Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Simulation Model
- v(t)—the momentary speed of the vehicle in the test (m/s)
- t—the end time of simulation (s).
- v(t)—the momentary speed of the vehicle in the test (km/h)
- F0—rolling resistance coefficient (N)
- F1—linear resistance coefficient (km/h)
- F2—aerodynamic resistance coefficient (N/(km/h)2).
- v(t)—the momentary speed of the vehicle in the test (m/s)
- M—vehicle calculation weight (kg).
- Mun—torque acting on the gear shaft (N·m)
- P1—momentary force on wheels from resistance to motion (N)
- P2—momentary force on wheels from inertia (N)
- R—wheel radius (m)
- R1—drive system shifts for the torque (-).
- ωun—rotational speed of the gear shaft (rads/s)
- v(t)—the momentary speed of the vehicle in the test (m/s)
- R—wheel radius (m)
- R2—drive system shifts for rotational speed (-).
- Msi—momentary torque on the vehicle’s gear (N·m)
- ωsi—momentary rotational speed on the vehicle’s gear (rad/s).
- —fuel flux (g/s)
- —function of hourly fuel consumption depending on rotational speed and torque (g/s)
- —air flux (g/s)
- —function of hourly air consumption depending on rotational speed and torque (g/s).
2.2.2. LCA Method
3. Results and Discussion
3.1. Result from Simulation
3.2. Result from Simulation
4. Conclusions
- Biobutanol turned out to be characterized by the lowest emission levels. Interestingly enough, the trend maintained despite increased consumption of this fuel as compared with FAME. Fatty acid methyl esters demonstrated higher CO2 emission than alcohol-based fuel, despite lower requirements for the medium.
- Simulation studies have confirmed that using the start–stop system, decreases CO2 emissions and the consumption of the fuel mixtures investigated.
- Total carbon dioxide emission was lowest in the case of biobutanol (3.80 kg in the test), followed by diesel fuel (3.81 kg in the test), and highest for FAME (4.08 kg in the test). The CO2 emission reduction obtained from the simulations is consistent with the results of the experimental studies referred to in the references review.
- As compared with the exhaust gas emission standard applicable to the analyzed vehicle, none of the fuels fulfilled the requirements. One ought to emphasize that the said norm was related to the NEDC test procedure, characterized with lower accuracy and, thus, the vehicle was able to fulfil the emission limits on the basis thereof. In connection with the perspective of lowering admissible emission limits for newly manufactured vehicles by 2030 (reduction of the limit by over 40% as compared with the one applicable in 2015), implementation of low emission solutions in all possible aspects will be necessary.
- According to the LCA analysis, FAME turned out to be the fuel with the lowest total emission. Yet, its production has the greatest environmental impact. It should be noted that production of long chain fatty acid esters from oil plants is competitive towards the food related purpose of such plants. The second place was taken by biobutanol, whose total carbon dioxide emission was nearly by one half lower than that of classical diesel fuel. Diesel fuel demonstrated the highest values of emitted CO2 among all analyzed fuels, including the stage of production process.
- As fuel based on lignocellulose, biobutanol appears a promising energy medium, whose advantage comes from lower carbon dioxide emission as compared with conventional fuel which, in the light of stringent requirements and high declared CO2 reduction levels, speaks very much to its advantage and encourages deeper theoretical and practical research into commercial application. Moreover, production of biobutanol from waste biomass carries additional possibilities to utilize useless matter.
- The physical and chemical properties of the biofuel and its percentage share in the fuel mixture have a significant impact on the course of the combustion process, self-ignition reactions and the rate of heat release, and consequently on gas emissions.
- The developed simulation constitutes a useful tool for initial research or planning of real experiments. It may be an element of a more comprehensive system or an independent system.
- Basing on the presented results it can also be concluded that decisions taken with respect to the processes of fuel production management should include the biobutanol produced from lignocellulosic biomass as an effective additive to the fuel or even as a fuel itself assuring positive environmental impact.
- The use of this type of fuel brings also the social effect since the biomass wastes are used for fuel production instead of edible parts of the agricultural crops.
- All the conclusions mentioned above indicate lignocellulose origin as promising for production of biofuel mitigating the carbon dioxide emission as well as avoiding consumption of edible parts of plants as raw material for biofuel production. This should be accepted as an indication for technology management as well as political decisions.
