Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis
Abstract
:1. Introduction
- What are the best performing (i.e. most resilient) countries and what are the reasons for this achievement (see Section 4.1)?
- Why are some countries inefficient, how can they improve their scores and which are their benchmarks (see Section 4.2)?
- How robust is the performance of the countries (see Section 4.3)?
- What is the univocal ranking of the countries (see Section 4.4)?
- How well does a country perform in comparison to another one (see Section 4.5)?
- How does the performance of countries vary according to changes in selected indicators (see Section 4.6)?
2. Literature Review—Energy-Related Country Comparisons with Data Envelopment Analysis
- The use of DEA models to develop rankings that represent the electricity supply resilience of countries.
- The development of novel DEA algorithms to better understand why some countries are efficient and others are not. These new models are applied for the first time in a real-life case study.
- The examination of ranking stability by means of robustness analysis.
- The study of country-specific improvement strategies from an optimization point of view.
3. Case Study Description and Methodology
3.1. Indicator Set Selection, Quantification and Data Set Preparation
3.2. Ratio-Based Efficiency Analysis with the Charnes, Cooper, and Rhodes (CCR) Model
- is the efficiency of ;
- is the amount of -th input consumed by , (by default a set of inputs is defined as );
- is the amount of -th output produced by , (by default a set of inputs is defined as );
- : a vector of input weights (by default );
- : a vector of output weights (by default ).
3.3. In-Depth Analysis of Status of Efficiency
- in case is efficient, identification of the minimal subsets of indicators that make it efficient (such minimal subsets of inputs and outputs are called efficiency reducts);
- in case is inefficient, identification of the smallest subsets of other DMUs that underlie its inefficiency (such minimal subsets of DMUs are denoted as efficiency constructs).
Algorithm 1. Additive method for identifying all efficiency reducts. |
Require: sets of inputs and outputs |
Ensure: , all efficiency reducts for |
1: = all subsets containing at least one input from and at least one output from ordered with respective to the increasing cardinality |
2: for each do |
3: Solve equation (2) for with inputs and outputs reduced to to derive an optimal solution ) |
4: if ) = 1 then |
5: = |
6: Remove all supersets of from |
7: end if |
8: end for |
3.4. Robust Efficiency Analysis
- maximal and minimal efficiency scores for attained in the set of all feasible input/output weights (note that corresponds to the score derived from the standard analysis);
- a necessary efficiency preference relation , which holds for a pair in case attains efficiency at least as good as for all feasible input/output weights;
- the best and the worst efficiency ranks for , which are derived from the analysis of, respectively, minimal and maximal subsets of DMUs that attain better efficiency than for some feasible input/output weights.
- an efficiency acceptability interval index , which is the share of feasible weight vectors for which attains an efficiency score in the interval , where is the number of subintervals (). This represents the distribution of scores, providing the performance robustness assessment that answers research question 3;
- an expected (average) efficiency for ;
- a pairwise efficiency outranking index for , which is the share of feasible weight vectors for which is not worse than in terms of the efficiency score, i.e., . This answers research question 4 as it indicates how well countries perform in comparison with each other;
- an efficiency rank acceptability index , which is the share of feasible weight vectors for which attains -th rank. This answers research question 5 as it allows to rank the countries;
- an expected (average) rank for .
4. Results and Discussion
4.1. What Are the Best Performing (i.e., Most Resilient) Countries and What Are the Reasons for This Achievement?
4.2. Why Are Some Countries Inefficient, How Can They Improve Their Scores and What Are Their Benchmarks?
- What is the average or most likely performance of a country? What is the expected distribution of its performance (Section 4.3)? This answers research question 3.
- Is there a univocal ranking of countries (Section 4.4)? This answers research question 4.
- How does each country perform against all others (pairwise comparisons) (Section 4.5)? This answers research question 5.
4.3. How Robust Is the Performance of the Countries?
4.4. What Is the Univocal Ranking of the Countries?
4.5. How Well Does One Country Perform in Comparison to Another?
4.6. How Does the Performance of Countries Vary According to Changes in Selected Indicators?
- Obtain a new country ranking, based on updated indicator values according to specific scenarios (Singapore, Section 4.6.1).
- Determine the minimal required improvements on the indicators in order to become an efficient country (Japan, Section 4.6.2)
4.6.1. Country Analysis: Singapore’s Electricity Supply Resilience
4.6.2. Scenario 1: 8% Solar Photovoltaic Electricity Production
- i2; improvement from 0.124 to 0.115 fatalities/GWeyr: solar PV has lower fatality rates than natural gas [71].
- i5; improvement from 0.11 to 0.22: replacing natural gas generation by solar PV improves the mix diversity.
- i7; deterioration from 0.85 to 0.79: solar PV has a lower EAF than natural gas [74].
4.6.3. Scenario 2: Singapore in 2030
- i6; improvement from 0.98 to 0.92: Singapore’s electricity grid is currently not strongly connected in the region, but its import dependence is expected to decrease as a result of planned interconnections with Malaysia and Indonesia [97] and according to the projected production and consumption in 2030 [103].
- i8; improvement from 51,809 to 67,360 USD/capita: according to predictions, Singapore’s GDP will increase to 67,360 USD/capita in 2030 [104].
4.6.4. Country Analysis: Japan’s Electricity Supply Resilience
4.6.5. Scenario 3: Required Electricity Generation Portfolio to Make Japan Efficient
5. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Levin, K.; Cashore, B.; Bernstein, S.; Auld, G. Worldwide Trends in Energy Use and Efficiency: Key Insights from IEA Indicator Analysis; International Energy Agency: Paris, France, 2008. [Google Scholar]
- Tang, Y.; Bu, G.; Yi, J. Analysis and lessons of the blackout in Indian power grid on 30 and 31 July 2012. In Zhongguo Dianji Gongcheng Xuebao, Proceedings of the Chinese Society of Electrical Engineering, Beijing, China, 30–31 June 2012; Chinese Society for Electrical Engineering: Beijing, China, 2012. [Google Scholar]
- European Network of Transmission System Operators for Electricity. Report on Blackout in Turkey on 31st March 2015; ENTSO-E: Brussels, Belgium, 2015. [Google Scholar]
- Ji, C.; Wei, Y.; Mei, H.; Calzada, J.; Carey, M.; Church, S.; Hayes, T.; Nugent, B.; Stella, G.; Wallace, M.; et al. Large-scale data analysis of power grid resilience across multiple US service regions. Nat. Energy 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Kröger, W. Securing the Operation of Socially Critical Systems from an Engineering Perspective: New Challenges, Enhanced Tools and Novel Concepts. Eur. J. Secur. Res. 2017, 2, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Wender, B.A.; Morgan, M.G.; Holmes, K.J. Enhancing the Resilience of Electricity Systems. Engineering 2017, 3, 580–582. [Google Scholar] [CrossRef]
- Gasser, P.; Lustenberger, P.; Cinelli, M.; Kim, W.; Spada, M.; Burgherr, P.; Hirschberg, S.; Stojadinovic, B.; Sun, T.Y. A review on resilience assessment of energy systems. Sustain. Resilient Infrastruct. 2019, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, A.; Klimek, P.; Choudhary, A.; Schmid, N.; Linkov, I.; Øien, K.; Vollmer, M.; Sanne, J.; Andersson, S.; Székely, Z. Analysis of Existing Assessment Resilience Approaches, Indicators and Data Sources. 2016. Available online: https://www.ivl.se/download/18.4a88670a1596305e782de/1484131257184/E002.pdf (accessed on 6 May 2019).
