew. Sustain. Energy Rev. 2019, 102, 75–82. [Google Scholar] [CrossRef]
- Hafner, M.; Tagliapietra, S.; de Strasser, L. Energy investments for Africa’s energy transition Challenges and Opportunites. In Energy in Africa. Springer Briefs in Energy; Springer: Cham, Switzerland, 2018; pp. 77–96. [Google Scholar]
- [RES4MED] Renewable Energy Solutions for the Mediterranean and Africa. A New Instrument to Foster Large-Scale Renewable Energy Development and Private Investment in Africa. 2017. Available online: https://www.res4med.org/wp-content/uploads/2019/02/RenewAfrica-White-Paper_FINAL.pdf (accessed on 28 May 2020).
- Klagge, B.; Nweke-Eze, C. Financing large-scale renewable energy projects in Kenya: Investor types, international connections, and financialization. Geogr. Ann. 2020, 102, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Walaa, M. Private Investment in Renewable Energy Sector in Africa: An Economic Analysis; Journal of African Studies Review; Institute of African Research and Studies: Cairo, Egypt, 2016; Volume 40, Available online: https://mpra.ub.uni-muenchen.de/79271/1/MPRA_paper_79271.pdf (accessed on 14 April 2020).
- Schwerhoff, G.; Sy, M. Financing renewable energy in Africa—Key challenge of the sustainable development goals. Renew. Sustain. Energy Rev. 2017, 75, 393–401. [Google Scholar] [CrossRef]
- Baker, L. The evolving role of finance in South Africa’s renewable energy sector. Geodorum 2015, 64, 146–156. [Google Scholar] [CrossRef]
- Egli, F.; Steffen, B.; Schumidt, S.T. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 2018, 3, 1084–1092. [Google Scholar] [CrossRef]
- Kim, K.; Park, H.; Kim, H. Real options analysis for renewable energy investment decisions in developing countries. Renew. Sustain. Energy Rev. 2017, 75, 918–926. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Kojima, S. Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method. Energy Policy 2012, 40, 69–80. [Google Scholar] [CrossRef]
- Moel, A.; Tufano, P. When are real options exercised? An empirical study of mine closings. Rev. Financ. Stud. 2002, 15, 35–64. [Google Scholar] [CrossRef]
- Sarkar, S. On the investment-uncertainty relationship in a real options model. J. Econ. Dyn. Control 2000, 24, 219–225. [Google Scholar] [CrossRef]
- Favero, C.A.; Hashem Pasara, M.; Sharma, S.A. A duration model of irreversible oil investment: Theory and empirical evidence. J. Appl. Econ. 1994, 9, S95–S112. [Google Scholar] [CrossRef]
- Li, Y. Investment Decision-Making in Clean Energy under Uncertainties: A Real Options Approach. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2018. Available online: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7408&context=etd (accessed on 28 May 2020).
- Bolton, R.; Foxon, T.J.; Hall, S. Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector. Gov. Policy 2015, 34, 1387–1403. [Google Scholar] [CrossRef] [Green Version]
- Komendantova, N.; Patt, A.; Barras, L.; Battaglini, A. Perceptions of risks in renewable energy projects: The case of concentrated solar power in North Africa. Energy Policy 2012, 40, 103–109. [Google Scholar] [CrossRef]
- Ackah, I.; Kizys, R. Green growth in oil producing African countries: A panel data analysis of renewable energy demand. Renew. Sustain. Energy Rev. 2015, 50, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Guo, L.; Zang, L. Does oil price uncertainty affect renewable energy firms’ investment? Evidence from listed firms in China. Financ. Res. Lett. 2020, 33, 101205. [Google Scholar] [CrossRef]
- Qadan, M.; Idilbi-Bayas, Y. Risk appetite and oil prices. Energy Econ. 2020, 85, 104595. [Google Scholar] [CrossRef]
- Fleten, S.-E.; Maribu, K.M.; Wangensteen, I. Optimal investment strategies in decentralized renewable power generation under uncertainty. Energy 2007, 32, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Joskow, P.L.; Tirole, J. Merchant transmission investment. J. Ind. Econ. 2005, 53, 233–264. [Google Scholar] [CrossRef] [Green Version]
- Mabro, R. Oil in the 21st Century: Issues, Challenges, and Opportunities; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Fabrizio, K.R. The effect of regulatory uncertainty on investment: Evidence from renewable energy generation. J. Lawecon. Organ. 2013, 29, 765–798. [Google Scholar] [CrossRef]
- Pueyo, A. What constraints renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Dev. 2018, 109, 85–100. [Google Scholar] [CrossRef]
- Barradale, M.J. Impact of Policy Uncertainty on Renewable Energy Investment: Wind Power and PTC. USAEE Working Paper No. 08-003. 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1085063 (accessed on 5 May 2020).
