Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation
Abstract
:1. Introduction
2. Energy Recovery in Railway Systems
Storage Devices
3. Methodology
3.1. Energy Balance—Train Movement
3.1.1. Power Term Related to Friction Losses
3.1.2. Power Term Related to Gravity
3.1.3. Power Term Related to the Motor or Brakes
3.1.4. Power Term Related to the Resulting Forces
3.2. Recoverable Power Potential
3.3. Determining the Size of the Energy Storage
3.4. Economic Analysis
4. Results
4.1. Energy Balance
4.2. Optimal Sizing of Energy Storage System
4.3. Detailed Financial Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Resistance coefficient due to the wheel-rail friction (kgf/tf) | |
Resistance coefficient due to the bearings’ friction (kgf.h/tf.km) | |
Resistance coefficient due to the air friction (kgf.h2/tf.km) | |
Initial investiment (R$) | |
Cash flow in period t (R$) | |
Depth of the discharge (kWh) | |
Stored energy in instant t (kWh) | |
Friction force (kN) | |
Force resulting from the resistance to the movement (kN) | |
Force related to the gravity (kN) | |
Train force (motor or brake) (kW) | |
Gravitational acceleration (m/s2) | |
Discount rate | |
Investment lifespan (months) | |
Vehicle’s mass (ton) | |
Mass of the whole train (ton) | |
Number of axes | |
Net presente value (R$) | |
Number of wagons | |
Power losses due to friction (kW) | |
Power to be injected in the ESS in instant t (kW) | |
Power to be extracted from the ESS in instant t (kW) | |
Power demand in instant t (kW) | |
Power from diesel oil in instant t (kW) | |
Maximum rate power charge (kW) | |
Maximum rate power discharge (kW) | |
Recoverable power in instant t (kW) | |
Vehicle’s frontal area (m2) | |
Standard consumption (l/h) | |
Maximum state of the charge (kWh) | |
Resulting weight in the direction of the movement (N) | |
Vehicle’s velocity (km/h) | |
Acceleration of the train (m/s2) | |
Power dissipated in the dynamic brakes (kW) | |
Power term representing the friction (kW) | |
Power gains or losses related to the gravity (kW) | |
Weight power of the train (kW) | |
Friction coefficient (kgf/tf) | |
Inclination angle | |
Energy density of the fuel (diesel) (kWh/L) | |
Charge battery efficiency | |
Discharge battery efficiency | |
Diesel engine efficiency | |
Percentual of application of the dynamic brake |
References
- Song, Y.; Song, W. A novel dual speed-curve optimization based approach for energy-saving operation of high-speed trains. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1564–1575. [Google Scholar] [CrossRef]
- González-Gil, A.; Palacin, R.; Batty, P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Convers. Manag. 2013, 75, 374–388. [Google Scholar] [CrossRef]
- Roch-Dupré, D.; López-López, A.J.; Pecharromán, R.R.; Cucala, A.P.; Fernández-Cardador, A. Analysis of the demand charge in DC railway systems and reduction of its economic impact with Energy Storage Systems. Int. J. Electr. Power Energy Syst. 2017, 93, 459–467. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Yu, Y. Research on the cooperative train control strategy to reduce energy consumption. IEEE Trans Intell. Transp. Syst. 2017, 18, 1134–1142. [Google Scholar] [CrossRef]
- Arboleya, P.; Bidaguren, P.; Armendariz, U. Energy is on board: Energy storage and other alternatives in modern light railways. IEEE Electr. Mag. 2016, 4, 30–41. [Google Scholar] [CrossRef]
- Yang, X.; Chen, A.; Li, X.; Ning, B.; Tang, T. An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems. Transp. Res. Part C Emerg. Technol. 2015, 57, 13–29. [Google Scholar] [CrossRef]
- Ceraolo, M.; Lutzemberger, G.; Meli, E.; Pugi, L.; Rindi, A.; Pancari, G. Energy storage systems to exploit regenerative braking in DC railway systems: Different approaches to improve efficiency of modern high-speed trains. J. Energy Storage 2018, 16, 269–279. [Google Scholar] [CrossRef]
- Lu, S.; Weston, P.; Hillmansen, S.; Gooi, H.B.; Roberts, C. Increasing the regenerative braking energy for railway vehicles. IEEE Trans Intell. Transp. Syst. 2014, 15, 2506–2515. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, M.; Fernández-Cardador, A.; Cucala, A.P.; Pecharromán, R.R. Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles. IEEE Trans. Autom. Sci. Eng. 2014, 9, 496–504. [Google Scholar] [CrossRef]
- Yoshida, Y.; Figueroa, H.P.; Dougal, R.A. Comparison of energy storage configurations in railway microgrids. In Proceedings of the IEEE Second International Conference DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 133–138. [Google Scholar]
- Ratniyomchai, T.; Hillmansen, S.; Tricoli, P. Recent developments and applications of energy storage devices in electrified railways. IET Electr. Syst. Transp. 2014, 4, 9–20. [Google Scholar] [CrossRef]
- Konishi, T.; Morimoto, H.; Aihara, T.; Tsutakawa, M. Fixed energy storage technology applied for DC electrified railway. IEE J. Electr. Electron. Eng. 2010, 5, 270–277. [Google Scholar] [CrossRef]
- Torre, S.; Sánchez-Racero, A.J.; Aguado, J.A.; Reyes, M.; Martínez, O. Optimal sizing of energy storage for regenerative braking in electric railway systems. IEEE Trans. Power Syst. 2015, 30, 1492–1500. [Google Scholar] [CrossRef]
- Zhu, F.; Yang, Z.; Xia, H.; Lin, F. Hierarchical control and full-range dynamic performance optimization of supercapacitor energy storage system in urban railway. IEEE Trans. Indust. Electron. 2018, 65, 6646–6656. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Multiaspect measurement analysis of braking energy recovery. Energy Convers. Manag. 2016, 127, 35–42. [Google Scholar] [CrossRef]