- Organisation for Economic Co-operation and Development. International Comparison Program. 2005. Available online: https://stats.oecd.org/glossary/detail.asp?ID=6280 (accessed on 30 August 2018).
- Sovacool, B.K.; Mukherjee, I. Conceptualizing and measuring energy security: A synthesized approach. Energy 2011, 36, 8. [Google Scholar] [CrossRef]
- Freudenberg, M. Composite Indicators of Country Performance; OECD Science, Technology and Industry Working Papers: Paris, France, 2003. [Google Scholar]
- Bandura, R. A Survey of Composite Indices Measuring Country Performance: 2008 Update; United Nations Development Programme, Office of Development Studies (UNDP/ODS Working Paper): New York, NY, USA, 2008. [Google Scholar]
- Greco, S.; Ehrgott, M.; Figueira, J.R. Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd ed.; State of the Art Surveys, International Series in Operations Research & Management Science; Springer Science & Business Media: Berlin, Germany, 2006; Volumes 1–2. [Google Scholar]
- Hughes, L.; Shupe, D. Creating Energy Security Indexes with Decision Matrices and Quantitative Criteria; Energy Research Group: Halifax, NS, Canada, 2010. [Google Scholar]
- Wu, G.; Liu, L.-C.; Han, Z.-Y.; Wei, Y.-M. Climate protection and China’s energy security: Win–win or tradeoff. Appl. Energy 2012, 97, 157–163. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst. Appl. 2011, 38, 6577–6585. [Google Scholar] [CrossRef]
- Antanasijević, D.; Pocajt, V.; Ristić, M.; Perić-Grujić, A. A differential multi-criteria analysis for the assessment of sustainability performance of European countries: Beyond country ranking. J. Clean. Prod. 2017, 165, 213–220. [Google Scholar] [CrossRef]
- Chung, E.-S.; Lee, K.S. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–1511. [Google Scholar] [CrossRef]
- Valdés, J. Arbitrariness in Multidimensional Energy Security Indicators. Ecol. Econ. 2018, 145, 263–273. [Google Scholar] [CrossRef]
- Pohekar, S.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Thies, C.; Kieckhäfer, K.; Spengler, T.S.; Sodhi, M.S. Operations research for sustainability assessment of products: A review. Eur. J. Oper. Res. 2018. [Google Scholar] [CrossRef]
- Gasser, P. A review on energy security indices to compare country performances. Energy Policy 2020, 139, 111339. [Google Scholar] [CrossRef]
- Gasser, P.; Lustenberger, P.; Sun, T.; Kim, W.; Spada, M.; Burgherr, P.; Hirschberg, S.; Stojadinović, B. Security of Electricity Supply Indicators in a Resilience Context, Proceedings of the European Safety and Reliability Conference, Portorož, Slovenia, 18–22 June 2017; Taylor & Francis: Portorož, Slovenia, 2017. [Google Scholar]
- Gasser, P.; Suter, J.; Cinelli, M.; Spada, M.; Burgherr, P.; Hirschberg, S.; Kadziński, M.; Stojadinović, B. Comprehensive resilience assessment of electricity supply security for 140 countries. Ecol. Indic. 2020, 110. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data envelopment analysis. In Handbook on Data Envelopment Analysis; Springer: Heidelberg, Germany, 2004; pp. 1–9. [Google Scholar]
- El Gibari, S.; Gómez, T.; Ruiz, F. Building composite indicators using multicriteria methods: A review. J. Bus. Econ. 2018. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Kadziński, M.; Labijak, A.; Napieraj, M. Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports. Omega 2017, 67, 1–18. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Brockhoff, K. Zur Quantifizierung der Produktivität industrieller Forschung durch die Schätzung einer einzelwirtschaftlichen Produktionsfunktion–Erste Ergebnisse. Jahrb. Nationalökonomie Stat. 1970, 184, 248–276. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.-M.; Lin, B.J.Y. Data envelopment analysis 1978–2010: A citation-based literature survey. Omega 2013, 41, 3–15. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.-L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Apergis, N.; Aye, G.C.; Barros, C.P.; Gupta, R.; Wanke, P. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs. Energy Econ. 2015, 51, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Lozano, S. A joint-inputs Network DEA approach to production and pollution-generating technologies. Expert Syst. Appl. 2015, 42, 7960–7968. [Google Scholar] [CrossRef]
- Khalili-Damghani, K.; Tavana, M.; Haji-Saami, E. A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment. Expert Syst. Appl. 2015, 42, 760–773. [Google Scholar] [CrossRef]
- Wegener, M.; Amin, G.R. Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. Appl. 2019, 122, 369–375. [Google Scholar] [CrossRef]
- Wang, H. A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator. Energy 2015, 80, 114–122. [Google Scholar] [CrossRef]
- Pang, R.-Z.; Deng, Z.-Q.; Hu, J.-L. Clean energy use and total-factor efficiencies: An international comparison. Renew. Sustain. Energy Rev. 2015, 52, 1158–1171. [Google Scholar] [CrossRef]
- Li, M.; Wang, Q. International environmental efficiency differences and their determinants. Energy 2014, 78, 411–420. [Google Scholar] [CrossRef]
- Bampatsou, C.; Papadopoulos, S.; Zervas, E. Technical efficiency of economic systems of EU-15 countries based on energy consumption. Energy Policy 2013, 55, 426–434. [Google Scholar] [CrossRef]
- Cai, B.; Guo, H.; Ma, Z.; Wang, Z.; Dhakal, S.; Cao, L. Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data. Appl. Energy 2019, 242, 994–1009. [Google Scholar] [CrossRef]
