Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures
Abstract
:1. Introduction
- Small-scale MGs where centralized information gathering and decision-making with low communication and computation effort can be conducted. All the properties inside the MG have a common goal; therefore, the EMS can operate the MG as a single agent;
- Military MGs where utmost privacy/confidentiality is required. System configuration is virtually fixed and high flexibility/expandability is not required.
1.1. EMS Review Papers
1.2. Contribution and Structure of this Paper
2. Analysis Scheme for EMS Trends Identification
2.1. Procedure for the Identification of Main Trends
- Step (1)
- Database selection: The database covers a comprehensive review of papers published in the most quoted journals in the field for the last six years (IEEE: Transactions on Power Systems, Smart Grid, Industrial Informatics, Sustainable Energy, Control Systems Technology, Neural Networks and Learning Systems; Elsevier: Applied Energy, Sustainable Energy, Grids and Networks, Energy Conversion and Management, Sustainable Energy Technologies and Assessments, Renewable & Sustainable Energy Reviews, Renewable Energy, Energy, Electric Power Systems Research, Expert Systems with Applications, Energy Reports; IET: Generation, Transmission & Distribution).
- Step (2)
- Paper selection from databases: A group of papers covering the main topics of the selected research field (EMS, microgrid, centralized control, etc.) is gathered by using IEEE Xplore, Google Scholar, ISI Web of Knowledge, and Scopus search engines. Each paper should be analyzed to verify its relationship with the topic related to centralized EMS. This step requires a prior clear understanding of EMS solutions and centralized control architectures. In addition, the reference tree should be followed; therefore, even more papers appeared after following the usual bibliographic search process. This is a key aspect for the methodology used for identifying review papers in the field, as the selection criteria has a direct impact on the quality of the results. This procedure aims at gathering the large majority of the field-related contributions and not only a representative sample.
- Step (3)
- Gathering of information: All the attributes selected from predefined classification levels are searched for and extracted from each paper.
- Step (4)
- Relational database: A relational database is created and populated based on the information from the attributes selected.
- Step (5)
- Clustering technique: Various patterns are identified by means of a Self-Organizing Map (SOM) clustering technique, including the identification of cluster centroids.
- Step (6)
- Content and structure analysis: A statistical analysis is applied to the information of the database created. An analysis of the results is conducted.
- Step (7)
- Identification of main trends: Based on the results of steps (5) and (6) the main trends are identified and analyzed.
- Step (8)
- In-depth analysis of the research-specific questions of each trend: Based on the main trends identified in step (7) and the researcher’s know-how, the research-specific questions and key challenges of each trend can be identified. With this aim, a detailed analysis of the cluster centroids is suggested. Thus, research specific challenges may be identified.
2.2. Levels for the Classification Framework
- Control Architectures: This level refers to the way an MG is controlled in order to ensure its safe and reliable operation, at minimum cost, among other objectives. To meet these objectives, either centralized or decentralized control architectures can be used. The light green box highlights the centralized control architecture selected as the scope of analysis in this paper. White boxes represent topics out of the paper’s scope but that are also relevant for EMS description.
- Fields of Interest: The level of yellow boxes presents broader fields for centralized EMS, such as system modeling, EMS application fields, and time treatment in terms of the way different periods of time are used for the acquisition or updating of information.
- Selected Topics: This level is composed of light blue boxes and presents more details for each field of interest presented at this level. As for “Applications”, four sub-items are identified: state estimator, real-time SCADA, operation optimizer, and adaptive protection system [42]. Regarding time treatment, the focus was on the periodicity (time frames) of EMS processes execution.
- Main Features: This level shows the features of the topics that have been selected. As for “Operation Optimizer”, six sub-items are presented (objective function, resolution technique, inputs, outputs, operation model, and the consideration of uncertainties); and, as for “Periodicity”, three sub-items were individualized (optimization horizon, data acquisition time, and data updating time).
- Level of Complexity: A deeper description of the attributes selected is provided at this final level. The taxonomy is based on the level of complexity of the models and the algorithms used. All the sub-items in this level are colored with different shades of blue according to their increasing and/or decreasing level of complexity (darker shades represent a higher complexity).
2.3. Main Features and Level of Complexity
- Objective function
- Resolution techniques
- (i)
- Mathematical programming (MP): A mathematical programming problem is a special class of decision-making problem where the focus is on an efficient use of limited resources to meet a desired objective [43]. Linear programming and mix-integer programming are examples of MP approaches capable of solving the underlying optimization problem for MG operations. Table A1 summarizes a comprehensive list of MP techniques considered in this study.
- (ii)
- Computational intelligence (CI): Refers to the design and development of algorithms based on biology and linguistics. It has been long-established that CI consists of three main cornerstones, which are neural networks, fuzzy systems and evolutionary computation [44]. Within the last few years, CI has become heavily influenced by nature. Thus, recently new developments have emerged, such as ambient intelligence, artificial life, cultural learning, artificial endocrine networks, social reasoning, and artificial hormone networks. For developing reliable smart systems, CI plays a key role, for example, in games and cognitive development systems. In recent years, Deep Learning has become very popular among researchers, particularly in deep convolutional neural networks. Currently, Deep Learning is considered the principal approach for artificial intelligence (AI) applications [44]. A comprehensive list of the CI techniques capable of solving the EMS optimization problem is presented in Table A2. Furthermore, several authors have proposed their own intelligent algorithm (AA) to solve the EMS problem.
- (iii)
- Hybrid methods (HM): Refers to a combination of methods based on MP and CI. The incorporation of uncertainties in system modeling encourages the use of this approach. The list of the HM approaches considered can be found in Table A3.
- EMS inputs and outputs
- Operating model
- Optimization horizon
- Consideration of uncertainties
- Data acquisition time and data updating time
- Detail level of components
2.4. Application Case of the Proposed Analysis Scheme
3. Results: Attributes and Trends
3.1. Results Obtained from the Proposed Analysis Scheme
3.2. Quantitative Results (Numerical Results Analysis)
3.3. Cluster Analysis
- How to solve further problems entailing higher complexities by combining reactive and proactive techniques and considering the uncertainty of renewable resources and load consumption.
- Guidelines to a simultaneous consideration of different factors (i.e., costs, environmental impact, social aspects, etc.) through the implementation of multi-objective optimization approaches.
- How a combination of CI and traditional techniques can achieve a clear and important minimization of operation costs, greenhouse gases emissions, and other technical and economic MG-related issues.
- How to achieve a highly accurate forecasting of renewable energy sources by using CI techniques, in order to comply with an efficient MG energy management.
- How to enable the owners of the distributed generation units to establish their own strategies to participate in MG generation with minimum information shared between distributed generators. Additionally, comply with consumer’s requirements with a minimum energy cost.
- How to use demand response programs either to avoid or to decrease penalty costs and the amount of unserved power, as well as to improve demand side management.
- How to properly consider the underlying power distribution network and its associated power flow and system operational constraints in order to achieve control decisions that do not transgress real-world constraints.
- How to develop an intelligent algorithm on the customer side to generate demand requests that allow the EMS to make more accurate operating decisions in the MG.