Author Contributions
Funding
Conflicts of Interest
References
- Ferreira, J.A.; Brancoli, P.; Agnihotri, S.; Bolton, K.; Taherzadeh, M.J. A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process. Biochem. 2018, 75, 173–186. [Google Scholar] [CrossRef]
- Kapanji, K.K.; Haigh, K.F.; Görgens, J.F. Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production. Bioresour. Technol. 2019, 289, 121635. [Google Scholar] [CrossRef] [PubMed]
- Tucki, K.; Orynycz, O.; Świć, A.; Mitoraj-Wojtanek, M. The Development of Electromobility in Poland and EU States as a Tool for Management of CO2 Emissions. Energies 2019, 12, 2942. [Google Scholar] [CrossRef] [Green Version]
- Chiaramonti, D.; Goumas, T. Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Appl. Energy 2019, 251, 113351. [Google Scholar] [CrossRef]
- Vanhala, P.; Bergström, I.; Haaspuro, T.; Kortelainen, P.; Holmberg, M.; Forsius, M. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci. Total Environ. 2016, 557, 51–57. [Google Scholar] [CrossRef]
- Venturi, S.; Tassi, F.; Cabassi, J.; Gioli, B.; Baronti, S.; Vaselli, O.; Caponi, C.; Vagnoli, C.; Picchi, G.; Zaldei, A.; et al. Seasonal and diurnal variations of greenhouse gases in Florence (Italy): Inferring sources and sinks from carbon isotopic ratios. Sci. Total Environ. 2020, 698, 134245. [Google Scholar] [CrossRef]
- Krzywonos, M.; Tucki, K.; Wojdalski, J.; Kupczyk, A.; Sikora, M. Analysis of Properties of Synthetic Hydrocarbons Produced Using the ETG Method and Selected Conventional Biofuels Made in Poland in the Context of Environmental Effects Achieved. Rocz. Ochr. Środowiska 2017, 19, 394–410. [Google Scholar]
- Schleussner, C.F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- FCCC/CP/2015/L.9/Rev.1. Adoption of the Paris Agreement. Available online: https://undocs.org/ (accessed on 16 November 2019).
- Zak, A.; Golisz, E.; Tucki, K.; Borowski, P. Perspectives of biofuel sector development in Poland in comparision to CO2 emission standards. J. Agribus. Rural Dev. 2014, 3, 299–312. [Google Scholar]
- Valente, A.; Iribarren, D.; Candelaresi, D.; Spazzafumo, G.; Dufour, J. Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. Pollutant emissions from combustion engine of motor vehicle tested in driving cycles simulating real–world driving conditions. Zesz. Nauk. Inst. Pojazdów Politech. Warsz. 2013, 92, 67–76. [Google Scholar]
- Chłopek, Z.; Biedrzycki, J.; Lasocki, J.; Wójcik, P. The correlative studies of the pollutant emission and fuel consumption in type-approval tests. TTS Tech. Transp. Szyn. 2015, 22, 268–271. [Google Scholar]
- Kupczyk, A.; Mączyńska, J.; Redlarski, G.; Tucki, K.; Bączyk, A.; Rutkowski, D. Selected Aspects of Biofuels Market and the Electromobility Development in Poland: Current Trends and Forecasting Changes. Appl. Sci. 2019, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Tucki, K.; Mruk, R.; Orynycz, O.; Gola, A. The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures. Sustainability 2019, 11, 3451. [Google Scholar] [CrossRef] [Green Version]
- PE/48/2018/REV/1 Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/ (accessed on 16 November 2019).
- Górski, K.; Olszewski, W.; Lotko, W. Alcohols and ethers as fuels for diesel engines. Czas. Tech. Mech. 2008, 105, 13–24. [Google Scholar]
- Bannikov, M.; Gollani, S.E.; Vasilen, I. Effect of alcohol additives on diesel engine performance and emissions. Mater. Methods Technol. 2015, 9, 8–19. [Google Scholar]
- Tucki, K.; Mruk, R.; Orynycz, O.; Wasiak, A.; Botwinska, K.; Gola, A. Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management. Sustainability 2019, 11, 2799. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Q.M.; Zhang, B.; Wang, L.; Shahbazi, A. A combined pretreatment, fermentation and ethanol-assisted liquefaction process for production of biofuel from Chlorella sp. Fuel 2019, 257, 116026. [Google Scholar] [CrossRef]
- Mączyńska, J.; Krzywonos, M.; Kupczyk, A.; Tucki, K.; Sikora, M.; Pińkowska, H.; Bączyk, A.; Wielewska, I. Production and use of biofuels for transport in Poland and Brazil—The case of bioethanol. Fuel 2019, 241, 989–996. [Google Scholar] [CrossRef]
- Lian, X.; Li, Y.; Zhu, J.; Zou, Y.; An, D.; Wang, Q. Fabrication of Au-decorated SnO2 nanoparticles with enhanced n-buthanol gas sensing properties. Mater. Sci. Semicond. Process. 2019, 101, 198–205. [Google Scholar] [CrossRef]
- Ayad, S.M.; Belchior, C.R.; Da Silva, G.L.; Lucena, R.S.; Carreira, E.S.; De Miranda, P.E. Analysis of performance parameters of an ethanol fueled spark ignition engine operating with hydrogen enrichment. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Lapuerta, M.; Adrover, J.J.H.; Fernández-Rodríguez, D.; Cova-Bonillo, A. Autoignition of blends of n-butanol and ethanol with diesel or biodiesel fuels in a constant-volume combustion chamber. Energy 2017, 118, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Lapuerta, M.; Rodríguez-Fernández, J.; Fernández-Rodríguez, D.; Patiño-Camino, R. Modeling viscosity of butanol and ethanol blends with diesel and biodiesel fuels. Fuel 2017, 199, 332–338. [Google Scholar] [CrossRef]
- Kamiński, W.; Tomczak, E.; Górak, A. Biobutanol—Production and purification methods. Ecol. Chem. Eng. S 2011, 18, 31–37. [Google Scholar]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Bioproduction of butanol from biomass: From genes to bioreactors. Curr. Opin. Biotechnol. 2007, 18, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Patakova, P.; Maxa, D.; Rychtera, M.; Linhova, M.; Fribert, P.; Muzikova, Z.; Lipovsky, J.; Paulova, L.; Pospisil, M.; Sebor, G.; et al. Perspectives of Biobutanol Production and Use. Available online: https://www.intechopen.com/books/biofuel-s-engineering-process-technology/perspectives-of-biobutanol-production-and-use (accessed on 18 January 2020).