- Camarero, M.; Castillo, J.; Picazo-Tadeo, A.J.; Tamarit, C. Eco-efficiency and convergence in OECD countries. Environ. Resour. Econ. 2013, 55, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-C. Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU. Energy Policy 2014, 67, 648–655. [Google Scholar] [CrossRef]
- Cui, Q.; Kuang, H.-B.; Wu, C.-Y.; Li, Y. The changing trend and influencing factors of energy efficiency: The case of nine countries. Energy 2014, 64, 1026–1034. [Google Scholar] [CrossRef]
- Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. On the dynamics of eco-efficiency performance in the European Union. Comput. Oper. Res. 2016, 66, 336–350. [Google Scholar] [CrossRef]
- Halkos, G.; Petrou, K.N. Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy. Energies 2019, 12, 3718. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, J.-C.; Lu, C.-C.; Li, Y.; Chiu, Y.-H.; Xu, Y.-S. Environmental Assessment of European Union Countries. Energies 2019, 12, 295. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-L.; Kao, C.-H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Liou, J.-L.; Wu, P.-I. Will economic development enhance the energy use efficiency and CO2 emission control efficiency? Expert Syst. Appl. 2011, 38, 12379–12387. [Google Scholar] [CrossRef]
- Ramanathan, R. An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa. Energy 2005, 30, 2831–2842. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Macedo, P. A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 2015, 103, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Song, M.-L.; Zhang, L.-L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Wang, L.-W.; Le, K.-D.; Nguyen, T.-D. Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach. Energies 2019, 12, 1535. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Streimikiene, D.; Baležentis, T. Review of and comparative assessment of energy security in Baltic States. Renew. Sustain. Energy Rev. 2017, 76, 185–192. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M.; Yuan, J.-H.; Gao, X.-J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Zhou, G.; Chung, W.; Zhang, Y. Measuring energy efficiency performance of China’s transport sector: A data envelopment analysis approach. Expert Syst. Appl. 2014, 41, 709–722. [Google Scholar] [CrossRef]
- Zhou, P.; Poh, K.L.; Ang, B.W. Data Envelopment Analysis for Measuring Environmental Performance. In Handbook of Operations Analytics Using Data Envelopment Analysis; Springer: Heidelberg, Germany, 2016; pp. 31–49. [Google Scholar]
- Zhou, D.Q.; Wu, F.; Zhou, X.; Zhou, P. Output-specific energy efficiency assessment: A data envelopment analysis approach. Appl. Energy 2016, 177, 117–126. [Google Scholar] [CrossRef]
- Kruyt, B.; van Vuuren, D.P.; de Vries, H.J.M.; Groenenberg, H. Indicators for energy security. Energy Policy 2009, 37, 2166–2181. [Google Scholar] [CrossRef]
- Ang, B.W.; Choong, W.L.; Ng, T.S. Energy security: Definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 2015, 42, 1077–1093. [Google Scholar] [CrossRef]
- Vera, I.; Langlois, L. Energy indicators for sustainable development. Energy 2007, 32, 875–882. [Google Scholar] [CrossRef]
- Patlitzianas, K.D.; Doukas, H.; Kagiannas, A.G.; Psarras, J. Sustainable energy policy indicators: Review and recommendations. Renew. Energy 2008, 33, 966–973. [Google Scholar] [CrossRef]
- Jansen, J.C.; Arkel, W.V.; Boots, M.G. Designing Indicators of Long-Term Energy Supply Security; Energy research Centre of the Netherlands ECN: Westerduinweg, The Netherlands, 2004. [Google Scholar]
- Molyneaux, L.; Wagner, L.; Froome, C.; Foster, J. Resilience and electricity systems: A comparative analysis. Energy Policy 2012, 47, 188–201. [Google Scholar] [CrossRef]
- Jasiński, D.; Cinelli, M.; Dias, L.C.; Meredith, J.; Kirwan, K. Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis. Resour. Policy 2018. [Google Scholar] [CrossRef]
- International Energy Agency. Statistics. 2015. Available online: https://www.iea.org/statistics/statisticssearch (accessed on 8 March 2018).
- Gasser, P.; Suter, J.; Cinelli, M.; Lustenberger, P.; Kim, W.; Spada, M.; Burgherr, P.; Hirschberg, S.; Stojadinović, B. Development of an Indicator Set for Resilience Quantification of Electricity Supply. In Proceedings of the Society for Risk Analysis 2017 Annual Meeting, Arlington, VA, USA, 10–14 December 2017. [Google Scholar]
- World Bank. Distance to Frontier and Ease of Doing Business Ranking. 2017. Available online: http://www.doingbusiness.org/~/media/WBG/DoingBusiness/Documents/Annual-Reports/English/DB17-Chapters/DB17-DTF-and-DBRankings.pdf (accessed on 6 May 2019).
- Burgherr, P.; Hirschberg, S. Comparative risk assessment of severe accidents in the energy sector. Energy Policy 2014, 74 (Suppl. 1), S45–S56. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy Statistics. 2017. Available online: https://www.irena.org/publications/2017/Jul/Renewable-Energy-Statistics-2017 (accessed on 6 May 2019).
- World Bank. World Governance Indicators. Available online: http://databank.worldbank.org/data/reports.aspx?source=worldwide-governance-indicators (accessed on 29 May 2017).
- Volkart, K.; Bauer, C.; Burgherr, P.; Hirschberg, S.; Schenler, W.; Spada, M. Interdisciplinary assessment of renewable, nuclear and fossil power generation with and without carbon capture and storage in view of the new Swiss energy policy. Int. J. Greenh. Gas Control 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Swiss, R. Sigma Explore—Catastrophe and Insurance Market Data. Available online: http://www.sigma-explorer.com (accessed on 8 March 2018).