3.4. Key Lessons Learned, Key Challenges, and Future Research Directions
4. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Acronym | Description |
---|---|
LP | Linear Programming |
MILP | Mixed-Integer Linear Programming |
DP | Dynamic Programming |
QP | Quadratic Programming |
MINLP | Mixed-Integer Non-Linear Programming |
SLP | Stochastic Linear Programming |
RO | Robust Optimization |
SO | Stochastic Optimization |
MIQCP | Mixed-Integer Quadratically Constrained Programming |
Acronym | Description |
---|---|
GA | Genetic Algorithms |
CQGA | Chaotic Quantum Genetic Algorithm |
NSGA | Nondominated Sorting Genetic Algorithm |
HGA | Hierarchical Genetic Algorithm |
INIGA | Isolation Niche Immune Genetic Algorithm |
FL | Fuzzy Logic |
MPC | Model Predictive Control |
PSO | Particle Swarm Optimization |
DE | Differential Evolution |
ANN | Artificial Neural Networks |
MACO | Multi-Layer Ant Colony Optimization |
ABC | Ant Bee Colony |
AMFA | Adaptive Modified Firefly Algorithm |
IBO | Interval-Based Optimization |
ICA | Imperialist Competitive Algorithm |
LO | Lyapunov Optimization |
LHMPC | Lyapunov Hybrid Model Predictive Control |
MGSA | Multiperiod Gravitational Search Algorithm |
NEA | Niching Evolutionary Algorithm |
MBFO | Modified Bacterial Foraging Optimization |
ITLBO | Improved Teaching-Learning-Based Optimization |
SGSA | Self-Adaptive Gravitational Search Algorithm |
MOMADS | Multi-Objective Mesh Adaptive Direct Search |
PCAO | Parameterized Cognitive Adaptive Optimization |
EADP | Evolutionary Adaptive Dynamic Programming |
RB | Rule-Based |
SSOA | Search Strategy Based On Orthogonal Array |
CBPSO | Chaotic Binary Particle Swarm Optimization |
MOPSO | Multi-Objective Particle Swarm Optimization |
EDF | Event-Driven Framework |
NRSFS | Non-Dominated Ranking Stochastic Fractal Search |
SA | Simulated Annealing |
D&C | Divide And Conquer Algorithm |
FSM | Finite State-Machine |
Acronym | Description |
---|---|
MPC + MILP | Model Predictive Control plus Mixed-Integer Linear Programming |
MPC + MIQP | Model Predictive Control plus Mixed-Integer Quadratic Programming |
MO + FL + ANN | Multi-Objective Optimization plus Fuzzy Logic and Artificial Neural Networks |
SM + GA | State Machine Approach plus Genetic Algorithms |
MIP + SBA | Mixed-Integer Programming plus Subgradient-Based Algorithm |
FL + CSA | Fuzzy Logic plus Cuckoo Search Algorithm |
NMPC + MINLP | Non-Linear Model Predictive Control plus Mixed-Integer Non-Linear Programming |
MPC + MINLP | Model Predictive Control plus Mixed-Integer Non-Linear Programming |
MPC + MIQP + MINLP | Model Predictive Control plus Mixed-Integer Quadratic Programming and Mixed-Integer Non-Linear Programming |
MPC + MILP + TSSP | Model Predictive Control plus Mixed-Integer Linear Programming and Two-Stage Stochastic Programming |
MPC + SMILP + NLP | Model Predictive Control plus Stochastic Mixed-Integer Linear Programming and Non-Linear Programming |
SMPC + DP + EM | Stochastic Model Predictive Control plus Dynamic Programming and Empirical Mean |
DL + ADP | Deep Learning plus Adaptive Dynamic Programming |
PSO + PDIP | Particle Swarm Optimization plus Primal-Dual Interior Point |
PSO + SQP + FL | Particle Swarm Optimization plus Stochastic Quadratic Programming and Fuzzy Logic |
LO + MIP | Lyapunov Optimization plus Mixed-Integer Programming |
LP + SA | Linear Programming plus Simulated Annealing |
MO + GA | Multi-Objective Optimization plus Genetic Algorithms |
Appendix B
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MP | CI | HM | ||||||||||
[59] | STM | MOBJ | ITLBO | GFO + DFO + OIN | OOU | DC | DY | DM + GE + GR | ||||
[60] | STM | MOBJ | CQGA | GFO + DFO | DSET | DC | ||||||
[61] | STM | SOBJ | SMPC + DP + EM | GFO + DFO | DC | HR | DM+GE | |||||
[62] | STM | SOBJ | FL | OIN | OOU | DC | ||||||
[63] | STM | MOBJ | DP | GFO + DFO + OIN | UC + OOU | DC | DY | MIN | ||||
[64] | STM | SOBJ | FL | OIN | OOU | DC | ||||||
[65] | STM | SOBJ | FL | OIN | OOU | DC | MIN | |||||
[66] | STM | MOBJ | LP + SA | GFO + DFO + OIN | DSET | DC | DY | MIN | ||||
[67] | STM | SOBJ | SGSA | GFO + DFO + OIN | DSET + OOU | DC | DY | DM + GE+ GR | HR | |||
[68] | STM | MOBJ | MOMADS | GFO + DFO + OIN | OOU | DC | ||||||
[69] | STM | SOBJ | MPC + MILP | OIN | DSET+OOU | DC | ||||||
[70] | STM | MOBJ | NEA | OIN | DSET | AC | ||||||
[71] | STM | MOBJ | SQP + PSO + FL | AC | GE | |||||||
[72] | STM | SOBJ | MPC | OIN | DSET + OOU | DC | DY | |||||
[73] | STM | MOBJ | AA | OIN | DSET | DC | DY | |||||
[74] | STM | SOBJ | MINLP | OIN | OOU | DC | DM + GE | MILI |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[49] | STM | SOBJ | MILP | GFO + DFO + OIN | DSET + DSM + OOU | DC | DY + YR | DM + GE | SEC | MIN | ||
[75] | STM | MOBJ | MPC | GFO + DFO + OIN | DSET | DC | HR | GE | MIN | |||
[76] | STM | SOBJ | AMFA | GFO + DFO + OIN | DSET | DC | DM + GE + GR | |||||
[77] | STM | SOBJ | MILP | GFO + DFO + OIN | DSET + DSM | DC | DY + YR | |||||
[78] | STM | SOBJ | FL | GFO + OIN | OOU | DC | ||||||
[79] | STM | MOBJ | MPC + MIQP | GFO + DFO + OIN | DSET + OOU | AC | SEC | |||||
[80] | STM | MOBJ | MILP | DFO + OIN | OOU | DC | DY | |||||
[81] | STM | SOBJ | QP | DFO + OIN | DSET | DC | ||||||
[82] | STM | SOBJ | MILP | GFO + OIN | DSET + OOU | DC | DY | |||||
[83] | STM | SOBJ | SM+GA | OIN | DSET + OOU | DC | HR | |||||
[84] | STM | SOBJ | MILP | OIN | OOU | AC | ||||||
[52] | STM | SOBJ | MINLP | GFO+DFO+OIN | OOU | DC | HR | |||||
[85] | STM | MOBJ | SLP | GFO + OIN | DSET | DC | DY | GE | MIN | |||
[86] | STM | MOBJ | MILP | DFO + OIN | OOU | DC | DY | HR | ||||
[87] | STM | MOBJ | NSGA | OIN | DSET | DC | ||||||
[88] | STM | SOBJ | MPC + MIQP | GFO + OIN | DSET | DC | HR | |||||
[89] | STM | MOBJ | SO | GFO + DFO + OIN | DC | HR | DM + GE | HR | ||||