- Aguado, J.A.; Racero, A.J.S.; Torre, S. Optimal operation of electric railways with renewable energy and electric storage systems. IEEE Trans. Smart Grid 2016, 9, 993–1001. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M.; Lu, S.; Chen, Y.; Li, Q. Optimized Sizing and Scheduling of Hybrid Energy Storage Systems for High-Speed Railway Traction Substations. Energies 2018, 11, 2199. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M.; Scholten, J. Energy storage on board of railway vehicles. In Proceedings of the European Conference Power Electronics Applications, Dresden, Germany, 11–14 September 2005; p. 10. [Google Scholar]
- Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O. Energy management in fuel cell power trains. Energy Convers. Manag. 2006, 47, 3255–3271. [Google Scholar] [CrossRef]
- Painter, T.D.; Barkan, C.P.L. Prospects for dynamic brake energy recovery on North American freight locomotives. In Proceedings of the 2006 IEEE/ASME Joint Rail Conference, Atlanta, GA, USA, 4–6 April 2006; pp. 181–188. [Google Scholar]
- Douglas, H.; Roberts, C.; Hillmansen, S.; Schmid, F. An assessment of available measures to reduce traction energy use in railway networks. Energy Convers. Manag. 2015, 106, 1149–1165. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Ning, B.; Tang, T. A survey on energy-efficient train operation for urban rail transit. IEEE Trans. Intell. Transp. Syst. 2015, 17, 2–13. [Google Scholar] [CrossRef]
- Khodaparastan, M.; Mohamed, A.A.; Brandauer, W. Recuperation of regenerative braking energy in electric rail transit systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2831–2847. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Weston, P.; Zhao, N.; Hillmansen, S.; Roberts, C.; Chen, L. System energy optimisation strategies for metros with regeneration. Transp. Res. Part. C Emerg. Technol. 2017, 75, 120–135. [Google Scholar] [CrossRef]
- González-Gil, A.; Palacin, R.; Batty, P. Optimal energy management of urban rail systems: Key performance indicators. Energy Convers. Manag. 2015, 90, 282–291. [Google Scholar]
- Frilli, A.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A. Energetic optimization of regenerative braking for high speed railway systems. Energy Convers. Manag. 2016, 129, 200–215. [Google Scholar] [CrossRef]
- Ciccarelli, F.; Iannuzzi, D.; Tricoli, P. Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transp. Res. Part. C Emerg. Technol. 2012, 24, 36–49. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Electrical Energy Storage; International Electrotechnical Commission: Geneva, Switzerland, 2011. [Google Scholar]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.W. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Gao, Z.; Chin, C.; Woo, W.; Jia, J. Integrated equivalent circuit and thermal model for simulation of temperature-dependent LiFePO4 battery in actual embedded application. Energies 2017, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Irena, A.D. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, UAE, 2017. [Google Scholar]
- Killer, A.; Armstorfer, A.; Diez, A.E.; Biechl, H. Ultracapacitor assisted regenerative braking in metropolitan railway systems. In Proceedings of the 2012 IEEE Colombian Intelligent Transportation Systems Symposium (CITSS), Bogota, Colombia, 30 August 2012; pp. 1–6. [Google Scholar]
- Lin, F.; Li, X.; Zhao, Y.; Yang, Z. Control strategies with dynamic threshold adjustment for supercapacitor energy storage system considering the train and substation characteristics in urban rail transit. Energies 2016, 9, 257. [Google Scholar] [CrossRef]
- Gee, A.M.; Dunn, R.W. Analysis of Trackside Flywheel Energy Storage in Light Rail Systems. IEEE Trans. Veh. Technol. 2015, 64, 3858–3869. [Google Scholar] [CrossRef]
- Spiryagin, M.; Wolfs, P.; Szanto, F.; Sun, Y.Q.; Cole, C.; Nielsen, D. Application of flywheel energy storage for heavy haul locomotives. Appl. Energy 2015, 157, 607–618. [Google Scholar] [CrossRef]
- García-Garre, A.; Gabaldón, A. Analysis, evaluation and simulation of railway diesel-electric and hybrid units as distributed energy resources. App. Sci. 2019, 9, 3605. [Google Scholar] [CrossRef] [Green Version]
- Reddy, T.B. Linden’s Handbook of Batteries, 4th ed.; McGraw Hill: New York, NY, USA, 2011. [Google Scholar]
- Halvor, S.; Hansen, M.U.N.; Nils, O. Using operational data to estimate the running resistance of trains. Estimation of the resistance in a set of Norwegian tunnels. J. Rail Transp. Plan. Manag. 2017, 7, 62–76. [Google Scholar]
- Davis, W.J. The tractive resistance of electric locomotives and cars. Gen. Electr. Rev. 1926, 29, 685–708. [Google Scholar]
- Brealey, R.A.; Myers, S.C.; Allen, F.; Mohanty, P. Principles of Corporate Finance; Tata McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Vale, A.M.; Felix, D.G.; Fortes, M.Z.; Borba, B.S.M.C.; Dias, B.H.; Santelli, B.S. Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”. Energy Policy 2017, 108, 292–298. [Google Scholar] [CrossRef]
- Blank, L.; Tarquin, A. Engineering Economy; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Toshiba. Industrial Lithium-ion Battery SCiB™ SIP Series. Available online: https://www.scib.jp/en/product/sip/index.htm (accessed on 1 November 2019).