- Eryilmaz, D.; Homans, F.R. How does uncertainty in renewable energy policy affect decisions to invest in wind energy? Electr. J. 2016, 29, 64–71. [Google Scholar] [CrossRef]
- Burns, K. On the Relationship between Policy Uncertainty and Investment in Renewable Energy. IAEE Energy Forum Montr. Spec. Issue 2017, 33–35. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwitrOvxrN7tAhXFMN4KHfodAasQFjAAegQIAhAC&url=https%3A%2F%2Fwww.iaee.org%2Fen%2Fpublications%2Fnewsletterdl.aspx%3Fid%3D833&usg=AOvVaw0yFcT02g_ukrCmoiAZPwDW (accessed on 14 April 2020).
- Berntsen, M.; Bøe, K.S.; Jordal, T.; Molnar, P. Determinants of oil and gas investments on the Norwegian Continental Shelf. Energy 2018, 148, 904–914. [Google Scholar] [CrossRef]
- Bøe, K.S.; Jordal, T.; Mikula, S.; Ad Molar, P. Do political risks arm development of oil fields? J. Econ. Behav. Organ. 2019, 157, 338–358. [Google Scholar] [CrossRef]
- Horn, A.; Kjaerland, F.; Molnar, P.; Steen, B.W. The use of real option theory in Scandinavia’s largest companies. Int. Rev. Financ. Anal. 2015, 41, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Narayan, A.; Ponnambalam, K. Risk averse stochastic programming approach for microgrid planning under uncertainty. Renew. Energy 2017, 101, 399–408. [Google Scholar] [CrossRef]
- Venetsanos, K.; Angelopoulou, P.; Tsoutsos, T. Renewable energy sources project appraisal under uncertainty: The case of wind energy exploitation within a changing energy market development. Energy Policy 2002, 30, 297–307. [Google Scholar] [CrossRef]
- Murto, P. Timing of Investment under Technological and Revenue Related Uncertainties. J. Econ. Dyn. Control 2003, 31, 1473–1497. [Google Scholar] [CrossRef]
- Wustennhagen, R.; Menichetti, E. Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research. Energy Policy 2012, 40, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pegels, A. Renewable energy in South Africa: Potentials, barriers ad options for support. Energy Policy 2010, 38, 4945–4954. [Google Scholar] [CrossRef]
- Sendstad, L.H.; Chronopoulos, M. Sequential investment in renewable energy technologies under policy uncertainty. Energy Policy 2020, 137, 111152. [Google Scholar] [CrossRef]
- Gugler, K.; Haxhimusa, A.; Liebensteiner, M.; Schindler, N. Investment opportunities, uncertainty, and renewables in European electricity markets. Energy Econ. 2020, 85, 104575. [Google Scholar] [CrossRef]
- Kinias, I.; Tsakalos, I.; Konstantopoulos, N. Investment evaluation in renewable projects under uncertainty, using real options analysis: The case of wind power industry. Invest. Manag. Financ. Innov. 2017, 14, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Akintande, J.O.; Olubusoye, E.O.; Adenikinju, F.A.; Olanrewaju, T.B. Modelling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa. Energy 2020, 206, 117992. [Google Scholar] [CrossRef]
- Alabi, O.; Ackah, I.; Lartey, A. Re-visiting the renewable energy–economic growth nexus Empirical evidence from African OPEC countries. Int. J. Energy Sect. Manag. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Payne, J.E. Renewable Energy, Output, Carbon Dioxide Emissions, and Oil Prices: Evidence from South America. 2015. Available online: https://www.tandfonline.com/doi/full/10.1080/15567249.2013.853713?casa_token=F-KbsQXdKhoAAAAA%3ANPm8i6rfAPJsmtHiOwyksJhmf8OnW7fkjkNWQvNpqIAds6OtCR5CCOOhgF8EsybjePBEW8ZOkZE (accessed on 15 April 2020).
