Development of a Decision-Making Framework for Distributed Energy Systems in a German District
Abstract
:1. Introduction
2. The Case Study—Energetisches Nachbarschaftsquartier Fliegerhorst Oldenburg
3. Basic Concept of the Energy System Design Process
4. Targeting Phase
5. Synthesis Phase
5.1. Technological Preselection
5.2. Boundary Conditions
5.3. Superstructure Design
6. Design Phase
6.1. Load Curves and Other Time Series
6.2. Energy System Modeling and Simulation
6.3. Optimal Sizing
6.4. Risk Analysis
- Risk identification
- Risk analysis
- Risk management
- Risk monitoring
- Technical Risk
- (a)
- Topological Risk
- (b)
- Operational Risk
- Economic Risk
- (a)
- Price Risk
- (b)
- Technical Risk
- (c)
- Financial Risk
6.5. Investment Decision and Construction
7. Operation Phase
7.1. Local Market Design
7.2. Operation Strategy
7.3. Maintenance
8. Results, Research Gaps, and Future Work
- Novel business models for the energy system coordination
- Calculating heat grid behavior from GIS data
- Using the district on national or regional flexibility markets
- Exergetic heat storage modeling
- Modeling of the time-resolved spec. CO2 emission
- Measurement Concept for distributed generation under German regulation
- Demand Side Management capabilities of districts
- Influence of incentives of the residents (e.g., dynamic pricing)
- Alternative plant deployment planning
- Calculating roof shading from architectural models
- District energy cooperatives
- IoT usage for energy system operation
- …
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CHP | Combined Heat and Power |
EUC | Energy Utility Company |
KPI | Key Performance Indicator |
MCDA | Multiple-Criteria Decision Analysis |
MCS | Monte Carlo Simulation |
MILP | Mixed Integer Linear Programming |
MINLP | Mixed Integer Nonlinear Programming |
PV | Photovoltaics |
References
- Stadt Oldenburg i.O.—Stabsstelle Fliegerhorst. Fliegerhorst Oldenburg|Zukunftsplan 2030+. Available online: https://www.oldenburg.de/fileadmin/oldenburg/Benutzer/PDF/Fliegerhorst/Masterplan_Fliegerhorst.pdf (accessed on 20 October 2019).
- OFFIS—Institute for Information Technology. Smart City Oldenburg—Der Mensch im Zentrum. Available online: https://www.oldenburg.de/fileadmin/oldenburg/Benutzer/PDF/11/113/Kurzfassung_Abschlussbericht_Smart_City_Oldenburg.pdf (accessed on 20 October 2019).
- Soroudi, A.; Amraee, T. Decision making under uncertainty in energy systems: State of the art. Renew. Sustain. Energy Rev. 2013, 28, 376–384. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Kühberger, A.; Schulte-Mecklenbeck, M. Theories of Economic Decision-Making: Value, Risk and Affect. In Economic Psychology; Ranyard, R., Ed.; BPS Textbooks in Psychology; Wiley-Blackwell: Hoboken, NJ, USA, 2018; Volume 16, pp. 19–34. [Google Scholar] [CrossRef]
- Gilboa, I.; Rouziou, M.; Sibony, O. Decision theory made relevant: Between the software and the shrink. Res. Econ. 2018, 72, 240–250. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, X.; Xu, Z.; Fujita, H. Emergency decision making for natural disasters: An overview. Int. J. Disaster Risk Reduct. 2018, 27, 567–576. [Google Scholar] [CrossRef]
- Horita, F.E.; de Albuquerque, J.P.; Marchezini, V.; Mendiondo, E.M. Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil. Decis. Support Syst. 2017, 97, 12–22. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Xiao, F.; Deng, X.; Deng, Y. A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: An application in medical diagnosis. Artif. Intell. Med. 2016, 69, 1–11. [Google Scholar] [CrossRef]
- Xiao, F. A Hybrid Fuzzy Soft Sets Decision Making Method in Medical Diagnosis. IEEE Access 2018, 6, 25300–25312. [Google Scholar] [CrossRef]