[90] | STM | SOBJ | FL | OIN | OOU | DC | HR | |||||
[91] | DYM | SOBJ | DP | OIN | OOU | AC | DY | MIN | ||||
[92] | STM | SOBJ | DP | GFO + OIN | DSET | DC | ||||||
[93] | STM | SOBJ | FL | GFO + OIN | DSET + OOU | DC | HR | |||||
[94] | STM | SOBJ | MPC | GFO + DFO + OIN | DSET + OOU | DC | HR | MIN | ||||
[95] | STM | SOBJ | INIGA | OIN | DSET | DC | DY | |||||
[51] | STM | MOBJ | MO + FL + ANN | GFO + OIN | DSET | DC | DY | DM + GE | ||||
[96] | STM | SOBJ | AA | OIN | DSET + DSM | DC | DY | |||||
[97] | STM | MOBJ | MPC + MILP + TSSP | OIN | DSET + OOU | DC | DY | DM+GE | MIN |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[29] | STM | SOBJ | MPC + MILP + NLP | GFO + DFO | DSET | AC | HR + DY | MIN | ||||
[98] | STM | SOBJ | AA | OIN | OOU | DC | DY | |||||
[99] | STM | SOBJ | MPC + MILP | DFO + OIN | DSET + OOU | DC | DY | MIN | ||||
[100] | STM | MOBJ | MPC + MILP | DFO + OIN | DSET + OOU | DC | HR | GE | ||||
[101] | STM | SOBJ | GA | OIN | DSET + OOU | DC | DY | |||||
[102] | STM | SOBJ | MILP | OIN | DSET | DC | DY | DM + GE | MIN | |||
[103] | DYM | AA | OIN | OOU | AC | DY | ||||||
[104] | STM | SOBJ | FL | OIN | OOU | DC | ||||||
[105] | STM | SOBJ | FL | OIN | OOU | DC | MIN | |||||
[106] | STM | SOBJ | PSO | OIN | OOU | DC | ||||||
[107] | STM | SOBJ | FL + CSA | OIN | DSET + OOU | DC | ||||||
[108] | STM | SOBJ | MIP + SBA | GFO + DFO | UC | DC | DY | DM + GE | HR | |||
[109] | STM | MOBJ | SO | GFO + DFO | DSET + OOU | DC | DY | GE | ||||
[110] | STM | SOBJ | MINLP | GFO + DFO + OIN | OOU | AC | DY | GE | ||||
[111] | STM | SOBJ | MPC + MILP | GFO + DFO + OIN | DSET + OOU | DC | DY | DM + GE | MIN | |||
[112] | STM | SOBJ | MILP | GFO + DFO + OIN | DSET + UC + OOU | DC | DY | |||||
[113] | STM | MOBJ | MGSA | OIN | DSET | DC | DY | |||||
[114] | STM | MOBJ | GA | DSET | DC | |||||||
[115] | STM | SOBJ | LP | OIN | DSET | DC | DY | MIN | ||||
[116] | STM | MOBJ | MBFO | OIN | DSET + OOU | DC | DY | GE |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[117] | STM | SOBJ | MILP | GFO + DFO + OIN | UC + OOU | DC | DY | HR | ||||
[50] | STM | SOBJ | MILP | OIN | DSET + OOU | DC | DY | DM + GE | MIN | |||
[118] | STM | SOBJ | MPC | WFO+OIN | DSM + OOU | DC | ||||||
[119] | STM | SOBJ | GA | OIN | DC | DY | ||||||
[120] | STM | SOBJ | AA | GFO + DFO + OIN | OOU | DY | ||||||
[121] | DYM | SOBJ | FL | OIN | DSET + OOU | DC | SEC | |||||
[122] | STM | MOBJ | DE | DSET | DC | |||||||
[123] | DYM | SOBJ | PCAO | OIN | DY | |||||||
[124] | STM | SOBJ | FL | OIN | OOU | DC | MIN | |||||
[125] | STM | SOBJ | ICA | OIN | DSET + OOU | DC | DM + GE | |||||
[15] | STM | SOBJ | RB | OIN | DSET | DC | DY | |||||
[126] | STM | SOBJ | ANN | OIN | OOU | DC | ||||||
[127] | STM | SOBJ | MPC + SMILP + NLP | GFO + OIN | DSET + UC | AC | DY | GE | MIN |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[6] | STM | MOBJ | SO | GFO + DFO + OIN | DSM | DC | DY | DM + GE + GR | ||||
[128] | STM | SOBJ | LP | OIN | OOU | DC | YR | |||||
[129] | STM | MOBJ | EADP | OIN | OOU | DC | MIN | |||||
[130] | STM | SOBJ | IBO | DSET | DC | DY | DM + GE | |||||
[131] | STM | SOBJ | AA | OIN | DSET | DC | DY | |||||
[132] | STM | MOBJ | AA | GFO + OIN | DSET | AC | HR | |||||
[133] | SOBJ | RB | OIN | DSET + DSM | AC | DY | ||||||
[134] | STM | SOBJ | MILP | GFO + DFO | DSET + UC | DC | ||||||
[135] | STM | SOBJ | FL | OIN | OOU | DC | ||||||
[136] | STM | SOBJ | NMPC + MINLP | DFO+OIN | OOU | AC | MIN | MIN | ||||
[16] | STM | SOBJ | AA | OIN | OOU | DC | ||||||
[54] | STM | SOBJ | SSOA | DC | DM + GE | |||||||
[137] | STM | SOBJ | MPC | DFO + OIN | DSET + DSM | DC | DY | DM + GE | MIN | |||
[138] | STM | MOBJ | MPC | GFO + OIN | DSET | DC | DY | GE | MIN | |||
[139] | STM | SOBJ | MACO | OIN | DSET + DSM + OOU | DC | MIN+DY | |||||
[140] | STM | MOBJ | CBPSO | AC | DM + GE | |||||||
[141] | STM | SOBJ | MILP | DC | DY |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[142] | STM | SOBJ | EDF | OOU | DC | DY | ST | MIN | ||||
[143] | STM | MOBJ | MPC + MIQP + MINLP | UC + DSM | DC | DY | DM + GE | MIN | ||||
[144] | STM | SOBJ | ABC | OIN | DSET | DC | DY | DM + GE | ||||
[145] | STM | MOBJ | MO + GA | OIN | OOU | DC | ||||||
[146] | STM | SOBJ | MINLP | GFO + DFO | OOU | DC | DY | |||||
[147] | SOBJ | AA | OIN | OOU | DC | |||||||
[148] | STM | MOBJ | NRSFS | DC | DM + GE | |||||||
[149] | STM | MOBJ | MPC + MINLP | GFO + OIN | DSET | AC | DY | DM + GE | MIN | |||
[150] | STM | MOBJ | HGA | DSET | AC | DY | ||||||
[151] | STM | MOBJ | LP + MILP | GFO + DFO + OIN | DSET + OOU | DC | DY | GE | ||||
[152] | STM | MOBJ | NSGA | DC | GE | |||||||
[153] | STM | MOBJ | SA | DSM | DC | DY | ||||||
[154] | STM | SOBJ | D&C | DC | ||||||||
[53] | STM | SOBJ | LO | OIN | DSET + DSM | AC | DY | GE | ||||
[155] | STM | SOBJ | MILP | OIN | DSET | DC | DM + GE |
Ref. | A | B | C | D | E | F | G | H | I | J | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[156] | STM | SOBJ | FL + PSO | DFO + OIN | OOU | DC | DY | MIN | ||||
[157] | STM | MOBJ | AA | GFO + DFO | DSET + UC | DC | DY | DM + GE | ||||
[158] | STM | SOBJ | SO + MIQCP | DC | HR + DY | MIN | ||||||
[159] | STM | SOBJ | FL | OIN | OOU | DC | DY | SEC | ||||
[160] | STM | SOBJ | RO | DSET + UC | DC | GEGR | ||||||
[161] | STM | MOBJ | MOPSO | DC | ||||||||
[162] | STM | SOBJ | MILP | GFO + DFO | OOU | DC | HR | GE | MILI | MIN | ||
[163] | STM | SOBJ | MILP | GFO + DFO + OIN | DSET + DSM | DC | DY | HR | ||||
[164] | STM | SOBJ | SO | GFO + DFO + OIN | OOU | AC | DY | GE | ||||
[165] | STM | SOBJ | DP | DFO + WFO | DSET | DC | DM + GE | |||||
[166] | STM | SOBJ | PSO + PDIP | OIN | DSET + OOU | AC | DY | GE | ||||
[167] | DYM | SOBJ | AA | OIN | OOU | |||||||
[168] | STM | SOBJ | LO + MIP | GFO + DFO + OIN | DSET + UC | DC | DY | DM + GE | ||||