- Ramey, D.E.; Yang, S.T. Production of Butyric Acid and Butanol from Biomass. Final Report Number DOE-ER86106. Work Performed Under: Contract No.: DE-F-G02-00ER86106. Available online: https://www.osti.gov/biblio/843183-production-butyric-acid-butanol-from-biomass (accessed on 16 November 2019).
- Bringué, R.; Ramírez, E.; Iborra, M.; Tejero, J.; Cunill, F. Esterification of furfuryl alcohol to butyl levulinate over ion-exchange resins. Fuel 2019, 257, 116010. [Google Scholar] [CrossRef]
- Orchillés, A.V.; Vercher, E.; Miguel, P.J.; González-Alfaro, V.; Llopis, F.J. Isobaric vapor-liquid equilibria for the extractive distillation of tert-butyl alcohol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. J. Chem. Thermodyn. 2019, 139, 105866. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.; Zhang, J. The Promising Fuel-Biobutanol. In Liquid, Gaseous and Solid Biofuels—Conversion Techniques, 1st ed.; Fang, Z., Ed.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques/the-promising-fuel-biobutanol (accessed on 16 November 2019). [CrossRef] [Green Version]
- Mack, J.H.; Schüler, D.; Butt, R.H.; Dibble, R.W. Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines. Appl. Energy 2016, 165, 612–626. [Google Scholar] [CrossRef] [Green Version]
- N-Butanol—Safety Data Sheet. Available online: https://www.perstorp.com/~/media/files/perstorp/msds/n-butanol/msds_n-butanol_pol-6694.ashx (accessed on 16 November 2019).
- Xiao, H.; Guo, F.; Li, S.; Wang, R.; Yang, X. Combustion performance and emission characteristics of a diesel engine burning biodiesel blended with n-butanol. Fuel 2019, 258, 115887. [Google Scholar] [CrossRef]
- Hönig, V.; Kotek, M.; Mařík, J. Use of butanol as a fuel for internal combustion engines. Agron. Res. 2014, 12, 333–340. [Google Scholar]
- Liang, X.; Zhong, A.; Sun, Z.; Han, D. Autoignition of n-heptane and butanol isomers blends in a constant volume combustion chamber. Fuel 2019, 254, 115638. [Google Scholar] [CrossRef]
- Smerkowska, B. Biobutanol—Production and application in diesel engines. Chemik 2011, 65, 549–556. [Google Scholar]
- Huzir, N.M.; Aziz, M.A.; Ismail, S.; Abdullah, B.; Mahmood, N.A.N.; Umor, N.; Muhammad, S.A.F.S. Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renew. Sustain. Energy Rev. 2018, 94, 476–485. [Google Scholar] [CrossRef]
- Dürre, P. Biobutanol: An attractive biofuel. Biotechnol. J. Healthc. Nutr. Technol. 2007, 2, 1525–1534. [Google Scholar] [CrossRef]
- Qureshi, N.; Ezeji, T.C. Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): Recent progress in technology. Biofuels Bioprod. Biorefin. 2008, 2, 319–330. [Google Scholar] [CrossRef]
- Van Der Wal, H.; Sperber, B.L.; Houweling-Tan, B.; Bakker, R.R.; Brandenburg, W.; López-Contreras, A.M. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef]
- Figueroa-Torres, G.M.; Mahmood, W.M.A.W.; Pittman, J.K.; Theodoropoulos, C. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochem. Eng. J. 2020, 153, 107396. [Google Scholar] [CrossRef]
- California Biobutanol Multimedia Evaluation. Tier I. Report. Available online: http://www.arb.ca.gov/fuels/multimedia/020910biobutanoltierI.pdf (accessed on 28 December 2019).