- Polzin, F.; Migendt, M.; Taube, A.D.; van Flotow, P. Public policy influence on renewable energy investments—A panel data study across OECD countries. Energy Policy 2015, 80, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Guo, X. An empirical analysis of the relationship between oil prices and the Chinese macro-economy. Energy Econs. 2016, 56, 88–100. [Google Scholar] [CrossRef]
- Al-Maamary HM, S.; Kazem, A.H.; Chaichan, T.M. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sustain. Energy Rev. 2017, 75, 989–1007. [Google Scholar] [CrossRef]
- Blazquez, J.; Hunt, L.C.; Manzano, B. Oil subsidies and renewable energy in Saudi Arabia: A general equilibrium approach. Energy J. 2017, 38. [Google Scholar] [CrossRef] [Green Version]
- Abid, M. The long-run and short-run effects of oil price on energy consumption in Tunisia: Evidence from structural breaks analysis. Energy Sources, Part B: Economics. Plan. Policy 2020, 15, 252–277. [Google Scholar]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Gouriéroux, C.; Monfort, A.; Renne, J. Statistical inference for independent component analysis: Application to structural VAR models. J. Econom. 2017, 196, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Sims, C.A. Macroeconomics and Reality. Econometrica 1980, 48, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.; Mumtaz, H.; Pinter, G. Forecasting with VAR models: Fat tails and stochastic volatility. Int. J. Forecast. 2017, 33, 1124–1143. [Google Scholar] [CrossRef]
- Omri, A.; Nguyen, K.D. On the determinants of renewable energy consumption: International evidence. Energy 2014, 72, 554–560. [Google Scholar] [CrossRef]
- Lee, C.; Chiu, Y. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries. Energy Econ. 2011, 33, 236–248. [Google Scholar] [CrossRef]
Study | Methodology | Time Period | Countries | Remark |
---|---|---|---|---|
[10] | Panel cointegration and error correction models (ECM) | 1980–2010 | 25 OECD countries | There is a long run statistically significant relationship between renewable energy and oil prices |
[10] | Non-linear smooth transition panel vector ECM | 1980–2010 | 7 Central American countries | A positive and statistically significant relationship between renewable energy and oil prices |
[76] | Panel cointegration and error correction modelling | 1980–2010 | 11 South American Countries | There is a long-run positive statistically significant relationship between renewable energy consumption, GDP and oil prices |
[77] | Model for the quantitative panel regression | 2000–2011 | OECD | Policy and market instrument such as FIT, GHG, RPS and long-term strategic planning measures directly impact the risk and return structure of renewable energy projects and could further strengthen the context for renewable energy investment |
[78] | VAR model | 1996–2014 | China | GDP and interest rates respond significantly to oil price |
[11] | Case study approach | Latin America and the Caribbean | Oil price plunges pose the risk of disrupting REI from the private sector to the extent that they become less and insufficiently profitable. The private sector is motivated by a sufficient market-based return from investment while accounting for any financial support a specific country may be providing to the sector | |
[79] | Case study approach | 6 GCC countries | Failing oil prices affect renewable energy projects due to decreasing oil revenue and government subsidies for oil and other fossil fuels which negatively affects the development and support of renewables. The implementation of proper regulation proper policies as well as fiscal incentives are the main factors that will enhance the renewable energy transition in GCC countries | |