[169] | STM | SOBJ | DL + ADP | OIN | DSET + OIN | DC | MIN | |||||
[170] | STM | SOBJ | FSM | OIN | DSET | AC | MILI | |||||
[171] | STM | SOBJ | MINLP | DC | DY | |||||||
[172] | STM | SOBJ | LHMPC | OIN | UC + DSET + OOU | DC | DY | MIN | ||||
[173] | STM | SOBJ | RO + MPC | GFO + DFO | DSET | DC | DY | DM + GE | HR |
References
- Torbaghan, S.S.; Blaauwbroek, N.; Kuiken, D.; Gibescu, M.; Hajighasemi, M.; Nguyen, P.; Smit, G.J.; Roggenkamp, M.; Hurink, J. A market-based framework for demand side flexibility scheduling and dispatching. Sustain. Energy Grids Netw. 2018, 14, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.S.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Lasseter, B. Microgrids [distributed power generation]. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 28 January–1 February 2001; Volume 1, pp. 146–149. [Google Scholar] [CrossRef]
- Lasseter, R.H. MicroGrids. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting Conference Proceedings (Cat. No.02CH37309), New York, NY, USA, 27–31 January 2002; Volume 1, pp. 305–308. [Google Scholar] [CrossRef]
- An, L.N.; Quoc-Tuan, T. Optimal energy management for grid connected microgrid by using dynamic programming method. In Proceedings of the 2015 IEEE Power Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.; Liu, Y.; Wang, X. A Microgrid Energy Management System and Risk Management Under an Electricity Market Environment. IEEE Access 2016, 4, 2349–2356. [Google Scholar] [CrossRef]
- Huang, K.; Wang, X.; Wang, L. Optimal energy management of grid-connected photovoltaic micro-grid. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Shenyang, China, 8–12 June 2015; pp. 234–239. [Google Scholar] [CrossRef]
- Ma, L.; Liu, N.; Zhang, J.; Tushar, W.; Yuen, C. Energy Management for Joint Operation of CHP and PV Prosumers Inside a Grid-Connected Microgrid: A Game Theoretic Approach. IEEE Trans. Ind. Inform. 2016, 12, 1930–1942. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pascual, J.; Guinjoan, F.; Marroyo, L.; Sanchis, P.; Marietta, M.P. Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting. Appl. Energy 2017, 205, 69–84. [Google Scholar] [CrossRef]
- Mohan, V.; Singh, J.G.; Ongsakul, W.; Madhu, M.N.; Reshma Suresh, M.P. Economic and network feasible online power management for renewable energy integrated smart microgrid. Sustain. Energy Grids Netw. 2016, 7, 13–24. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Zidan, A. Optimal scheduling of interconnected micro energy grids with multiple fuel options. Sustain. Energy Grids Netw. 2016, 7, 80–89. [Google Scholar] [CrossRef]
- Marino, C.; Quddus, M.A.; Marufuzzaman, M.; Cowan, M.; Bednar, A.E. A chance-constrained two-stage stochastic programming model for reliable microgrid operations under power demand uncertainty. Sustain. Energy Grids Netw. 2018, 13, 66–77. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers. Manag. 2013, 69, 163–173. [Google Scholar] [CrossRef]
- Dahmane, M.; Bosche, J.; El-Hajjaji, A.; Dafarivar, M. Renewable energy management algorithm for stand-alone system. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications, Madrid, Spain, 20–23 October 2013; pp. 621–626. [Google Scholar] [CrossRef]
- Dash, V.; Bajpai, P. Power management control strategy for a stand-alone solar photovoltaic-fuel cell–battery hybrid system. Sustain. Energy Technol. Assess. 2015, 9, 68–80. [Google Scholar] [CrossRef]
- Nasri, S.; Sami, B.S.; Cherif, A. Power management strategy for hybrid autonomous power system using hydrogen storage. Int. J. Hydrog. Energy 2016, 41, 857–865. [Google Scholar] [CrossRef]
- Chalise, S.; Sternhagen, J.; Hansen, T.M.; Tonkoski, R. Energy management of remote microgrids considering battery lifetime. Electr. J. 2016, 29, 1–10. [Google Scholar] [CrossRef]
- Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 2017, 202, 66–77. [Google Scholar] [CrossRef]
- Manbachi, M.; Ordonez, M. AMI-based Energy Management for Islanded AC/DC Microgrids Utilizing Energy Conservation and Optimization. IEEE Trans. Smart Grid 2018, 1. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrids management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Eskandari, M.; Li, L.; Moradi, M.H. Improving power sharing in islanded networked microgrids using fuzzy-based consensus control. Sustain. Energy Grids Netw. 2018, 16, 259–269. [Google Scholar] [CrossRef]
- Aluisio, B.; Dicorato, M.; Forte, G.; Trovato, M. An optimization procedure for Microgrid day-ahead operation in the presence of CHP facilities. Sustain. Energy Grids Netw. 2017, 11, 34–45. [Google Scholar] [CrossRef]
- Javadi, M.; Marzband, M.; Akorede, M.; Godina, R.; Saad, A.; Pouresmaeil, E. A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market. Energies 2018, 11, 3144. [Google Scholar] [CrossRef] [Green Version]
- Hatziargyriou, N. Microgrid: Architectures and Control, 1st ed.; Wiley-IEEE Press: New Jersey, NY, USA, 2014. [Google Scholar]
- Pourbabak, H.; Chen, T.; Su, W. 1-Centralized, Decentralized, and Distributed Control for Energy Internet; Su, W., Huang, A.Q.B.T.-T.E.I., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 3–19. [Google Scholar] [CrossRef]
- Rafique, S.F.; Jianhua, Z. Energy management system, generation and demand predictors: A review. IET Gener. Transm. Distrib. 2018, 12, 519–530. [Google Scholar] [CrossRef]
- Senjyu, T.; Kuninaka, R.; Urasaki, N.; Fujita, H.; Funabashi, T. Power system stabilization based on robust centralized and decentralized controllers. In Proceedings of the 2005 International Power Engineering Conference, Singapore, 29 November–2 December 2005; Volume 2, pp. 905–910. [Google Scholar] [CrossRef]
- Almasalma, H.; Engels, J.; Deconinck, G. Peer-to-Peer Control of Microgrids 2017. Available online: https://arxiv.org/pdf/1711.04070.pdf (accessed on 3 January 2020).