- Majidi, M.; Mohammadi-Ivatloo, B.; Soroudi, A. Application of information gap decision theory in practical energy problems: A comprehensive review. Appl. Energy 2019, 249, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, A.; Carpinelli, G.; Mottola, F.; Proto, D.; Russo, A. Decision Theory Criteria for the Planning of Distributed Energy Storage Systems in the Presence of Uncertainties. IEEE Access 2018, 6, 62136–62151. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Zhang, S.J.; Xiao, Y.H. Optimal design of distributed energy resource systems under large-scale uncertainties in energy demands based on decision-making theory. Therm. Sci. 2019, 23, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Polatidis, H.; Haralambopoulos, D.A.; Munda, G.; Vreeker, R. Selecting an Appropriate Multi-Criteria Decision Analysis Technique for Renewable Energy Planning. Energy Sources Part B Econ. Planning Policy 2006, 1, 181–193. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2005, 11, 1584–1595. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. Promethee Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Springer-Verlag: New York, NY, USA, 2005; Volume 78, pp. 163–186. [Google Scholar] [CrossRef]
- Figueira, J.R.; Greco, S.; Roy, B.; Słowiński, R. ELECTRE Methods: Main Features and Recent Developments. In Handbook of Multicriteria Analysis; Zopounidis, C., Pardalos, P.M., Eds.; Applied Optimization; Springer: Berlin/Heidelberg, Germany, 2010; Volume 103, pp. 51–89. [Google Scholar] [CrossRef] [Green Version]
- Fancello, G.; Carta, M.; Fadda, P. Road intersections ranking for road safety improvement: Comparative analysis of multi-criteria decision making methods. Transp. Policy 2019, 80, 188–196. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M.D. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature. Transport 2015, 31, 359–385. [Google Scholar] [CrossRef] [Green Version]
- Mühlbacher, A.C.; Kaczynski, A. Making Good Decisions in Healthcare with Multi-Criteria Decision Analysis: The Use, Current Research and Future Development of MCDA. Appl. Health Econ. Health Policy 2016, 14, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Glaize, A.; Duenas, A.; Di Martinelly, C.; Fagnot, I. Healthcare decision-making applications using multicriteria decision analysis: A scoping review. J. Multi-Criteria Decis. Anal. 2019, 26, 62–83. [Google Scholar] [CrossRef] [Green Version]
- Özkale, C.; Celik, C.; Turkmen, A.C.; Cakmaz, E.S. Decision analysis application intended for selection of a power plant running on renewable energy sources. Renew. Sustain. Energy Rev. 2017, 70, 1011–1021. [Google Scholar] [CrossRef]
- Kirppu, H.; Lahdelma, R.; Salminen, P. Multicriteria evaluation of carbon-neutral heat-only production technologies for district heating. Appl. Therm. Eng. 2018, 130, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Sahabmanesh, A.; Saboohi, Y. Model of sustainable development of energy system, case of Hamedan. Energy Policy 2017, 104, 66–79. [Google Scholar] [CrossRef]
- Zeng, Y.; Cai, Y.; Huang, G.; Dai, J. A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies 2011, 4, 1624–1656. [Google Scholar] [CrossRef]
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Gimelli, A.; Muccillo, M.; Sannino, R. Optimal design of modular cogeneration plants for hospital facilities and robustness evaluation of the results. Energy Convers. Manag. 2017, 134, 20–31. [Google Scholar] [CrossRef]
- Nimma, K.; Al-Falahi, M.; Nguyen, H.D.; Jayasinghe, S.D.G.; Mahmoud, T.; Negnevitsky, M. Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids. Energies 2018, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yin, W.; Abdollahi, E.; Lahdelma, R.; Jiao, W. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Appl. Energy 2015, 159, 401–421. [Google Scholar] [CrossRef]
- Buoro, D.; Casisi, M.; de Nardi, A.; Pinamonti, P.; Reini, M. Multicriteria optimization of a distributed energy supply system for an industrial area. Energy 2013, 58, 128–137. [Google Scholar] [CrossRef]
- Urbanucci, L.; D’Ettorre, F.; Testi, D. A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage. Energies 2019, 12, 875. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Leahy, M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 2010, 87, 1059–1082. [Google Scholar] [CrossRef]