- Jin, C.; Yao, M.; Liu, H.; Lee, C.F.F.; Ji, J. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 2011, 15, 4080–4106. [Google Scholar] [CrossRef]
- Baustian, J.; Wolf, L. Cold-Start/Warm-Up Vehicle Performance and Driveability Index for Gasolines Containing Isobutanol. SAE Int. J. Fuels Lubr. 2012, 5, 1300–1309. [Google Scholar] [CrossRef]
- Pałuchowska, M. Biobutanol produced from biomass. Nafta-Gaz 2015, 7, 502–509. [Google Scholar]
- Karavalakis, G.; Short, D.; Vu, D.; Russell, R.L.; Asa-Awuku, A.; Jung, H.; Johnson, K.C.; Durbin, T.D. The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines. Energy 2015, 82, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Ugwoha, E.; Andrésen, J.M. Sorption and phase distribution of ethanol and butanol blended gasoline vapours in the vadose zone after release. J. Environ. Sci. 2014, 26, 608–616. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Liu, D. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renew. Energy 2020, 147, 2494–2521. [Google Scholar] [CrossRef]
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Asa-Awuku, A.; Durbin, T.D. Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 2014, 128, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.; Choi, K.; Lee, C.S. Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies. Energy Convers. Manag. 2016, 111, 79–88. [Google Scholar] [CrossRef]
- Nayyar, A.; Sharma, D.; Soni, S.L.; Mathur, A. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters. Environ. Sci. Pollut. Res. 2017, 24, 20315–20329. [Google Scholar] [CrossRef]
- Swamy, R.L.; Chandrashekar, T.K.; Banapurmath, N.R.; Khandal, S.V. Impact of Diesel-butanol Blends on Performance and Emission of Diesel Engine. Oil Gas Res. 2015, 1, 101. Available online: https://www.omicsonline.org/open-access/impact-of-dieselbutanol-blends-on-performance-and-emission-of-dieselengine-ogr-1000101.php?aid=63149 (accessed on 28 December 2019).
- Lapuerta, M.; Hernández, J.J.; Rodríguez-Fernández, J.; Barba, J.; Ramos, A.; Fernández-Rodríguez, D. Emission benefits from the use of n-butanol blends in a Euro 6 diesel engine. Int. J. Engine Res. 2017, 19, 1099–1112. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, D.; Dong, F.; Liu, X.; Yang, Y.; Huang, H.; Wang, Y.; Wang, Q.; Zheng, Z. Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. Energies 2019, 12, 1845. [Google Scholar] [CrossRef] [Green Version]
- Douvartzides, S.L.; Charisiou, N.D.; Papageridis, K.N.; Goula, M.A. Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. Energies 2019, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Stevanovic, S.; Zare, A.; Dwivedi, G.; Van, T.C.; Davidson, M.; Rainey, T.; Brown, R.J.; Ristovski, Z.D. An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. Energies 2019, 12, 1987. [Google Scholar] [CrossRef] [Green Version]
- Elfasakhany, A.; Mahrous, A.F. Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engines. Alex. Eng. J. 2016, 55, 3015–3024. [Google Scholar] [CrossRef] [Green Version]
- Black, G.; Curran, H.; Pichon, S.; Simmie, J.; Zhukov, V. Bio-butanol: Combustion properties and detailed chemical kinetic model. Combust. Flame 2010, 157, 363–373. [Google Scholar] [CrossRef]
- Frassoldati, A.; Grana, R.; Faravelli, T.; Ranzi, E.; Oßwald, P.; Kohse-Höinghaus, K.; Osswald, P. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust. Flame 2012, 159, 2295–2311. [Google Scholar] [CrossRef]
- Pexa, M.; Čedík, J.; Hönig, V.; Pražan, R. Lignocellulosic Biobutanol as Fuel for Diesel Engines. BioResources 2016, 11, 6006–6016. [Google Scholar] [CrossRef] [Green Version]
- Čedík, J.; Pexa, M.; Mařík, J.; Hönig, V.; Horníčková, Š.; Kubín, K. Influence of butanol and FAME blends on operational characteristics of compression ignition engine. Agron. Res. 2015, 13, 541–549. [Google Scholar]
- Peterka, B.; Pexa, M.; Čedík, J.; Mader, D.; Kotek, M. Comparison of exhaust emissions and fuel consumption of small combustion engine of portable generator operated on petrol and biobutanol. Agron. Res. 2017, 15, 1162–1169. [Google Scholar]
- Zhang, Y.; Huang, R.; Xu, S.; Huang, Y.; Huang, S.; Ma, Y.; Wang, Z. The effect of different n-butanol-fatty acid methyl esters (FAME) blends on puffing characteristics. Fuel 2017, 208, 30–40. [Google Scholar] [CrossRef]
- Hönig, V.; Pexa, M.; Linhart, Z. Biobutanol Standardizing Biodiesel from Waste Animal Fat. Pol. J. Environ. Stud. 2015, 24, 2433–2439. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Papagiannakis, R.G.; Kyritsis, D.C. Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether. Energy 2014, 73, 354–366. [Google Scholar] [CrossRef]
- Rakopoulos, D.; Rakopoulos, C.; Hountalas, D.; Kakaras, E.; Giakoumis, E.; Papagiannakis, R. Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends. Fuel 2010, 89, 2781–2790. [Google Scholar] [CrossRef]
- Tracking Clean Energy Progress. Available online: https://www.iea.org/tcep/transport/biofuels/ (accessed on 16 November 2019).