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A Centralized Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2014, 5, 1864–1875. [Google Scholar] [CrossRef]
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A centralized optimal energy management system for microgrids. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Meng, L.; Sanseverino, E.R.; Luna, A.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Microgrid supervisory controllers and energy management systems: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1263–1273. [Google Scholar] [CrossRef]
- Feng, X.; Shekhar, A.; Yang, F.; Hebner, R.E.; Bauer, P. Comparison of Hierarchical Control and Distributed Control for Microgrid Comparison of Hierarchical Control and Distributed Control for Microgrid. Electr. Power Compon. Syst. 2017, 45, 1043–1056. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Tayab, U.B.; Roslan, M.A.B.; Hwai, L.J.; Kashif, M. A review of droop control techniques for microgrid. Renew. Sustain. Energy Rev. 2017, 76, 717–727. [Google Scholar] [CrossRef]
- Feng, X. Dynamic balancing for low inertia power systems. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Hatata, A.Y.; Sedhom, B.E.; El-Saadawi, M.M. A modified droop control method for microgrids in islanded mode. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference, Cairo, Egypt, 19–21 December 2017; pp. 728–734. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, M.R. Power Management Strategies for a Microgrid With Multiple Distributed Generation Units. IEEE Trans. Power Syst. 2006, 21, 1821–1831. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Pradhan, S.; Mishra, D.; Maharana, M.K. Energy management system for micro grid pertaining to renewable energy sources: A review. In Proceedings of the 2017 International Conference on Innovative Mechanisms for Industry Applications, Bangalore, India, 21–23 February 2017; pp. 18–23. [Google Scholar] [CrossRef]
- Ahmad Khan, A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [Google Scholar] [CrossRef]
- Minchala-Avila, L.I.; Garza-Castañón, L.E.; Vargas-Martínez, A.; Zhang, Y. A Review of Optimal Control Techniques Applied to the Energy Management and Control of Microgrids. Procedia Comput. Sci. 2015, 52, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Mata, O.; Palma-Behnke, R.; Valencia, F.; Mendoza-Araya, P.; Jiménez-Estévez, G. Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy. Energies 2018, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.M. Mathematical Programming: Theory and Methods. In Elsevier Science; Sinha, S.-M., Ed.; Elsevier Inc.: Burlington, NJ, USA, 2006; pp. 1–9. [Google Scholar] [CrossRef]
- IEEE Computational Intelligence Society. What is Computational Intelligence? 2018. Available online: https://cis.ieee.org/about/what-is-ci (accessed on 30 May 2019).
- Dorf, R.C.; Bishop, R.H. Modern Control Systems; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Seborg, D.E.; Mellichamp, D.A.; Edgar, T.F.; Doyle, F.J. Process Dynamics and Control; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Baimel, D.; Belikov, J.; Guerrero, J.M.; Levron, Y. Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey. IEEE Access 2017, 5, 21323–21335. [Google Scholar] [CrossRef]
- Nasir, M.; Zaffar, N.A.; Khan, H.A. Analysis on central and distributed architectures of solar powered DC microgrids. In Proceedings of the 2016 Clemson University Power Systems Conference, Clemson, SC, USA, 8–11 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Sáez, D. A Microgrid Energy Management System Based on the Rolling Horizon Strategy. IEEE Trans. Smart Grid 2013, 4, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids. Appl. Energy 2015, 155, 485–501. [Google Scholar] [CrossRef]
- Chaouachi, A.; Kamel, R.M.; Andoulsi, R.; Nagasaka, K. Multiobjective Intelligent Energy Management for a Microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1688–1699. [Google Scholar] [CrossRef]
- Marzband, M.; Sumper, A.; Domínguez-García, J.L.; Gumara-Ferret, R. Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP. Energy Convers. Manag. 2013, 76, 314–322. [Google Scholar] [CrossRef]
- Shi, W.; Li, N.; Chu, C.; Gadh, R. Real-Time Energy Management in Microgrids. IEEE Trans. Smart Grid 2017, 8, 228–238. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, J.; Liu, Y. Robust Energy Management of Microgrid With Uncertain Renewable Generation and Load. IEEE Trans. Smart Grid 2016, 7, 1034–1043. [Google Scholar] [CrossRef]
- Theo, W.L.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods. Renew. Sustain. Energy Rev. 2017, 67, 531–573. [Google Scholar] [CrossRef]
- Ravichandran, A.; Sirouspour, S.; Malysz, P.; Emadi, A. A Chance-Constraints-Based Control Strategy for Microgrids With Energy Storage and Integrated Electric Vehicles. IEEE Trans. Smart Grid 2018, 9, 346–359. [Google Scholar] [CrossRef]
- Tan, P.-N.; Steinbach, M.; Kumar, V. Introduction to Data Mining, 1st ed.; Pearson: Boston, MA, USA, 2005; Volume 1. [Google Scholar] [CrossRef]
- RStudio. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 3 January 2020).
- Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Appl. Energy 2012, 99, 455–470. [Google Scholar] [CrossRef]
- Liao, G.-C. Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system–Using chaotic quantum genetic algorithm. Int. J. Electr. Power Energy Syst. 2012, 43, 779–787. [Google Scholar] [CrossRef]
- Hooshmand, A.; Poursaeidi, M.H.; Mohammadpour, J.; Malki, H.A.; Grigoriads, K. Stochastic model predictive control method for microgrid management. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies, Washington, DC, USA, 16–20 January 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. A fuzzy logic energy management system for polygeneration microgrids. Renew. Energy 2012, 41, 315–327. [Google Scholar] [CrossRef]
- Kanchev, H.; Lazarov, V.; Francois, B. Environmental and economical optimization of microgrid long term operational planning including PV-based active generators. In Proceedings of the 2012 15th International Power Electronics and Motion Control Conference, Novi Sad, Serbia, 4–6 September 2012; pp. 4–8. [Google Scholar] [CrossRef]
- Erdinc, O.; Elma, O.; Uzunoglu, M.; Selamogullari, U.; Vural, B.; Ugur, E.; Boynuegri, A.; Dusmez, S. Experimental performance assessment of an online energy management strategy for varying renewable power production suppression. Int. J. Hydrogen Energy 2012, 37, 4737–4748. [Google Scholar] [CrossRef]
- Manjili, Y.S.; Rajaee, A.; Jamshidi, M.; Kelley, B.T. Intelligent decision making for energy management in microgrids with air pollution reduction policy. In Proceedings of the 2012 7th International Conference on System of Systems Engineering, Genova, Italy, 16–19 July 2012; pp. 13–18. [Google Scholar] [CrossRef]
- Enrich, R.; Skovron, P.; Tolos, M.; Torrent-Moreno, M. Microgrid management based on economic and technical criteria. In Proceedings of the 2012 IEEE International Energy Conference and Exhibition, Florence, Italy, 9–12 September 2012; pp. 551–556. [Google Scholar] [CrossRef]
- Niknam, T.; Golestaneh, F.; Malekpour, A. Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy 2012, 43, 427–437. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Koivo, H.N. Multiobjective optimization using Mesh Adaptive Direct Search for power dispatch problem of microgrid. Int. J. Electr. Power Energy Syst. 2012, 42, 728–735. [Google Scholar] [CrossRef]
- Kriett, P.O.; Salani, M. Optimal control of a residential microgrid. Energy 2012, 42, 321–330. [Google Scholar] [CrossRef]
- Conti, S.; Nicolosi, R.; Rizzo, S.A.; Zeineldin, H.H. Optimal Dispatching of Distributed Generators and Storage Systems for MV Islanded Microgrids. IEEE Trans. Power Deliv. 2012, 27, 1243–1251. [Google Scholar] [CrossRef]