- Joint Research Centre of the European Commission. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD publishing: Paris, France, 2008. [Google Scholar]
- Meyer, P.; Olteanu, A.-L. Handling imprecise and missing evaluations in multi-criteria majority-rule sorting. Comput. Oper. Res. 2019, 110, 135–147. [Google Scholar] [CrossRef]
- Cook, W.D.; Tone, K.; Zhu, J. Data envelopment analysis: Prior to choosing a model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Sarkis, J. Preparing your data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Springer: Heidelberg, Germany, 2007; pp. 305–320. [Google Scholar]
- Kadziński, M.; Corrente, S.; Greco, S.; Słowiński, R. Preferential reducts and constructs in robust multiple criteria ranking and sorting. OR Spectr. 2014, 36, 1021–1053. [Google Scholar] [CrossRef] [Green Version]
- Kadziński, M.; Greco, S.; Słowiński, R. Robust Ordinal Regression for Dominance-based Rough Set Approach to multiple criteria sorting. Inf. Sci. 2014, 283, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Lahdelma, R.; Salminen, P. Stochastic multicriteria acceptability analysis using the data envelopment model. Eur. J. Oper. Res. 2006, 170, 241–252. [Google Scholar] [CrossRef]
- Tervonen, T.; van Valkenhoef, G.; Baştürk, N.; Postmus, D. Hit-and-run enables efficient weight generation for simulation-based multiple criteria decision analysis. Eur. J. Oper. Res. 2013, 224, 552–559. [Google Scholar] [CrossRef]
- Energy Market Authority. Smart Energy Sustainable Future—Energy Market Authority Annual Report 2016/17. Available online: https://www.ema.gov.sg/cmsmedia/Publications_and_Statistics/Publications/EMA%20AR%202016_17.pdf (accessed on 6 May 2019).
- Tervonen, T.; Lahdelma, R. Implementing stochastic multicriteria acceptability analysis. Eur. J. Oper. Res. 2007, 178, 500–513. [Google Scholar] [CrossRef] [Green Version]
- ValueWalk. Singapore—The Switzerland of Asia. Available online: http://www.valuewalk.com/2017/05/the-switzerland-of-asia/ (accessed on 12 January 2018).
- United Nations Development Programme. Human Development Report. 2016. Available online: http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf (accessed on 6 May 2019).
- The Heritage Foundation. Index of Economic Freedom. 2017. Available online: http://www.heritage.org/index/pdf/2017/book/index_2017.pdf (accessed on 6 May 2019).
- World Bank. Worldwide Governance Indicators—Political Stability and Absence of Violence/Terrorism. 2015. Available online: http://databank.worldbank.org/data/reports.aspx?source=Worldwide-Governance-Indicators (accessed on 23 November 2017).
- The Z/Yen Group and China Development Institute. The Global Financial Centres Index. 2016. Available online: http://www.longfinance.net/images/gfci/20/GFCI20_26Sep2016.pdf (accessed on 6 May 2019).
- International Trade Administration. Singapore—Oil and Gas. 2017. Available online: https://www.export.gov/article?id=Singapore-Oil-and-Gas (accessed on 12 January 2018).
- World Shipping Council. Top 50 World Container Ports. 2018. Available online: http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports (accessed on 12 January 2018).
- Energy Market Authority. Singapore Energy Statistis. 2017. Available online: https://www.ema.gov.sg/cmsmedia/publications_and_statistics/publications/ses17/publication_singapore_energy_statistics_2017.pdf (accessed on 6 May 2019).
- Ministry of Trade Industry. National Energy Policy Report, Energy for Growth. 2007. Available online: https://www.mti.gov.sg/-/media/MTI/Resources/Publications/National-Energy-Policy-Report/nepr-2007.pdf (accessed on 6 May 2019).
- Economic Strategies Committee. ESC Subcommittee on Ensuring Energy Resilience and Sustainable Growth. 2010. Available online: https://www.mof.gov.sg/Portals/0/MOF%20For/Businesses/ESC%20Recommendations/Subcommittee%20on%20Ensuring%20Energy%20Resilience%20and%20Sustainable%20Growth.pdf (accessed on 6 May 2019).
- FM Global. FM Global Resilience Index. 2018. Available online: https://www.fmglobal.com/research-and-resources/tools-and-resources/resilienceindex (accessed on 6 May 2019).
- Suruhanjaya Tenaga. The National Grid, Strengthening Malaysia’s Framework. 2015. Available online: https://www.st.gov.my/ms/general/add_counter/585/download/read_count (accessed on 6 May 2019).
- Siddiqui, K. The political economy of development in Singapore. Res. Appl. Econ. 2010, 2, 1. [Google Scholar] [CrossRef]
- Asgary, A.; Ozdemir, A.I.; Gentles, C. Does Insurance Delay or Speed up the Recovery and Reconstruction Process? Evidences from Canada. In Reconstruction and Recovery in Urban Contexts; UCL: London, UK, 2015. [Google Scholar]
- World Bank. Ease of Doing Business Index. 2016. Available online: http://data.worldbank.org/indicator/IC.BUS.EASE.XQ (accessed on 8 March 2018).
- Economic Strategies Committee. High Skilled People, Innovative Economy, Distinctive Global City. 2010. Available online: https://www.mof.gov.sg/Portals/0/MOF%20For/Businesses/ESC%20Recommendations/ESC%20Full%20Report.pdf (accessed on 6 May 2019).
- National Climate Change Secretariat. Singapore’s Approach to Alternative Energy. 2016. Available online: https://www.nccs.gov.sg/climate-change-and-singapore/national-circumstances/singapore%27s-approach-to-alternative-energy (accessed on 12 January 2018).
- Nian, V. Long Range Energy Analysis of Singapore’s Electricity Sector Using the TIMES Modeling Framework; National University of Singapore: Singapore, 2013. [Google Scholar]
- Pardee Center for International Futures at the University of Denver. Population and GDP Forecasts. 2018. Available online: http://www.ifs.du.edu/ifs/frm_MainMenu.aspx (accessed on 3 November 2018).
- World Bank. GDP Growth. 2016. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG (accessed on 12 June 2018).
- World Bank. GDP. 2016. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 12 June 2018).
- U.S. News and World Report. Best Countries. 2018. Available online: https://media.beam.usnews.com/ce/e7/fdca61cb496da027ab53bef37a24/171110-best-countries-overall-rankings-2018.pdf (accessed on 6 May 2019).
- World Health Statistics. Monitoring Health for the Sustainable Development Goals. 2016. Available online: https://www.who.int/gho/publications/world_health_statistics/2016/en/ (accessed on 6 May 2019).
- World Intellectual Property Organization. World Intellectual Property Indicators. 2015. Available online: http://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2015.pdf (accessed on 6 May 2019).