- COM. 112—A Roadmap for Moving to a Competitive Low Carbon Economy in 2050. 2011. Available online: https://www.eea.europa.eu/policy-documents/com-2011-112-a-roadmap (accessed on 16 November 2019).
- Galadima, A.; Muraza, O. Zeolite catalyst design for the conversion of glucose to furans and other renewable fuels. Fuel 2019, 258, 115851. [Google Scholar] [CrossRef]
- Statistical Yearbook of Forestry. Available online: https://stat.gov.pl (accessed on 16 November 2019).
- National Forestry Accounting Plan (NFAP). Developed by the Team for the Elaboration of National Plans Related to Accounting for Greenhouse Gas Emissions and Removals Resulting from Forestry Activities. Warsaw, 2018. Available online: https://bip.mos.gov.pl (accessed on 16 November 2019).
- Kożuch, A.; Banaś, J.; Zięba, S.; Bujoczek, L. Changes in the synthetic index of sustainable forest management at the level of regional directorates of the State Forests in 1993–2013. For. Res. Pap. 2018, 79, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Forests in Poland. 2017. Available online: http://www.lasy.gov.pl/pl/informacje/publikacje/in-english/forests-in-poland/lasy-w-polsce-2017-en.pdf (accessed on 16 November 2019).
- Państwowe Gospodarstwo Leśne Lasy Państwowe. Forest Report in Poland; 2018. Available online: https://bip.lasy.gov.pl/pl/bip/px_~raport_o_lasach_2018_do_bip.pdf (accessed on 16 November 2019).
- Państwowe Gospodarstwo Leśne Lasy Państwowe. Forest Report in Poland; 2010. Available online: https://www.bdl.lasy.gov.pl/portal/Media/Default/Publikacje/raport_o_stanie_lasow_2010.pdf (accessed on 16 November 2019).
- Głowacki, S.; Bazylik, W.; Sojak, M. Urban Green as a Source of Biomass for Energy Purposes. Ciepłownictwo Ogrzew. Went. 2013, 44, 206–209. [Google Scholar]
- European Commission. Environment. Eco-Management and Audit Scheme (EMAS). Available online: https://ec.europa.eu/environment/emas/index_en.htm (accessed on 2 January 2020).
- Environmental Management Systems. The ISO 14001 Standard. Available online: https://www.pcbc.gov.pl/pl/uslugi/certyfikacja-systemow-zarzadzania/pn-en-iso-14001 (accessed on 2 January 2020).
- Brito, M.; Martins, F. Life cycle assessment of butanol production. Fuel 2017, 208, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Levasseur, A.; Bahn, O.; Beloin-Saint-Pierre, D.; Marinova, M.; Vaillancourt, K. Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach. Appl. Energy 2017, 198, 440–452. [Google Scholar] [CrossRef]
- Brandão, M.; Martin, M.; Cowie, A.; Hamelin, L.; Zamagni, A. Consequential Life Cycle Assessment: What, How, and Why? In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–284. [Google Scholar]
- Brander, M. Comparative analysis of attributional corporate greenhouse gas accounting, consequential life cycle assessment, and project/policy level accounting: A bioenergy case study. J. Clean. Prod. 2017, 167, 1401–1414. [Google Scholar] [CrossRef]
- Environmental Priority Strategies (EPS). Available online: http://www.gabi-software.com/international/support/gabi/gabi-lcia-documentation/environmental-priority-strategies-eps/ (accessed on 2 January 2020).
- CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/onderzoek/onderzoeksoutput/wiskunde-en-natuurwetenschappen/cml-cml-ia-characterisation-factors (accessed on 2 January 2020).
- Eco-Indicator 99 Method. Available online: https://www.sciencedirect.com/topics/engineering/eco-indicator (accessed on 2 January 2020).
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- ReCiPe. Available online: https://www.pre-sustainability.com/recipe (accessed on 2 January 2020).