- Khorramdel, B.; Raoofat, M. Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms. Energy 2012, 45, 994–1006. [Google Scholar] [CrossRef]
- Valverde, L.; Bordons, C.; Rosa, F. Power management using model predictive control in a hydrogen-based microgrid. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 5669–5676. [Google Scholar] [CrossRef]
- Mohamed, A.; Salehi, V.; Mohammed, O. Real-Time Energy Management Algorithm for Mitigation of Pulse Loads in Hybrid Microgrids. IEEE Trans. Smart Grid 2012, 3, 1911–1922. [Google Scholar] [CrossRef]
- Zhang, X.; Sharma, R.; He, Y. Optimal energy management of a rural microgrid system using multi-objective optimization. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies, Washington, DC, USA, 16–20 January 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Hooshmand, A.; Asghari, B.; Sharma, R. A novel cost-aware multi-objective energy management method for microgrids. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference, Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mozafari, B.; Solimani, S.; Niknam, T. An Adaptive Modified Firefly Optimisation Algorithm based on Hong’s Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties. Energy 2013, 51, 339–348. [Google Scholar] [CrossRef]
- Alharbi, W.; Bhattacharya, K. Demand response and energy storage in MV islanded microgrids for high penetration of renewables. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23 August 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Song, C.; Chen, Y. Design and Implementation of Energy Management System with Fuzzy Control for DC Microgrid Systems. IEEE Trans. Power Electron. 2013, 28, 1563–1570. [Google Scholar] [CrossRef]
- Falahi, M.; Lotfifard, S.; Ehsani, M.; Butler-Purry, K. Dynamic Model Predictive-Based Energy Management of DG Integrated Distribution Systems. IEEE Trans. Power Deliv. 2013, 28, 2217–2227. [Google Scholar] [CrossRef]
- Bracco, S.; Dentici, G.; Siri, S. Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area. Energy 2013, 55, 1014–1024. [Google Scholar] [CrossRef]
- Modiri-Delshad, M.; Koohi-Kamali, S.; Taslimi, E.; Kaboli, S.H.A.; Rahim, N.A. Economic dispatch in a microgrid through an iterated-based algorithm. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology, Lankgkawi, Malaysia, 18–20 November 2013; pp. 82–87. [Google Scholar] [CrossRef]
- Zhang, D.; Shah, N.; Papageorgiou, L.G. Efficient energy consumption and operation management in a smart building with microgrid. Energy Convers. Manag. 2013, 74, 209–222. [Google Scholar] [CrossRef]
- Feroldi, D.; Degliuomini, L.N.; Basualdo, M. Energy management of a hybrid system based on wind–solar power sources and bioethanol. Chem. Eng. Res. Des. 2013, 91, 1440–1455. [Google Scholar] [CrossRef]
- Jiang, Q.; Xue, M.; Geng, G. Energy Management of Microgrid in Grid-Connected and Stand-Alone Modes. IEEE Trans. Power Syst. 2013, 28, 3380–3389. [Google Scholar] [CrossRef]
- Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; DeForest, N.; Barbosa-Póvoa, A.; Ferrão, P. Microgrid reliability modeling and battery scheduling using stochastic linear programming. Electr. Power Syst. Res. 2013, 103, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Malysz, P.; Sirouspour, S.; Emadi, A. MILP-based rolling horizon control for microgrids with battery storage. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 2099–2104. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Chen, J.; Wang, C.; Guo, L. Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System. IEEE Trans. Sustain. Energy 2013, 4, 934–943. [Google Scholar] [CrossRef]
- García, F.; Bordons, C. Optimal economic dispatch for renewable energy microgrids with hybrid storage using Model Predictive Control. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7932–7937. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, L.B. Optimal energy management for cooperative microgrids with renewable energy resources. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications, Vancouver, BC, Canada, 21–24 October 2013; pp. 678–683. [Google Scholar] [CrossRef]
- García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F. Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int. J. Hydrogen Energy 2013, 38, 14146–14158. [Google Scholar] [CrossRef]
- Levron, Y.; Guerrero, J.M.; Beck, Y. Optimal Power Flow in Microgrids With Energy Storage. IEEE Trans. Power Syst. 2013, 28, 3226–3234. [Google Scholar] [CrossRef] [Green Version]
- Babazadeh, H.; Gao, W.; Wu, Z.; Li, Y. Optimal energy management of wind power generation system in islanded microgrid system. In Proceedings of the 2013 North American Power Symposium, Manhattan, KS, USA, 22–24 September 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Mohamed, A.; Mohammed, O. Real-time energy management scheme for hybrid renewable energy systems in smart grid applications. Electr. Power Syst. Res. 2013, 96, 133–143. [Google Scholar] [CrossRef]
- García, F.; Bordons, C. Regulation service for the short-term management of renewable energy microgrids with hybrid storage using Model Predictive Control. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 7962–7967. [Google Scholar] [CrossRef]
- Liao, G. The optimal economic dispatch of smart Microgrid including Distributed Generation. In Proceedings of the 2013 International Symposium on Next-Generation Electronics, Kaohsiung, Taiwan, 25–26 February 2013; pp. 473–477. [Google Scholar] [CrossRef]
- Marzband, M.; Sumper, A.; Ruiz-Álvarez, A.; Domínguez-García, J.L.; Tomoiagă, B. Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets. Appl. Energy 2013, 106, 365–376. [Google Scholar] [CrossRef]
- Parisio, A.; Glielmo, L. Stochastic Model Predictive Control for economic/environmental operation management of microgrids. In Proceedings of the 2013 European Control Conference, Zurich, Switzerland, 17–19 July 2013; pp. 2014–2019. [Google Scholar] [CrossRef]
- Bracco, S.; Delfino, F.; Pampararo, F.; Robba, M.; Rossi, M. A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators. Energy 2014, 64, 912–922. [Google Scholar] [CrossRef]
- Parisio, A.; Rikos, E.; Glielmo, L. A Model Predictive Control Approach to Microgrid Operation Optimization. IEEE Trans. Control. Syst. Technol. 2014, 22, 1813–1827. [Google Scholar] [CrossRef]
- Prodan, I.; Zio, E. A model predictive control framework for reliable microgrid energy management. Int. J. Electr. Power Energy Syst. 2014, 61, 399–409. [Google Scholar] [CrossRef]
- Elsied, M.; Oukaour, A.; Gualous, H.; Hassan, R.; Amin, A. An advanced energy management of microgrid system based on genetic algorithm. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics, Istanbul, Turkey, 1–4 June 2014; pp. 2541–2547. [Google Scholar] [CrossRef]
- Malysz, P.; Sirouspour, S.; Emadi, A. An Optimal Energy Storage Control Strategy for Grid-connected Microgrids. IEEE Trans. Smart Grid 2014, 5, 1785–1796. [Google Scholar] [CrossRef]
- Karami, N.; Moubayed, N.; Outbib, R. Energy management for a PEMFC–PV hybrid system. Energy Convers. Manag. 2014, 82, 154–168. [Google Scholar] [CrossRef]
- Kumar, T.P.; Subrahmanyam, N.; Sydulu, M. Fuzzy controlled power management strategies for a grid connected hybrid energy system. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Roiné, L.; Therani, K.; Manjili, Y.S.; Jamshidi, M. Microgrid energy management system using fuzzy logic control. In Proceedings of the 2014 World Automation Congress, Waikoloa, HI, USA, 3–7 August 2014; pp. 462–467. [Google Scholar] [CrossRef]
- Kumar, R.H.; Ushakumari, S. Optimal management of islanded microgrid using binary particle swarm optimization. In Proceedings of the 2014 International Conference on Advances in Green Energy, Thiruvananthapuram, India, 17–18 December 2014; pp. 251–257. [Google Scholar] [CrossRef]