- Norio, O.; Ye, T.; Kajitani, Y.; Shi, P.; Tatano, H. The 2011 eastern Japan great earthquake disaster: Overview and comments. Int. J. Disaster Risk Sci. 2012, 2, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Tsukimori, O. Japan’s CO2 emissions hit record as fossil fuel consumption rises. In Reuters; Thomson Reuters Corporation: Toronto, ON, Canada, 2014. [Google Scholar]
- Matsuo, Y.; Yamaguchi, Y. The Rise in Cost of Power Generation in Japan after the Fukushima Daiichi Accident and Its Impact on the Finances of the Electric Power Utilities; The Institute of Energy Economics: Tokyo, Japan, 2013. [Google Scholar]
- Ministry of Economy. Strategic Energy Plan. 2014. Available online: http://www.enecho.meti.go.jp/en/category/others/basic_plan/pdf/4th_strategic_energy_plan.pdf (accessed on 6 May 2019).
- GAN Integrity Solutions. Business Anti-Corruption Portal. 2015. Available online: https://www.business-anti-corruption.com (accessed on 12 June 2018).
- Asia Pacific Energy Research Centre (APERC). Electric Power Grid Interconnections in Northeast Asia; APERC: Singapore, 2015. [Google Scholar]
- Otsuki, T.; Mohd Isa, A.B.; Samuelson, R.D. Electric power grid interconnections in Northeast Asia: A quantitative analysis of opportunities and challenges. Energy Policy 2016, 89, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Willis Towers Watson. Asia Insurance Market Report. 2016. Available online: https://www.willistowerswatson.com/-/media/WTW/PDF/Insights/2017/01/Asia-insurance-market-review-report.pdf (accessed on 6 May 2019).
- Welle, T.; Birkmann, J. The World Risk Index–An approach to assess risk and vulnerability on a global scale. J. Extrem. Events 2015, 2, 1550003. [Google Scholar] [CrossRef]
- Mancheva, M. Japan Sets 22–24% Renewables Share Target for 2030. Available online: https://renewablesnow.com/news/japan-sets-22-24-renewables-share-target-for-2030-479165/ (accessed on 12 June 2018).
- Ministry of Economy. Japan’s Energy Plan. 2016. Available online: http://www.meti.go.jp/english/publications/pdf/EnergyPlan_160614.pdf (accessed on 6 May 2019).
- Hirschberg, S.; Burgherr, P. Sustainability Assessment for Energy Technologies; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 1–22. [Google Scholar]
Source | Scope | Geographical Coverage | Number of DMUs | Inputs | Outputs |
---|---|---|---|---|---|
Apergis et al. (2015) [34] | Energy efficiency | Organisation for Economic Co-operation and Development (OECD) | 20 | Labor; energy consumption; capital stock | GDP; CO2 emissions |
Bampatsou et al. (2013) [41] | Capacity of an economy to produce a higher GDP given fixed energy inputs | European Union | 15 | Fossil and non-fossil fuel energy consumption | GDP |
Cai et al. (2019) [42] | Carbon emissions efficiency in Chinese cities | China | 280 | Labor; capital; energy and water consumption | GDP; CO2 emissions |
Camarero et al. (2013) [43] | Impact of CO2, SO2 and NOx air-pollutants on the environment | OECD | 22 | CO2, SO2 and NOx emissions | GDP |
Chang (2014) [44] | Energy intensity | European Union | 27 | Capital stock; labor force; energy consumption | GDP |
Cui et al. (2014) [45] | Energy efficiency | Global | 9 | Employees; energy consumption; energy services | CO2 emissions; industrial profit |
Gómez-Calvet et al. (2016) [46] | Abatement opportunities of CO2, SO2 and NOx air-pollutants | European Union | 27 | CO2, SO2 and NOx emissions | GDP |
Halkos and Petrou (2019) [47] | Energy recovery from waste | European Union | 28 | Energy consumption; labor; capital; population density | GDP; Greenhouse Gases (GHG), NOx and SOx emissions |
Hsieh et al. (2019) [48] | Environmental assessment | European Union | 28 | Labor; capital; energy consumption | GHG and SOx emissions; GDP |
Hu and Kao (2007) [49] | Energy-saving target ratio | Asia-Pacific | 17 | Energy; labor; capital | GDP |
Li and Wang (2014) [40] | Environmental efficiency | Global | 95 | Capital stock; labor force; energy consumption | GDP; CO2 emissions |
Liou and Wu (2011) [50] | Effect of economic development on energy use efficiency and CO2 emissions | Global | 57 | Labor; capital; energy consumption | GDP; CO2 emissions |
Pang et al. (2015) [39] | Clean energy use and total-factor efficiencies | Global | 87 | Capital stock; labor force; energy consumption | GDP; CO2 emissions |
Ramanathan (2005) [51] | Energy consumption and carbon dioxide emissions | Middle East and North Africa | 17 | Fossil fuel energy comsumption; carbon emissions | Non-fossil fuel energy consumption; GDP |