[80] | Dynamic general equilibrium (DGE) model | 1995–2014 | Kingdom of Saudi Arabia (KSA) | There is a positive relation between oil price and renewable energy in KSA, and the 5% increase of renewable energy for electricity generation in KSA by 2030 would bring a positive impact in output and household welfare |
[29] | 1989–2016 | The U.S. | Negative shocks in oil prices affect the consumption of renewable energy resources. The authors observed that the development of renewable energy markets in the U.S. contribute to reducing their dependence on oil, allowing the U.S. economy to become less sensitive to positive shocks in oil prices | |
[59] | Green Investment Diagnostics | Ghana and Kenya | Macroeconomic imbalance, policy uncertainties, lack of and costly domestic finance, lack of network infrastructure and governance and social acceptance problems are the major obstacles for achieving increased renewable energy for electricity generation | |
[27] | Bivariate structural VAR model and GARCH-in Mean model | 1983–2016 | WilderHill Clean Energy Index (ECO), WilderHill New Energy Global Innovation Index (NEX), and S&P Global Clean Energy Index (SPGCE) | Oil price volatility has no statistically significant effect on stock returns and that the relationship between oil prices and stock returns is symmetric |
[4] | Fixed and random effects models and Hausman test | 1990–2015 | 5 African countries | Oil rents have a negative relationship with renewable energy consumption in Africa. A decrease in oil rents will lead to an increase in renewable energy consumption African countries, need to diversify fossil fuels price risk and to support the cost of renewable energy |
[81] | The error-correction model (VECM) | 1986–2014 | Tunisia | A bi-directional Granger causality between oil price, energy consumption and GDP |
VAR Granger Causality/Block Exogeneity Wald Tests | |||
---|---|---|---|
Dependent variable: REI | |||
Excluded | Chi-sq | df | Prob. |
OIL | 0.803036 | 2 | 0.6693 |
GDP | 0.777132 | 2 | 0.6780 |
INTR | 0.688981 | 2 | 0.7086 |
OIL_PRICE_VOLATILITY | 1.272458 | 2 | 0.5293 |
All | 3.983181 | 8 | 0.8586 |
Dependent variable: OIL | |||
Excluded | Chi-sq | df | Prob. |
REI | 1.802414 | 2 | 0.4061 |
GDP | 2.271591 | 2 | 0.3212 |
INTR | 2.435771 | 2 | 0.2959 |
OIL_PRICE_VOLATILITY | 3.099759 | 2 | 0.2123 |
All | 8.288025 | 8 | 0.4059 |
Dependent variable: GDP | |||
Excluded | Chi-sq | df | Prob. |
REI | 4.681053 | 2 | 0.0963 |
OIL | 2.900232 | 2 | 0.2345 |
INTR | 0.694308 | 2 | 0.7067 |
OIL_PRICE_VOLATILITY | 7.795743 | 2 | 0.0203 |
All | 14.85180 | 8 | 0.0621 |
Dependent variable: INTR | |||
Excluded | Chi-sq | df | Prob. |
REI | 1.874307 | 2 | 0.3917 |
OIL | 4.153888 | 2 | 0.1253 |
GDP | 9.371134 | 2 | 0.0092 |
OIL_PRICE_VOLATILITY | 0.080319 | 2 | 0.9606 |
All | 24.48963 | 8 | 0.0019 |
Dependent variable: OIL_PRICE_VOLATILITY | |||
Excluded | Chi-sq | Df | Prob. |
REI | 1.156619 | 2 | 0.5608 |
OIL | 7.941099 | 2 | 0.0189 |
GDP | 1.272229 | 2 | 0.5293 |
INTR | 2.646395 | 2 | 0.2663 |
All | 13.09068 | 8 | 0.1088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambari, I.; Failler, P. Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns. Energies 2020, 13, 6740. https://doi.org/10.3390/en13246740
Tambari I, Failler P. Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns. Energies. 2020; 13(24):6740. https://doi.org/10.3390/en13246740
Chicago/Turabian StyleTambari, Ishaya, and Pierre Failler. 2020. "Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns" Energies 13, no. 24: 6740. https://doi.org/10.3390/en13246740