- Schmeling, L.; Klement, P.; Erfurth, T.; Kästner, J.; Hanke, B.; von Maydell, K.; Agert, C. Review of Different Software Solutions for the Holistic Simulation of Distributed Hybrid Energy Systems for the Commercial Energy Supply. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017; pp. 1994–1998. [Google Scholar] [CrossRef]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Jordanger, E.; Bakken, B.H.; Holen, A.T.; Helseth, A.; Botterud, A. Energy distribution system planning—Methodologies and tools for multi-criteria decision analysis. In Proceedings of the 18th International Conference on Electricity Distribution, Institution of Electrical Engineers, Turin, Italy, 6–9 June 2005. [Google Scholar] [CrossRef] [Green Version]
- Mirakyan, A.; de Guio, R. Integrated energy planning in cities and territories: A review of methods and tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297. [Google Scholar] [CrossRef]
- Bagheri, A.; Hjorth, P. Planning for sustainable development: A paradigm shift towards a process-based approach. Sustain. Dev. 2007, 15, 83–96. [Google Scholar] [CrossRef]
- Frangopoulos, C.A.; Spakovsky, M.R.; Sciubba, E. A Brief Review of Methods for the Design and Synthesis Optimization of Energy Systems. Int. J. Appl. Thermodyn. 2002, 5, 151–160. [Google Scholar] [CrossRef]
- Doran, G.T. There’s a S.M.A.R.T. way to write management’s goals and objectives. Manag. Rev. 1981, 70, 35–36. [Google Scholar]
- Jenkins, N.; Ekanayake, J.; Strbac, G. Distributed Generation; Institution of Engineering and Technology: London, UK, 2010. [Google Scholar] [CrossRef]
- DIN EN ISO 14064-1. Greenhouse Gases—Part 1: Specification With Guidance at The Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Hörsch, J.; Schäfer, M.; Becker, S.; Schramm, S.; Greiner, M. Flow tracing as a tool set for the analysis of networked large-scale renewable electricity systems. Int. J. Electr. Power & Energy Syst. 2018, 96, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Tranberg, B.; Corradi, O.; Lajoie, B.; Gibon, T.; Staffell, I.; Andresen, G.B. Real-time carbon accounting method for the European electricity markets. Energy Strategy Rev. 2019, 26, 100367. [Google Scholar] [CrossRef]
- VDI 2067 Part 1. Economic Efficiency of Building Installations: Fundamentals and Economic Calculation. Available online: https://www.vdi.de/richtlinien/details/vdi-2067-blatt-1-wirtschaftlichkeit-gebaeudetechnischer-anlagen-grundlagen-und-kostenberechnung-1 (accessed on 1 December 2019).
- Carvalho, M.; Lozano, M.A.; Serra, L.M. Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. Appl. Energy 2012, 91, 245–254. [Google Scholar] [CrossRef]
- Zufferey, T.; Toffanin, D.; Toprak, D.; Ulbig, A.; Hug, G. Generating Stochastic Residential Load Profiles from Smart Meter Data for an Optimal Power Matching at an Aggregate Level. In Proceedings of the 20th IEEE Power Systems Computation Conference, Dublin, Ireland, 11–15 June 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Pillai, G.G.; Putrus, G.A.; Pearsall, N.M. Generation of synthetic benchmark electrical load profiles using publicly available load and weather data. Int. J. Electr. Power Energy Syst. 2014, 61, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.M.G.; Pouresmaeil, E.; Canizares, C.A.; Bhattacharya, K.; Mosaddegh, A.; Solanki, B.V. Smart Residential Load Simulator for Energy Management in Smart Grids. IEEE Trans. Ind. Electron. 2019, 66, 1443–1452. [Google Scholar] [CrossRef] [Green Version]
- Pflugradt, N.; Muntwyler, U. Synthesizing residential load profiles using behavior simulation. Energy Procedia 2017, 122, 655–660. [Google Scholar] [CrossRef]
- Oemof Developer Group. Oemof—Open Energy Modelling Framework (v0.3.1). 2019. Available online: https://zenodo.org/record/1302372#.Xif3p9Uxmw4 (accessed on 1 December 2019).
- Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (oemof)—A new approach to facilitate open science in energy system modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Kaldemeyer, C.; Boysen, C.; Tuschy, I. Compressed Air Energy Storage in the German Energy System—Status Quo & Perspectives. Energy Procedia 2016, 99, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Möller, C.; Kuhnke, K.; Reckzügel, M.; Pfisterer, H.J.; Rosenberger, S. Energy storage potential in the Northern German region Osnabrück-Steinfurt. In Proceedings of the International Energy and Sustainability Conference, Cologne, Germany, 30 June–1 July 2016. [Google Scholar] [CrossRef]
- Arnhold, O.; Fleck, M.; Goldammer, K.; Grüger, F.; Hoch, O.; Schachler, B. Transformation of the German energy and transport sector—A national analysis. In Netzintegration der Elektromobilität 2017; Liebl, J., Ed.; Proceedings, Gabler: Wiesbaden, Germany, 2017; pp. 9–21. [Google Scholar] [CrossRef]
- Maruf, M.N.I. Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective. Energies 2019, 12, 4298. [Google Scholar] [CrossRef] [Green Version]
- Saltzman, M.J. Coin-Or: An Open-Source Library for Optimization. In Programming Languages and Systems in Computational Economics and Finance; Nielsen, S.S., Ed.; Advances in Computational Economics; Springer: Boston, MA, USA, 2002; Volume 18, pp. 3–32. [Google Scholar] [CrossRef]
- Forrest, J.; Ralphs, T.; Vigerske, S.; Hafer, L.; Kristjansson, B.; Straver, E.; Lubin, M.; Gambini Santos, H.; Saltzman, M. Coin-Or/Cbc: Version 2.9.9. 2018. Available online: https://zenodo.org/record/1317566#.Xif4K9Uxmw4 (accessed on 1 December 2019).
- Klein, S.A.; Beckman, W.A.; Duffie, J.A. A design procedure for solar heating systems. Sol. Energy 1976, 18, 113–127. [Google Scholar] [CrossRef]
- Pham, C.T.; Månsson, D. Optimal energy storage sizing using equivalent circuit modelling for prosumer applications (Part II). J. Energy Storage 2018, 18, 1–15. [Google Scholar] [CrossRef]
- Traoré, A.; Elgothamy, H.; Zohdy, M.A. Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm. J. Power Energy Eng. 2018, 06, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Abd-el Motaleb, A.M.; Bekdach, S.K. Optimal sizing of distributed generation considering uncertainties in a hybrid power system. Int. J. Electr. Power Energy Syst. 2016, 82, 179–188. [Google Scholar] [CrossRef]
- Abdollahi, G.; Sayyaadi, H. Application of the multi-objective optimization and risk analysis for the sizing of a residential small-scale CCHP system. Energy Build. 2013, 60, 330–344. [Google Scholar] [CrossRef]
- Paliwal, N.K.; Singh, A.K.; Singh, N.K.; Kumar, P. Optimal sizing and operation of battery storage for economic operation of hybrid power system using artificial bee colony algorithm. Int. Trans. Electr. Energy Syst. 2019, 29, e2685. [Google Scholar] [CrossRef] [Green Version]
- Twaha, S.; Ramli, M.A. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Prakash, P.; Khatod, D.K. Optimal sizing and siting techniques for distributed generation in distribution systems: A review. Renew. Sustain. Energy Rev. 2016, 57, 111–130. [Google Scholar] [CrossRef]
- Mekontso, C.; Abubakar, A.; Madugu, S.; Ibrahim, O.; Adediran, Y.A. Review of Optimization Techniques for Sizing Renewable Energy Systems. Comput. Eng. Appl. J. 2019, 8, 13–30. [Google Scholar] [CrossRef]
- Schmeling, L. Auslegungsoptimierung und wirtschaftliche Risikobewertung des kombinierten Einsatzes von Solarthermie und Blockheizkraftwerk für die kommerzielle Energieversorgung. Master’s Thesis, University of Oldenburg, Oldenburg, Germany, 2017. [Google Scholar]
- Biscani, F.; Izzo, D.; Yam, C.H. A Global Optimisation Toolbox for Massively Parallel Engineering Optimisation. In Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques, Spain, Madrid, 3–6 May 2010. [Google Scholar]
- Biscani, F.; Izzo, D.; Jakob, W.; Acciarini, G.; Marcus Märtens, M.C.M.; Mereta, A.; Kaldemeyer, C.; Lyskov, S.; Corlay, S.; Pritchard, B.; et al. pagmo 2.11.4. 2019. Available online: https://zenodo.org/record/3464510#.Xif4mtUxmw4 (accessed on 1 December 2019).