Robaina-Alves et al. (2015) [52] | Resource and environment efficiency | Europe | 26 | Capital stock; labor force; energy consumption | GDP; GHG emissions |
Song et al. (2013) [53] | Energy efficiency | Brazil, Russia, India, China and South Africa (BRICS) | 5 | Energy consumption; economically active population; capital | GDP |
Wang et al. (2019) [54] | Relation between CO2 emissions and GDP | Global | 25 | Gross capital formation; labor force; energy consumption | GDP; CO2 emissions |
Wang (2015) [38] | Energy systems’ sustainability | Global | 109 | CO2 emissions; energy intensity | Share of renewables |
Wegener and Amin (2019) [37] | Greenhouse gas emissions minimization | Canada and USA | 23 | Wells; employees; capital expenditures; total assets | GHG emissions; production |
Zeng et al. (2017) [55] | Economic; energy supply; environmental | Baltic States | 3 | Energy intensity; energy weight in HICP; electricity prices; import dependency; diversification of import sources; diversification of energy mix | Energy balance of trade; share of renewables; carbon intensity |
Zhang et al. (2011) [56] | Total-factor energy efficiency | Developing countries | 23 | Labor force; energy consumption; capital stock | GDP |
Zhou and Ang (2008) [57] | Energy efficiency performance | OECD | 21 | Capital stock; labor force; consumption of coal, oil, gas and other | GDP; CO2 emissions |
Zhou et al. (2014) [58] | Energy efficiency of transport sector | China | 30 | Labor; consumption of coal, gasoline, kerosene, diesel oil, electricity and other | Passenger kilometers; tonne-kilometers; CO2 emissions |
Zhou et al. (2016) [59] | Energy efficiency | Global | 32 | Capital stock; labor force; fossil and non-fossil energy consumption | GDP; CO2 emissions |
This study | Electricity supply resilience | Global | 140 | System Average Interruption Duration Index (SAIDI); accident risks; import dependence; average outage time | Control of corruption; political stability and absence of violence/terrorism; mix diversity; equivalent availability factor; GDP per capita; insurance penetration; government effectiveness; ease of doing business |
0-Country | 1-SAIDI | 2-Accident Risks | 3-Control of Corruption | 4-Political Stability and Absence of Violence/Terrorism | 5-Electricity Mix Diversity | 6-Electricity Import Dependence | 7-Equivalent Availability Factor | 8-GDP per Capita | 9-Insurance Penetration | 10-Government Effectiveness | 11-Average Outage Time | 12-Ease of Doing Business |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Measurement Unit | Hours per Customer per Year | Fatalities/GWeyr | Percentile Rank | Percentile Rank | Normalized Shannon Index | Ratio Consumption/Production | % | 2010 USD per Capita | % of GDP | Percentile Rank | Hours | Distance to Frontier (100 = Best, 0 = Worst) |
Preference Order of the Values | ↓ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ |
Albania | 111.8 | 7.03 | 38.46 | 58.10 | 0.00 | 1.02 | 39% | 4543 | 0.90% | 53.85 | 2.15 | 66.06 |
Cambodia | 34.2 | 3.53 | 12.02 | 49.52 | 0.39 | 1.16 | 64% | 1021 | 0.30% | 25.00 | 1.40 | 52.34 |
Canada | 1.0 | 0.02 | 95.19 | 95.24 | 0.60 | 0.81 | 56% | 50,108 | 4.23% | 94.71 | 0.71 | 80.34 |
China | 1.3 | 9.65 | 48.56 | 26.19 | 0.42 | 0.95 | 74% | 6498 | 1.63% | 68.27 | 3.25 | 63.43 |
Congo, Dem. Rep. | 92.6 | 7.01 | 8.17 | 4.76 | 0.01 | 0.81 | 39% | 384 | 0.30% | 2.88 | 2.03 | 34.54 |
Denmark | 0.4 | 0.04 | 98.08 | 76.67 | 0.57 | 1.14 | 54% | 60,037 | 2.69% | 97.60 | 0.80 | 83.91 |
Eritrea | 92.6 | 0.95 | 7.69 | 19.05 | 0.01 | 0.86 | 85% | 528 | 0.40% | 4.81 | 2.03 | 26.16 |
Finland | 0.2 | 0.03 | 99.52 | 87.14 | 0.71 | 1.20 | 73% | 45,208 | 2.18% | 96.15 | 0.50 | 80.34 |
France | 0.1 | 0.01 | 88.94 | 51.43 | 0.39 | 0.82 | 80% | 41,768 | 3.09% | 88.46 | 1.00 | 75.19 |
Germany | 0.3 | 0.07 | 93.27 | 68.57 | 0.74 | 0.89 | 71% | 45,252 | 3.36% | 93.75 | 1.50 | 78.52 |
Haiti | 92.6 | 1.44 | 10.10 | 22.38 | 0.12 | 0.41 | 81% | 728 | 1.00% | 0.96 | 2.03 | 38.63 |
Iceland | 0.5 | 0.00 | 95.67 | 95.71 | 0.25 | 0.97 | 53% | 45,939 | 2.20% | 90.87 | 1.00 | 78.33 |
Iraq | 2352.0 | 0.97 | 4.81 | 2.86 | 0.31 | 0.64 | 83% | 5120 | 1.63% | 9.62 | 2.33 | 44.56 |
Italy | 0.7 | 0.05 | 57.69 | 58.57 | 0.76 | 1.09 | 68% | 33,912 | 2.06% | 69.23 | 0.28 | 71.16 |
Japan | 0.4 | 0.08 | 91.35 | 89.05 | 0.65 | 0.96 | 78% | 47,142 | 2.55% | 95.19 | 4.00 | 75.36 |