- Wiesen, K.; Saurat, M.; Lettenmeier, M. Calculating the Material Input per Service Unit using the Ecoinvent database. Int. J. Perform. Eng. 2014, 10, 357–366. [Google Scholar]
- LCA. Software for Fact-Based Sustainability. Available online: https://simapro.com/ (accessed on 2 January 2020).
- GaBi Software. Available online: http://www.gabi-software.com/ce-eu-english/software/gabi-software/ (accessed on 2 January 2020).
- Material Flow Analysis & Life Cycle Assessment with the Software Umberto. Available online: https://www.ifu.com/en/umberto/ (accessed on 2 January 2020).
- Biernat, K. Perspectives for global development of biofuel technologies to 2050. Chemik 2012, 66, 1178–1189. [Google Scholar]
- Piekarski, W.; Zając, G. Possibility of the use of liquid biofuels as a supply to the internal combustion engines. Autobusy Tech. Eksploat. Syst. Transp. 2011, 12, 347–354. [Google Scholar]
- Biernat, K.; Jeziorkowski, A. Problems in supplying modern internal combustion engine with biofuels. Studia Ecol. Bioethicae 2008, 6, 307–329. [Google Scholar]
- Fiat Panda Misc Documents Accessories Brochure PDF. Available online: https://manuals.co/ (accessed on 16 November 2019).
- Ambrozik, A.; Kurczyński, D.; Łagowski, P.; Warianek, M. The toxicity of combustion gas from the Fiat 1.3 Multijet engine operating following the load characteristics and fed with rape oil esters. Proc. Inst. Veh. 2016, 1, 23–36. [Google Scholar]
- Ambrozik, A.; Ambrozik, T.; Kurczyński, D. Load characteristics of turbocharged 1.3 Multijet engine. Postępy Nauk. Tech. 2012, 15, 7–20. [Google Scholar]
- Merkisz, J.; Pielecha, I.; Pielecha, J.; Brudnicki, K. On-Road Exhaust Emissions from Passenger Cars Fitted with a Start-Stop System. Arch. Transp. 2011, 23, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wu, Y.; Li, B.; Zong, C.; Li, J. Simulation Research on the Start-stop System of Hybrid Electric Vehicle. J. Adv. Veh. Eng. 2017, 3, 55–64. [Google Scholar]
- Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 Setting Emission Performance Standards for New Passenger Cars as Part of the Community’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/ (accessed on 16 November 2019).
- Proposal for a Regulation of the European Parliament and of the Council Setting Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles as Part of the Union’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles and Amending Regulation (EC) No 715/2007 (Recast). Available online: https://eur-lex.europa.eu/ (accessed on 16 November 2019).
- CO2 Targets Are Becoming Ever More Demanding Worldwide. Available online: https://www.daimler.com/sustainability/vehicles/climate-protection/wltp/wltp-part-5.html (accessed on 16 November 2019).
- Panda Catalog. Available online: http://www.auto-alex.pl/files/23.pdf (accessed on 16 November 2019).
- Baczewski, K.; Kałdoński, T. Paliwa do Silników o Zapłonie Samoczynnym, 2nd ed.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2017; pp. 50–210. [Google Scholar]
- Gwardiak, H.; Rozycki, K.; Ruszkarska, M.; Tylus, J.; Walisiewicz-Niedbalska, W. Evaluation of fatty acid methyl esters (FAME) obtained from various feedstock. Oilseed Crops 2011, 32, 137–147. [Google Scholar]
- Tucki, K.; Mruk, R.; Orynycz, O.; Wasiak, A.; Swić, A. Thermodynamic Fundamentals for Fuel Production Management. Sustainability 2019, 11, 4449. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). Advanced Motor Fuels. Butanol, Properties. Available online: https://www.iea-amf.org/content/fuel_information/butanol/properties (accessed on 16 November 2019).
- Kruczyński, S.W.; Orliński, P.; Orliński, S. The effects of powering the agricultural engine with mixture diesel fuels with biobutanol to economic and energy signs of its work. Logistka 2011, 6, 1–8. [Google Scholar]
- Campbell, S.L.; Chancelier, J.P.; Nikoukhah, R. Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4, 1st ed.; Springer: New York, NY, USA, 2006; pp. 73–155. [Google Scholar]
- Lachowicz, C.T. Matlab, Scilab, Maxima: Opis i Przykłady Zastosowań, 1st ed.; Oficyna Wydawnicza Politechniki Opolskiej: Opole, Poland, 2005; pp. 120–310. [Google Scholar]
- Brozi, A. Scilab w Przykładach, 1st ed.; Wydawnictwo Nakom: Poznań, Poland, 2007; pp. 62–209. [Google Scholar]
- Pavlovic, J.; Marotta, A.; Ciuffo, B. CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Appl. Energy 2016, 177, 661–670. [Google Scholar] [CrossRef]
- Pavlovic, J.; Ciuffo, B.; Fontaras, G.; Valverde, V.; Marotta, A. How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transp. Res. Part A Policy Pract. 2018, 111, 136–147. [Google Scholar] [CrossRef]
- Merkisz, J. Real Road Tests—Exhaust Emission Results from Passenger Cars. J. KONES Powertrain Transp. 2011, 18, 253–260. [Google Scholar]
- Barlow, T.; Latham, S.; McCrae, I.; Boulter, P. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions. Available online: https://trl.co.uk/reports/PPR354 (accessed on 16 November 2019).