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of different time series aggregation methods on optimal energy system design. Renew. Energy 2018, 117, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Arnold, U.; Yildiz, Ö. Economic risk analysis of decentralized renewable energy infrastructures—A Monte Carlo Simulation approach. Renew. Energy 2015, 77, 227–239. [Google Scholar] [CrossRef]
- Urbanucci, L.; Testi, D. Optimal integrated sizing and operation of a CHP system with Monte Carlo risk analysis for long-term uncertainty in energy demands. Energy Convers. Manag. 2018, 157, 307–316. [Google Scholar] [CrossRef]
- Akbari, K.; Jolai, F.; Ghaderi, S.F. Optimal design of distributed energy system in a neighborhood under uncertainty. Energy 2016, 116, 567–582. [Google Scholar] [CrossRef]
- Sorknæs, P.; Lund, H.; Andersen, A.N. Future power market and sustainable energy solutions—The treatment of uncertainties in the daily operation of combined heat and power plants. Appl. Energy 2015, 144, 129–138. [Google Scholar] [CrossRef]
- Gleißner, W. Grundlagen des Risikomanagements; Vahlen: München, Germany, 2008. [Google Scholar]
- Guerrero-Liquet, G.; Sánchez-Lozano, J.; García-Cascales, M.; Lamata, M.; Verdegay, J. Decision-Making for Risk Management in Sustainable Renewable Energy Facilities: A Case Study in the Dominican Republic. Sustainability 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Vose, D. Risk Analysis: A Quantitative Guide; Wiley: Chichester, UK, 2008. [Google Scholar]
- Rodriguez, L.R.; Lissen, J.M.S.; Ramos, J.S.; Jara, E.A.R.; Dominguez, S.A. Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems. Appl. Energy 2016, 165, 828–838. [Google Scholar] [CrossRef]
- Salmerón Lissén, J.; Romero Rodríguez, L.; Durán Parejo, F.; La Sánchez de Flor, F. An Economic, Energy, and Environmental Analysis of PV/Micro-CHP Hybrid Systems: A Case Study of a Tertiary Building. Sustainability 2018, 10, 4082. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.; Mayrhofer, J.; Schmidt, R.R.; Tichler, R. Socioeconomic cost-benefit-analysis of seasonal heat storages in district heating systems with industrial waste heat integration. Energy 2018, 160, 868–874. [Google Scholar] [CrossRef]
- Lee, A. Mcerp: Monte Carlo Error Propagation. Available online: https://pythonhosted.org/mcerp/ (accessed on 1 December 2019).
- Mengelkamp, E.; Bose, S.; Kremers, E.; Eberbach, J.; Hoffmann, B.; Weinhardt, C. Increasing the efficiency of local energy markets through residential demand response. Energy Informatics 2018, 1, 1989. [Google Scholar] [CrossRef]
- Hvelplund, F. Renewable energy and the need for local energy markets. Energy 2006, 31, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Münster, E. Integrated energy systems and local energy markets. Energy Policy 2006, 34, 1152–1160. [Google Scholar] [CrossRef]
- Ampatzis, M.; Nguyen, P.H.; Kling, W. Local electricity market design for the coordination of distributed energy resources at district level. In Proceedings of the 5th IEEE PES Innovative Smart Grid Technologies Conference Europe, Istanbul, Turkey, 12–15 October 2014. [Google Scholar] [CrossRef]
- Christodoulou, G.; Sgouritsa, A.; Tang, B. On the Efficiency of the Proportional Allocation Mechanism for Divisible Resources. Theory Comput. Syst. 2016, 59, 600–618. [Google Scholar] [CrossRef] [Green Version]
- Faqiry, M.N.; Das, S. Double-Sided Energy Auction in Microgrid: Equilibrium Under Price Anticipation. IEEE Access 2016, 4, 3794–3805. [Google Scholar] [CrossRef] [Green Version]
- Majumder, B.P.; Faqiry, M.N.; Das, S.; Pahwa, A. An efficient iterative double auction for energy trading in microgrids. In Proceedings of the IEEE Symposium on Computational Intelligence Applications in Smart Grid, Orlando, FL, USA, 9–12 December 2014. [Google Scholar] [CrossRef]