Kenya | 188.5 | 2.88 | 13.94 | 9.52 | 0.46 | 0.81 | 69% | 1134 | 1.88% | 43.27 | 11.42 | 54.19 |
Libya | 1883.4 | 0.50 | 0.96 | 3.33 | 0.30 | 0.28 | 85% | 5447 | 0.40% | 1.92 | 3.11 | 32.84 |
Luxembourg | 0.2 | 0.02 | 97.12 | 98.10 | 0.49 | 2.97 | 54% | 108,965 | 1.79% | 93.27 | 1.00 | 68.77 |
Myanmar | 92.6 | 4.20 | 20.67 | 10.48 | 0.33 | 0.84 | 58% | 1643 | 0.10% | 10.10 | 2.03 | 38.68 |
Nepal | 92.6 | 7.02 | 32.21 | 14.29 | 0.01 | 1.12 | 39% | 690 | 1.63% | 12.98 | 2.03 | 59.99 |
Netherlands | 0.3 | 0.08 | 94.71 | 80.48 | 0.57 | 1.03 | 80% | 51,285 | 8.35% | 97.12 | 1.00 | 75.21 |
New Zealand | 2.4 | 0.02 | 100.00 | 99.05 | 0.56 | 0.94 | 56% | 36,236 | 4.64% | 98.56 | 1.71 | 86.42 |
Niger | 290.0 | 0.79 | 30.77 | 13.33 | 0.31 | 2.07 | 84% | 384 | 0.70% | 31.25 | 1.50 | 45.39 |
Nigeria | 2900.5 | 1.37 | 12.50 | 6.19 | 0.21 | 0.83 | 77% | 2535 | 0.20% | 16.35 | 6.38 | 46.40 |
North Korea | 92.6 | 5.30 | 9.13 | 10.95 | 0.32 | 0.84 | 52% | 1068 | 1.63% | 2.40 | 2.03 | 62.67 |
Norway | 1.8 | 0.00 | 99.04 | 91.43 | 0.10 | 0.84 | 40% | 89,595 | 2.21% | 98.08 | 0.82 | 82.49 |
Paraguay | 15.9 | 7.03 | 15.87 | 48.57 | 0.00 | 0.20 | 39% | 3822 | 1.20% | 17.31 | 2.03 | 59.82 |
Qatar | 0.7 | 0.12 | 78.37 | 84.29 | 0.00 | 0.94 | 85% | 74,531 | 1.50% | 77.40 | 1.75 | 65.32 |
Singapore | 0.0 | 0.12 | 96.63 | 96.19 | 0.11 | 0.98 | 85% | 51,809 | 1.69% | 100.00 | 0.00 | 84.60 |
South Korea | 0.0 | 0.07 | 66.83 | 53.81 | 0.56 | 0.97 | 85% | 25,021 | 4.12% | 79.81 | 0.00 | 83.52 |
South Sudan | 92.6 | 0.95 | 0.48 | 2.38 | 0.02 | 0.94 | 85% | 332 | 1.63% | 0.48 | 2.03 | 35.70 |
Spain | 0.3 | 0.05 | 69.71 | 55.71 | 0.84 | 0.91 | 66% | 30,486 | 2.75% | 85.10 | 0.50 | 73.87 |
Sweden | 1.9 | 0.01 | 98.56 | 80.95 | 0.53 | 0.82 | 58% | 55,159 | 1.88% | 96.63 | 1.46 | 80.23 |
Switzerland | 0.1 | 0.01 | 97.60 | 96.67 | 0.41 | 0.92 | 58% | 75,594 | 4.12% | 99.52 | 1.00 | 75.80 |
Syria | 92.6 | 0.52 | 1.92 | 0.00 | 0.31 | 0.84 | 84% | 919 | 0.30% | 5.29 | 2.03 | 41.53 |
Togo | 92.6 | 5.10 | 25.48 | 38.10 | 0.34 | 15.06 | 53% | 554 | 1.10% | 11.06 | 2.03 | 46.30 |
Turkmenistan | 92.6 | 0.12 | 5.77 | 42.86 | 0.00 | 0.73 | 85% | 6937 | 1.63% | 19.23 | 2.03 | 62.67 |
UK | 0.4 | 0.05 | 93.75 | 61.43 | 0.75 | 0.98 | 76% | 41,196 | 2.44% | 94.23 | 2.00 | 82.57 |
Uruguay | 5.6 | 4.34 | 89.42 | 85.24 | 0.49 | 0.80 | 46% | 13,950 | 1.55% | 72.60 | 1.75 | 61.69 |
USA | 0.6 | 0.07 | 89.90 | 67.14 | 0.67 | 0.96 | 79% | 51,593 | 4.22% | 89.90 | 2.00 | 82.03 |
Venezuela | 92.6 | 4.66 | 4.33 | 15.71 | 0.39 | 0.65 | 56% | 12,793 | 3.89% | 10.58 | 2.03 | 35.30 |
Vietnam | 21.4 | 2.79 | 41.83 | 50.00 | 0.49 | 0.92 | 68% | 1685 | 0.74% | 55.29 | 1.98 | 59.04 |
Yemen | 92.6 | 0.62 | 3.37 | 0.48 | 0.29 | 0.74 | 85% | 775 | 0.20% | 3.37 | 2.03 | 44.58 |
Country | CCR | Country | CCR | Country | CCR | Country | CCR |
---|---|---|---|---|---|---|---|
Algeria | 1.000 | Armenia | 0.987 | Mauritius | 0.858 | Brazil | 0.700 |
Australia | 1.000 | Taiwan | 0.983 | Cyprus | 0.846 | Hungary | 0.700 |
Bulgaria | 1.000 | Israel | 0.979 | Guatemala | 0.843 | Pakistan | 0.698 |
Canada | 1.000 | UK | 0.970 | Uzbekistan | 0.838 | Mongolia | 0.692 |
Costa Rica | 1.000 | Tunisia | 0.967 | Serbia | 0.831 | Vietnam | 0.683 |
Czech Republic | 1.000 | Brunei Darussalam | 0.953 | Nicaragua | 0.825 | Peru | 0.678 |
Estonia | 1.000 | Uruguay | 0.953 | Turkey | 0.821 | Latvia | 0.671 |
Finland | 1.000 | Portugal | 0.946 | Hong Kong | 0.815 | El Salvador | 0.667 |
France | 1.000 | India | 0.943 | Syria | 0.811 | Honduras | 0.665 |
Germany | 1.000 | Venezuela | 0.942 | Bangladesh | 0.807 | Botswana | 0.654 |
Haiti | 1.000 | United Arab Emirates | 0.941 | Bosnia and Herzegovina | 0.806 | Montenegro | 0.648 |
Iceland | 1.000 | Azerbaijan | 0.936 | Belgium | 0.806 | Angola | 0.625 |
Italy | 1.000 | Iran | 0.936 | Congo, Rep. | 0.805 | Gabon | 0.624 |
Jamaica | 1.000 | Oman | 0.914 | Tanzania | 0.803 | Suriname | 0.599 |
Kuwait | 1.000 | Malaysia | 0.912 | South Africa | 0.797 | North Korea | 0.584 |
Libya | 1.000 | Argentina | 0.906 | Iraq | 0.796 | Kyrgyzstan | 0.576 |
Luxembourg | 1.000 | Slovenia | 0.905 | Dominican Republic | 0.791 | Malta | 0.567 |
Netherlands | 1.000 | Slovakia | 0.895 | Austria | 0.791 | Zimbabwe | 0.564 |
New Zealand | 1.000 | Saudi Arabia | 0.895 | Senegal | 0.785 | Cambodia | 0.552 |
Norway | 1.000 | Poland | 0.890 | Panama | 0.779 | Myanmar | 0.551 |
Paraguay | 1.000 | Trinidad and Tobago | 0.888 | Georgia | 0.776 | Sudan | 0.542 |