- Regulation No 83 of the Economic Commission for Europe of the United Nations (UN/ECE)—Uniform Provisions Concerning the Approval of Vehicles with Regard to the Emission of Pollutants According to Engine Fuel Requirements. Available online: https://eur-lex.europa.eu/ (accessed on 16 November 2019).
- Tokgoz, S.; Laborde, D. Indirect Land Use Change Debate: What Did We Learn? Curr. Sustain. Energy Rep. 2014, 1, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Khanna, M.; Zilberman, D. Modeling the land-use and greenhouse-gas implications of biofuels. Clim. Chang. Econ. 2012, 3, 1250016. [Google Scholar] [CrossRef]
- Plevin, R.J. Assessing the Climate Effects of Biofuels Using Integrated Assessment Models, Part I: Methodological Considerations. J. Ind. Ecol. 2016, 21, 1478–1487. [Google Scholar] [CrossRef] [Green Version]
- Styles, D.; Gibbons, J.; Williams, A.P.; Dauber, J.; Stichnothe, H.; Urban, B.; Chadwick, D.R.; Jones, D.L. Consequential life cycle assessment of biogas, biofuel and biomass energy options within an arable crop rotation. GCB Bioenergy 2015, 7, 1305–1320. [Google Scholar] [CrossRef] [Green Version]
- Decicco, J.M. Methodological Issues Regarding Biofuels and Carbon Uptake. Sustainability 2018, 10, 1581. [Google Scholar] [CrossRef] [Green Version]
- De Kleine, R.D.; Anderson, J.E.; Kim, H.C.; Wallington, T.J. Life cycle assessment is the most relevant framework to evaluate biofuel greenhouse gas burdens. Biofuels Bioprod. Biorefin. 2017, 11, 407–416. [Google Scholar] [CrossRef]
- Glensor, K.; Muñoz, B.; Rosa, M. Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways. Sustainability 2019, 11, 6332. [Google Scholar] [CrossRef] [Green Version]
- Van Der Voet, E.; Lifset, R.J.; Luo, L. Life-cycle assessment of biofuels, convergence and divergence. Biofuels 2010, 1, 435–449. [Google Scholar] [CrossRef]
- Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 2017, 100, 350–358. [Google Scholar] [CrossRef]
- Menten, F.; Chèze, B.; Patouillard, L.; Bouvart, F. A review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis. Renew. Sustain. Energy Rev. 2013, 26, 108–134. [Google Scholar] [CrossRef]
- Guyon, O. Methodology for the Life Cycle Assessment of a Car-sharing Service. Available online: https://www.diva-portal.org/smash/get/diva2:1183366/FULLTEXT01.pdf (accessed on 16 November 2019).
- ISO. Environmental Management—Life cycle assessment—Requirements and Guidelines. Available online: https://www.iso.org/standard/38498.html (accessed on 16 November 2019).
- Volkswagen AG Group Research. The Caddy—Environmental Commendation Background Report. Available online: https://www.a-pointduurzaamheid.nl (accessed on 16 November 2019).
- Volkswagen AG Group Research. The Golf—Environmental Commendation Background Report. Available online: https://www.a-pointduurzaamheid.nl/files/4914/2348/7329/e_golf_Env_Comm.pdf (accessed on 16 November 2019).