- Berrazouane, S.; Mohammedi, K. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system. Energy Convers. Manag. 2014, 78, 652–660. [Google Scholar] [CrossRef]
- Zhao, B.; Shi, Y.; Dong, X.; Luan, W.; Bornemann, J. Short-Term Operation Scheduling in Renewable-Powered Microgrids: A Duality-Based Approach. IEEE Trans. Sustain. Energy 2014, 5, 209–217. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. Int. J. Electr. Power Energy Syst. 2014, 63, 523–533. [Google Scholar] [CrossRef]
- Su, W.; Wang, J.; Roh, J. Stochastic Energy Scheduling in Microgrids With Intermittent Renewable Energy Resources. IEEE Trans. Smart Grid 2014, 5, 1876–1883. [Google Scholar] [CrossRef]
- Parisio, A.; Rikos, E.; Tzamalis, G.; Glielmo, L. Use of model predictive control for experimental microgrid optimization. Appl. Energy 2014, 115, 37–46. [Google Scholar] [CrossRef]
- Khodaei, A. Microgrid Optimal Scheduling With Multi-Period Islanding Constraints. IEEE Trans. Power Syst. 2014, 29, 1383–1392. [Google Scholar] [CrossRef]
- Marzband, M.; Ghadimi, M.; Sumper, A.; Domínguez-García, J.L. Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode. Appl. Energy 2014, 128, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, X.; Li, P.; Wang, K.; Xue, M.; Wang, C. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Appl. Energy 2014, 113, 1656–1666. [Google Scholar] [CrossRef]
- Faxas-Guzmán, J.; García-Valverde, R.; Serrano-Luján, L.; Urbina, A. Priority load control algorithm for optimal energy management in stand-alone photovoltaic systems. Renew. Energy 2014, 68, 156–162. [Google Scholar] [CrossRef]
- Motevasel, M.; Seifi, A.R. Expert energy management of a micro-grid considering wind energy uncertainty. Energy Convers. Manag. 2014, 83, 58–72. [Google Scholar] [CrossRef]
- Mazzola, S.; Astolfi, M.; Macchi, E. A detailed model for the optimal management of a multigood microgrid. Appl. Energy 2015, 154, 862–873. [Google Scholar] [CrossRef]
- Bruni, G.; Cordiner, S.; Mulone, V.; Rocco, V.; Spagnolo, F. A study on the energy management in domestic micro-grids based on Model Predictive Control strategies. Energy Convers. Manag. 2015, 102, 50–58. [Google Scholar] [CrossRef]
- Provata, E.; Kolokotsa, D.; Papantoniou, S.; Pietrini, M.; Giovannelli, A.; Romiti, G. Development of optimization algorithms for the Leaf Community microgrid. Renew. Energy 2015, 74, 782–795. [Google Scholar] [CrossRef]
- Pascual, J.; Barricarte, J.; Sanchis, P.; Marroyo, L. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting. Appl. Energy 2015, 158, 12–25. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Wang, C.; Cheng, L.; Rasmussen, C.N. Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid. J. Mod. Power Syst. Clean. Energy 2015, 3, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fan, X.; Han, L.; Ge, L. Improved Interval Optimization Method Based on Differential Evolution for Microgrid Economic Dispatch. Electr. Power Compon. Syst. 2015, 43, 1882–1890. [Google Scholar] [CrossRef]
- Baldi, S.; Karagevrekis, A.; Michailidis, I.T.; Kosmatopoulos, E.B. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy Convers. Manag. 2015, 101, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F.; Marietta, M.P. Optimal Fuzzy Logic EMS design for residential grid-connected microgrid with hybrid renewable generation and storage. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics, Buzios, Brazil, 3–5 June 2015; pp. 742–747. [Google Scholar] [CrossRef]
- Nikmehr, N.; Najafi-Ravadanegh, S. Optimal operation of distributed generations in micro-grids under uncertainties in load and renewable power generation using heuristic algorithm. IET Renew. Power Gener. 2015, 9, 982–990. [Google Scholar] [CrossRef]
- Brka, A.; Kothapalli, G.; Al-Abdeli, Y.M. Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation. Int. J. Hydrogen Energy 2015, 40, 9907–9916. [Google Scholar] [CrossRef]
- Olivares, D.E.; Lara, J.D.; Cañizares, C.A.; Kazerani, M. Stochastic-Predictive Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2015, 6, 2681–2693. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; García-Triviño, P.; Fernández-Ramirez, L.M.; Jurado, F. Control based on techno-economic optimization of renewable hybrid energy system for stand-alone applications. Expert Syst. Appl. 2016, 51, 59–75. [Google Scholar] [CrossRef]
- Venayagamoorthy, G.K.; Sharma, R.K.; Gautam, P.K.; Ahmadi, A. Dynamic Energy Management System for a Smart Microgrid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1643–1656. [Google Scholar] [CrossRef]
- Huang, C.; Yue, D.; Xie, J.; Li, Y.; Wang, K. Economic dispatch of power systems with virtual power plant based interval optimization method. CSEE J. Power Energy Syst. 2016, 2, 74–80. [Google Scholar] [CrossRef]
- Karki, R.S.; Chanana, S. Energy management system for local energy market in microgrid consisting fuel cell. In Proceedings of the 2016 7th India International Conference on Power Electronics, Patiala, India, 17–19 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Li, X.; Liu, Y.; Jiao, B.; Wang, W.; Wang, C.; Li, F. Energy Management System for Stand-Alone Wind-Powered-Desalination Microgrid. IEEE Trans. Smart Grid 2016, 7, 1079–1087. [Google Scholar] [CrossRef]
- Almada, J.B.; Leão, R.P.S.; Sampaio, R.F.; Barroso, G.C. A centralized and heuristic approach for energy management of an AC microgrid. Renew. Sustain. Energy Rev. 2016, 60, 1396–1404. [Google Scholar] [CrossRef]
- Sohn, J. Generation Applications Package for Combined Heat Power in On-Grid and Off-Grid Microgrid Energy Management System. IEEE Access 2016, 4, 3444–3453. [Google Scholar] [CrossRef]
- Athari, M.H.; Ardehali, M.M. Operational performance of energy storage as function of electricity prices for on-grid hybrid renewable energy system by optimized fuzzy logic controller. Renew. Energy 2016, 85, 890–902. [Google Scholar] [CrossRef]
- Minchala-Avila, L.I.; Garza-Castañón, L.; Zhang, Y.; Ferrer, H.J.A. Optimal Energy Management for Stable Operation of an Islanded Microgrid. IEEE Trans. Ind. Inform. 2016, 12, 1361–1370. [Google Scholar] [CrossRef] [Green Version]
- Valencia, F.; Sáez, D.; Collado, J.; Ávila, F.; Marquez, A.; Espinosa, J.J. Robust Energy Management System Based on Interval Fuzzy Models. IEEE Trans. Control. Syst. Technol. 2016, 24, 140–157. [Google Scholar] [CrossRef]
- Valencia, F.; Collado, J.; Sáez, D.; Marín, L.G. Robust Energy Management System for a Microgrid Based on a Fuzzy Prediction Interval Model. IEEE Trans. Smart Grid 2016, 7, 1486–1494. [Google Scholar] [CrossRef]
- Marzband, M.; Yousefnejad, E.; Sumper, A.; Domínguez-García, J.L. Real time experimental implementation of optimum energy management system in standalone Microgrid by using multi-layer ant colony optimization. Int. J. Electr. Power Energy Syst. 2016, 75, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Xu, D.; Zhou, Z.; Lee, W.; Zhao, B. Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle Swarm Optimization. IEEE Trans. Smart Grid 2016, 7, 66–73. [Google Scholar] [CrossRef]
- Anglani, N.; Oriti, G.; Colombini, M. Optimized energy management system to reduce fuel consumption in remote military microgrids. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, D.; Mahmood, H.; Jiang, J. A Predictive Energy Management System Using Pre-Emptive Load Shedding for Islanded Photovoltaic Microgrids. IEEE Trans. Ind. Electron. 2017, 64, 5440–5448. [Google Scholar] [CrossRef]
- Solanki, B.V.; Bhattacharya, K.; Cañizares, C.A. A Sustainable Energy Management System for Isolated Microgrids. IEEE Trans. Sustain. Energy 2017, 8, 1507–1517. [Google Scholar] [CrossRef]
- Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Guerrero, J.M. An Optimal Energy Management System for Islanded Microgrids Based on Multiperiod Artificial Bee Colony Combined With Markov Chain. IEEE Syst. J. 2017, 11, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
- Leonori, S.; Paschero, M.; Rizzi, A.; Mascioli, F.M.F. An optimized microgrid energy management system based on FIS-MO-GA paradigm. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems, Naples, Italy, 9–12 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, H.; Wang, J.; Qin, W. Day-ahead microgrid energy management optimization scheduling scheme. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration, Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Borase, P.B.; Akolkar, S.M. Energy management system for microgrid with power quality improvement. In Proceedings of the 2017 International Conference on Microelectronic Devices, Circuits and Systems, Vellore, India, 10–12 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Aznavi, S.; Fajri, P.; Benidris, M.; Falahati, B. Hierarchical droop controlled frequency optimization and energy management of a grid-connected microgrid. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability, Phoenix, AZ, USA, 12–14 November 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Solanki, B.V.; Raghurajan, A.; Bhattacharya, K.; Cañizares, C.A. Including Smart Loads for Optimal Demand Response in Integrated Energy Management Systems for Isolated Microgrids. IEEE Trans. Smart Grid 2017, 8, 1739–1748. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Z.; Ai, Q.; Lee, W. Interactive Model for Energy Management of Clustered Microgrids. IEEE Trans. Ind. Appl. 2017, 53, 1739–1750. [Google Scholar] [CrossRef]
- Sukumar, S.; Mokhlis, H.; Mekhilef, S.; Naidu, K.; Karimi, M. Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid. Energy 2017, 118, 1322–1333. [Google Scholar] [CrossRef] [Green Version]
- Sarshar, J.; Moosapour, S.S.; Joorabian, M. Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting. Energy 2017, 139, 680–693. [Google Scholar] [CrossRef]
- Nwulu, N.I.; Xia, X. Optimal dispatch for a microgrid incorporating renewables and demand response. Renew. Energy 2017, 101, 16–28. [Google Scholar] [CrossRef]
- Tushar, M.H.K.; Assi, C. Optimal Energy Management and Marginal-Cost Electricity Pricing in Microgrid Network. IEEE Trans. Ind. Inform. 2017, 13, 3286–3298. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Modarresi, J. Stochastic energy management in a practical smart microgrid in Davarzan-Iran considering demand response with wind and PV power scenarios. In Proceedings of the 2017 Smart Grid Conference, Tehran, Iran, 20–21 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Youssef, T.A.; Hariri, M.E.; Elsayed, A.T.; Mohammed, O.A. A DDS-Based Energy Management Framework for Small Microgrid Operation and Control. IEEE Trans. Ind. Inform. 2018, 14, 958–968. [Google Scholar] [CrossRef]
- Romero-Quete, D.; Cañizares, C.A. An Affine Arithmetic-Based Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2018, 1. [Google Scholar] [CrossRef]
- Zachar, M.; Daoutidis, P. Energy management and load shaping for commercial microgrids coupled with flexible building environment control. J. Energy Storage 2018, 16, 61–75. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Trans. Smart Grid 2018, 9, 530–543. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, C. Islanding-Aware Robust Energy Management for Microgrids. IEEE Trans. Smart Grid 2018, 9, 1301–1309. [Google Scholar] [CrossRef]
- Aghajani, G.; Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep. 2018, 4, 218–225. [Google Scholar] [CrossRef]
- Luna, A.C.; Meng, L.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Online Energy Management Systems for Microgrids: Experimental Validation and Assessment Framework. IEEE Trans. Power Electron. 2018, 33, 2201–2215. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y. Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Appl. Energy 2018, 210, 974–986. [Google Scholar] [CrossRef]
- Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response. Renew. Energy 2018, 123, 460–474. [Google Scholar] [CrossRef]
- Moradi, H.; Esfahanian, M.; Abtahi, A.; Zilouchian, A. Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system. Energy 2018, 147, 226–238. [Google Scholar] [CrossRef]
- Goroohi Sardou, I.; Zare, M.; Azad-Farsani, E. Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode. Int. J. Electr. Power Energy Syst. 2018, 98, 118–132. [Google Scholar] [CrossRef]
- Julian, A.L.; Oriti, G.; Ji, C.; Zanchetta, P. Single-Phase Energy Management System Operating in Islanding Mode With Repetitive Control and Active Damping. IEEE Trans. Ind. Appl. 2018, 54, 5163–5172. [Google Scholar] [CrossRef]
- Hu, W.; Wang, P.; Gooi, H.B. Toward Optimal Energy Management of Microgrids via Robust Two-Stage Optimization. IEEE Trans. Smart Grid 2018, 9, 1161–1174. [Google Scholar] [CrossRef]
- Wu, N.; Wang, H. Deep learning adaptive dynamic programming for real time energy management and control strategy of micro-grid. J. Clean Prod. 2018, 204, 1169–1177. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Pratt, A.; Baggu, M. Design of an advanced energy management system for microgrid control using a state machine. Appl. Energy 2018, 228, 2407–2421. [Google Scholar] [CrossRef]
- Chamandoust, H. Economic Scheduling of Microgrid Based on Energy Management and Demand Response. Electr. Control Commun. Eng. 2018, 14, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Olama, A.; Mendes, P.R.C.; Camacho, E.F. Lyapunov-based hybrid model predictive control for energy management of microgrids. IET Gener. Transm. Distrib. 2018, 12, 5770–5780. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, L.; Zhu, W.; Bao, X.; Liu, C. Robust model predictive control for optimal energy management of island microgrids with uncertainties. Energy 2018, 164, 1229–1241. [Google Scholar] [CrossRef]
Feature ID | Letter Code | Attribute ID | Letter Code |
---|---|---|---|
Detail level of components | A | Static models | STM |
Dynamic models | DYM | ||
Objective function | B | Single-objective | SOBJ |
Multi-objective | MOBJ | ||
Resolution technique | C | Mathematical programming | MP |
Computational intelligence | CI | ||
Hybrid Methods | HM | ||
Inputs | D | Generation forecast | GFO |
Demand forecast | DFO | ||
Weather forecast | WFO | ||
Other inputs | OIN | ||
Outputs | E | Dispatch setpoints | DSET |
UC setpoints | UC | ||
DSM setpoints | DSM | ||
Other outputs | OOU | ||
Operating model | F | DC load flow | DC |
AC load flow | AC | ||
Optimization horizon | G | Seconds | SEC |
Minutes | MIN | ||
Hours | HR | ||
Day(s) | DY | ||
Year(s) | YR | ||
Consideration of uncertainties | H | Demand | DM |
Generation | GE | ||
Grid | GR | ||
Storage | ST | ||
Data acquisition time | I | Minutes | MIN |
Seconds | SEC | ||
Milliseconds | MILI | ||
Data updating time | J | Hours | HR |
Minutes | MIN | ||
Seconds | SEC | ||
Milliseconds | MILI |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espín-Sarzosa, D.; Palma-Behnke, R.; Núñez-Mata, O. Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures. Energies 2020, 13, 547. https://doi.org/10.3390/en13030547
Espín-Sarzosa D, Palma-Behnke R, Núñez-Mata O. Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures. Energies. 2020; 13(3):547. https://doi.org/10.3390/en13030547
Chicago/Turabian StyleEspín-Sarzosa, Danny, Rodrigo Palma-Behnke, and Oscar Núñez-Mata. 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures" Energies 13, no. 3: 547. https://doi.org/10.3390/en13030547
APA StyleEspín-Sarzosa, D., Palma-Behnke, R., & Núñez-Mata, O. (2020). Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures. Energies, 13(3), 547. https://doi.org/10.3390/en13030547