- Mongird, K.; Fotedar, V.; Viswanathan, V.; Koritarov, V.; Balducci, P.; Hadjerioua, B.; Alam, J. Energy Storage Technology and Cost Characterization Report; U.S. Department of Energy’s Water Power Technologies Office by Pacific Northwest National Laboratory: Washington, DC, USA, 2019. [Google Scholar]
- U.S. Dollar/Brazilian Real. Available online: https://www.tradingview.com/symbols/USDBRL (accessed on 4 November 2019).
- Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Síntese dos Preços Praticados—MINAS GERAIS. Available online: http://preco.anp.gov.br/include/Resumo_Por_Estado_Municipio.asp (accessed on 1 November 2019).
- Banco Central do Brasil. Taxa de juros. Available online: https://www.bcb.gov.br/estatisticas/txjuros (accessed on 4 November 2019).
Throttle Notch | Estimated Consumption (L/h) |
---|---|
Dynamic Brake | 17 |
Neutral | 12 |
1 | 45 |
2 | 90 |
3 | 180 |
4 | 250 |
5 | 330 |
6 | 470 |
7 | 600 |
8 | 700 |
Time | Velocity (km/h) | Notch Position | Dynamic Brake (%) |
---|---|---|---|
00:00 | 32 | Pos. 1 | 0 |
00:01 | 32 | Neutral | 0 |
00:02 | 32 | Neutral | 0 |
00:03 | 32 | Dynamic brake | 5 |
00:04 | 32 | Dynamic brake | 10 |
Consumption (kWh) | Economy (%) | |
---|---|---|
Without energy recovery | 78,740.54 | - |
With energy recovery | 59,948.42 | 23.87% |
Variable | Value | Unit | Reference |
---|---|---|---|
Initial investment | 469.00 | US$/kWh | [44] |
Maximum C-rate charge/discharge battery | 3C | kW | [43] |
Depth of discharge battery | 80 | % | [43] |
State of charge battery range | 20–90 | % | [43] |
Efficiency charge/discharge battery | 92 | % | [31] |
Efficiency diesel engine | 37 | % | [36] |
Lifespan of the battery | >20,000 | cycles | [43] |
Lifespan of the system | 10 | years | |
Brazilian Real to US$ exchange rate | 4.01 | R$/US$ | [45] |
Fuel cost (diesel oil) | 3.69 | R$/L | [46] |
Fuel costs increase rate | 8.33 | % yearly | [46] |
Discount rate (in NPV)/MARR | 1.5 | % monthly | [47] |
Consumption (kWh) | Economy (%) | |
---|---|---|
Without energy recovery | 78,740.54 | - |
With energy recovery | 66,399.48 | 15.67% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayrink, S., Jr.; Oliveira, J.G.; Dias, B.H.; Oliveira, L.W.; Ochoa, J.S.; Rosseti, G.S. Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation. Energies 2020, 13, 963. https://doi.org/10.3390/en13040963
Mayrink S Jr., Oliveira JG, Dias BH, Oliveira LW, Ochoa JS, Rosseti GS. Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation. Energies. 2020; 13(4):963. https://doi.org/10.3390/en13040963
Chicago/Turabian StyleMayrink, Sergio, Jr., Janaína G. Oliveira, Bruno H. Dias, Leonardo W. Oliveira, Juan S. Ochoa, and Gustavo S. Rosseti. 2020. "Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation" Energies 13, no. 4: 963. https://doi.org/10.3390/en13040963
APA StyleMayrink, S., Jr., Oliveira, J. G., Dias, B. H., Oliveira, L. W., Ochoa, J. S., & Rosseti, G. S. (2020). Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation. Energies, 13(4), 963. https://doi.org/10.3390/en13040963