- Ambrozik, A.; Kurczyński, D. Load characteristics in ad3.152 ur engine fuelled with mineral and biogenous blends. J. KONES Powertrain Transp. 2006, 13, 183–194. [Google Scholar]
- Labeckas, G.; Slavinskas, S. The effect of diesel fuel blending with rapeseed oil and rme on engine performance and exhaust emissions. J. KONES Powertrain Transp. 2005, 12, 187–194. [Google Scholar]
Parameter | Unit | MultiJet II |
---|---|---|
Cylinder layout | - | in-line |
Number of cylinders, c | - | 4 |
Type of injection | - | direct, multistage |
Compression ratio, e | - | 16.8:1 |
Diameter of the cylinder, D | mm | 69.6 |
Piston stroke, S | mm | 82 |
Engine displacement, Vss | cm3 | 1251 |
Maximum engine power, Ne | kW | 55 |
Engine rotational speed for its maximum power, nN | rpm | 4000 |
Maximum engine torque, Me | Nm | 190 |
Engine rotational speed for its maximum torque, nM | rpm | 1500 |
Rotational speed of idle gear, nbj | rpm | 850 ± 20 |
Parameter | Diesel | FAME | Butanol |
---|---|---|---|
Carbon content (%) | 86.5 | 78.0 | 64.8 |
Hydrogen content (%) | 13.4 | 12.0 | 13.5 |
Oxygen content (%) | 0.0 | 10.0 | 21.6 |
Calorific value (kJ/g) | 44.0 | 37.0 | 33.1 |
Air demand (gair/gfuel) | 14.5 | 12.5 | 11.2 |
Diesel/FAME | Diesel/Butanol |
---|---|
100%/0% | 100%/0% |
90%/10% | 90%/10% |
80%/20% | 80%/20% |
70%/30% | 70%/30% |
60%/40% | 60%/40% |
50%/50% | 50%/50% |
40%/60% | 40%/60% |
30%/70% | 30%/70% |
20%/80% | 20%/80% |
10%/90% | 10%/90% |
0%/100% | 0%/100% |
Parameter | Unit | Fiat Panda |
---|---|---|
Vehicle weight | kg | 1020 |
Rolling resistance | N | 6.15 |
Aerodynamic resistance | N/(km/h)2 | 0.0412 |
Parameter | Unit | Fiat Panda |
---|---|---|
Radius of the vehicle wheels | m | 0.298 |
Drive system ratio for torque | (-) | 0; 1/13.46; 1/7.05; 1/4.55; 1/3.24; 1/2.42 |
Drive system ratio for rotational speed | (-) | 0; 13.46; 7.05; 4.55; 3,24; 2.42 |
Fuel Consumption in the Cycle (l/100 km) | |||
Fiat Panda MultiJet II | Urban | Extra urban | Combinated |
4.7 | 3.5 | 3.9 | |
Estimated Fuel Consumption in Car Service Life | |||
Diesel | 6750 | ||
FAME | 8250 | ||
Butanol | 8250 | ||
CO2 Emission from Fuels in Production Process (kgCO2/1 kg fuel) | |||
Diesel | 0.341 | ||
Butanol | 3.18 | ||
FAME | −7.01 | ||
CO2 Emission from Fuels in Burn Process (Start–Stop System ON) (g/km) | |||
Diesel | 161,59 | ||
Butanol | 173,16 | ||
FAME | 161,33 | ||
CO2 Emission from Fuels in Burn Process (Start–Stop System OFF) (g/km) | |||
Diesel | 163,65 | ||
Butanol | 175,39 | ||
FAME | 163,39 | ||
Service life of car (km) | |||
150,000 | km |
Fuel Used | CO2 (kg) Emission | CO2 (g/km) Emission | CO2 (g/km) Value Required by the Regulation |
---|---|---|---|
Start–Stop System ON | |||
FAME | 4.026 | 175.48 | 130 |
Butanol | 3.751 | 163.44 | 130 |
Diesel | 3.757 | 163.87 | 130 |
Start–Stop System OFF | |||
FAME | 4.078 | 175.398 | 130 |
Butanol | 3.799 | 163.398 | 130 |
Diesel | 3.805 | 163.656 | 130 |
Content % | C | H | O |
---|---|---|---|
Butanol | 64.87 | 13.52 | 21.63 |
Methyl palmitate | 75.56 | 12.6 | 11.86 |
Methyl stearate | 76.52 | 12.76 | 10.74 |
Diesel | FAME | Butanol | |
---|---|---|---|
CO2 total emission from fuels (start–stop system ON) (t) | 26.98 | −32.85 | 12.43 |
CO2 total emission from fuels (start–stop system OFF) (t) | 27.29 | −32.51 | 12.74 |
Fuel | CO2 Total (t) |
---|---|
Diesel | 26.98 |
FAME | −32.85 |
Butanol | 12.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Mruk, R.; Botwińska, K. Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies 2020, 13, 561. https://doi.org/10.3390/en13030561
Tucki K, Orynycz O, Wasiak A, Świć A, Mruk R, Botwińska K. Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies. 2020; 13(3):561. https://doi.org/10.3390/en13030561
Chicago/Turabian StyleTucki, Karol, Olga Orynycz, Andrzej Wasiak, Antoni Świć, Remigiusz Mruk, and Katarzyna Botwińska. 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production" Energies 13, no. 3: 561. https://doi.org/10.3390/en13030561
APA StyleTucki, K., Orynycz, O., Wasiak, A., Świć, A., Mruk, R., & Botwińska, K. (2020). Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies, 13(3), 561. https://doi.org/10.3390/en13030561