- Joo, I.Y.; Choi, D.H. Distributed Optimization Framework for Energy Management of Multiple Smart Homes With Distributed Energy Resources. IEEE Access 2017, 5, 15551–15560. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Aste, N.; Manfren, M. Optimization concepts in district energy design and management—A case study. Energy Procedia 2012, 14, 1386–1391. [Google Scholar] [CrossRef] [Green Version]
- Fanti, M.; Mangini, A.; Roccotelli, M.; Ukovich, W.; Pizzuti, S. A Control Strategy for District Energy Management. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Gothenburg, Sweden, 24–28 August 2015. [Google Scholar] [CrossRef]
- Guzek, M.; Bialek, J.; Krolikowski, B.; Bielecki, A.; Swirski, K.; Wojdan, K. Advanced Algorithms for Operational Optimization and Predictive Maintenance of Large District Heating Systems. In Proceedings of the 2019 IEEE 6th International Conference on Energy Smart Systems, Kyiv, Ukraine, 17–19 April 2019; pp. 165–170. [Google Scholar] [CrossRef]
- Sernhed, K.; Jönsson, M. Risk management for maintenance of district heating networks. Energy Procedia 2017, 116, 381–393. [Google Scholar] [CrossRef]
Category | Stakeholder | Possible Objectives |
---|---|---|
Privat Persons | Residents of the district | Secure, cheap, and climate-friendly energy supply |
Residents of the surrounding districts | Little nuisance due to energy supply | |
Citizens of the town | Showcase project of the city | |
Legal Person | Energy Utility Company (EUC) | Selling energy with the highest possible profit to the residents |
Distribution System Operator | Reliable supply of the district and use of local flexibilities | |
Real Estate Developer | Reliable and inexpensive system to make it as easy as possible to sell/rent apartments | |
Plant owner | Produce energy cheaply and sell it with maximum profit to the EUC | |
Energy Cooperative | Involving residents in the local energy supply | |
Politics | City Council | Showcase project of the “Energiewende” and high transferability |
Regional politics | ||
Federal politics | ||
Other | City administration | Attractive neighborhood, high satisfaction of the citizens and thus high profit from tax revenues |
Universities and research institutions | Environment for testing innovations under real conditions (Living Lab) | |
Press | Report on exciting and future-oriented projects |
Source | Distribution | Storage | Coupling | Demand |
---|---|---|---|---|
Photovoltaic (PV) | District Heating Network | Hydrogen | Heat Pump | Electricity |
Cogeneration (CHP) | District Heating Network (low ex) | Battery | Power2Gas | Heat |
Fuel Cell | Electricity Grid | Redox Flow Battery | Fuel Cells | Cold |
Solar Thermal | Natural Gas Grid | Ice Storage | Power2Heat | E Mobility |
Gas Boiler | Hydrogen Grid | Hot Water Storage | Hydrogen | |
Biomass Boiler | Electric Car | |||
Geothermal | ||||
Small Wind Turbine | ||||
Power2Heat | ||||
Heat Pump |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmeling, L.; Schönfeldt, P.; Klement, P.; Wehkamp, S.; Hanke, B.; Agert, C. Development of a Decision-Making Framework for Distributed Energy Systems in a German District. Energies 2020, 13, 552. https://doi.org/10.3390/en13030552
Schmeling L, Schönfeldt P, Klement P, Wehkamp S, Hanke B, Agert C. Development of a Decision-Making Framework for Distributed Energy Systems in a German District. Energies. 2020; 13(3):552. https://doi.org/10.3390/en13030552
Chicago/Turabian StyleSchmeling, Lucas, Patrik Schönfeldt, Peter Klement, Steffen Wehkamp, Benedikt Hanke, and Carsten Agert. 2020. "Development of a Decision-Making Framework for Distributed Energy Systems in a German District" Energies 13, no. 3: 552. https://doi.org/10.3390/en13030552