Qatar | 1.000 | Ukraine | 0.886 | Bolivia | 0.770 | Mozambique | 0.531 |
Romania | 1.000 | Yemen | 0.883 | Colombia | 0.763 | Croatia | 0.514 |
Russia | 1.000 | Denmark | 0.880 | Kosovo | 0.761 | Albania | 0.502 |
Singapore | 1.000 | Morocco | 0.877 | Ghana | 0.756 | Zambia | 0.488 |
South Korea | 1.000 | Indonesia | 0.876 | Egypt | 0.747 | Nigeria | 0.486 |
Spain | 1.000 | Chile | 0.874 | Eritrea | 0.745 | Cameroon | 0.483 |
Sweden | 1.000 | Bahrain | 0.867 | Greece | 0.743 | Tajikistan | 0.478 |
Switzerland | 1.000 | Jordan | 0.865 | China | 0.742 | Ethiopia | 0.461 |
Turkmenistan | 1.000 | Cuba | 0.865 | Kenya | 0.739 | Nepal | 0.429 |
USA | 1.000 | Philippines | 0.864 | Sri Lanka | 0.729 | Niger | 0.396 |
Ireland | 0.993 | Cote d’Ivoire | 0.864 | Ecuador | 0.720 | Congo, Dem. Rep. | 0.373 |
Mexico | 0.992 | Thailand | 0.860 | Lebanon | 0.716 | Namibia | 0.268 |
Moldova | 0.992 | Kazakhstan | 0.859 | Lithuania | 0.707 | Benin | 0.245 |
Japan | 0.991 | Belarus | 0.858 | South Sudan | 0.706 | Togo | 0.040 |
Country | Inputs | Outputs | Country | Inputs | Outputs | Country | Inputs | Outputs |
---|---|---|---|---|---|---|---|---|
Algeria | 1;2;6;11 | 7 | Norway (continued) | 2;6 | 3 | South Korea (continued) | 6;11 | 9 |
Australia | 1;6 | 5;7;8 | 2;6 | 10 | 6;11 | 12 | ||
Canada | 6 | 3;4 | 2;6 | 12 | 6;11 | 3;5 | ||
6 | 4;5 | 2;11 | 4 | 6;11 | 4;5 | |||
6 | 5;8 | 6;11 | 3 | 6;11 | 5;8 | |||
6 | 9;10 | 6;11 | 10 | 6;11 | 7;8 | |||
1;6 | 10 | Qatar | 1;6 | 7;8 | Spain | 6 | 3;5 | |
1;6 | 12 | 2;6 | 7;8 | 6 | 5;10 | |||
2;6 | 10;12 | 6;11 | 7;8 | Sweden | 6 | 3 | ||
2;11 | 9 | Singapore | 1;2 | 4 | 6 | 10 | ||
6;11 | 10 | 1;2 | 8 | 1;6 | 5;7;8 | |||
2;6;11 | 12 | 1;6 | 3 | 2;6 | 5 | |||
Estonia | 1;2;6 | 3;7;12 | 1;6 | 10 | 2;6 | 4;7 | ||
Germany | 6 | 3;5 | 2;11 | 4 | 2;6 | 7;12 | ||
6 | 5;8 | 2;11 | 8 | Switzerland | 6 | 5;8;9 | ||
Haiti | 1;6 | 5;7 | 6;11 | 3 | 1;2 | 3 | ||
6;11 | 7 | 6;11 | 4 | 1;2 | 4 | |||
Italy | 2;11 | 5 | 6;11 | 8 | 1;2 | 5 | ||
Jamaica | 1;6 | 7 | 6;11 | 10 | 1;2 | 7 | ||
Kuwait | 1;6 | 7 | South Korea | 1;2 | 3 | 1;2 | 8 | |
6;11 | 7 | 1;2 | 5 | 1;2 | 9 | |||
Libya | 6 | 5 | 1;2 | 7 | 1;2 | 10 | ||
6 | 7 | 1;2 | 9 | 1;2 | 12 | |||
2;6 | 12 | 1;2 | 10 | 2;6 | 9 | |||
Luxembourg | 2;11 | 5;8 | 1;2 | 12 | 2;6 | 4;7 | ||
1;2;11 | 8 | 2;11 | 3 | 2;6 | 7;8 | |||
Netherlands | 6 | 9 | 2;11 | 5 | 2;11 | 5 | ||
New Zealand | 2;6 | 9;12 | 2;11 | 7 | 6;11 | 4;7;8;9 | ||
Norway | 2 | 8 | 2;11 | 9 | 6;11 | 7;8;9;10 | ||
6 | 8 | 2;11 | 10 | Turkmenistan | 2;6 | 7 | ||
6 | 4;10 | 2;11 | 12 | USA | 1;6 | 5;7;8;9 | ||
1;6 | 10;12 |
Country | Canada | Czech Republic | Germany | Norway | Singapore | South Korea | Spain | Sweden | Switzerland |
---|---|---|---|---|---|---|---|---|---|
Denmark | 0.251 | 0.000 | 0.000 | 0.008 | 0.078 | 0.183 | 0.145 | 0.000 | 0.446 |
Japan | 0.039 | 0.416 | 0.427 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.225 |
Uruguay | 0.691 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.240 | 0.000 |
Country | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 | i9 | i10 | i11 | i12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Denmark | 0.000 | −0.001 | 0.133 | 0.295 | 0.091 | −0.009 | 0.327 | 0.075 | 0.249 | 0.202 | −0.007 | 0.175 |
Japan | 0.000 | −0.002 | 0.030 | 0.008 | 0.007 | −0.001 | 0.029 | 0.004 | 0.098 | 0.055 | −0.182 | 0.122 |
Uruguay | −0.002 | −0.448 | 0.044 | 0.042 | 0.095 | −0.002 | 0.103 | 0.333 | 0.239 | 0.204 | −0.068 | 0.194 |
Countries | Canada | Czech Republic | Germany | Norway | Singapore | South Korea | Spain | Sweden | Switzerland |
---|---|---|---|---|---|---|---|---|---|
Denmark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Japan | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Uruguay | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Country | Simulation-Based Monte Carlo | Simulation-Based Monte Carlo Efficiency Acceptability Interval Indices (in %) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | Average | [0.0–0.1] | [0.1–0.2] | [0.2–0.3] | [0.3–0.4] | [0.4–0.5] | [0.5–0.6] | [0.6–0.7] | [0.7–0.8] | [0.8–0.9] | [0.9–1] | |
South Korea (1) | 1.000 | 0.911 | 0.0 | 0.0 | 0.1 | 0.2 | 0.5 | 1.1 | 4.3 | 10.9 | 18.8 | 64.1 |
Singapore (2) | 1.000 | 0.852 | 0.0 | 0.1 | 0.3 | 0.6 | 1.6 | 4.6 | 9.4 | 15.6 | 19.9 | 47.8 |
Canada (3) | 1.000 | 0.668 | 3.7 | 6.1 | 7.1 | 6.9 | 8.0 | 7.5 | 8.6 | 7.8 | 9.6 | 34.7 |
Spain (4) | 1.000 | 0.594 | 2.8 | 5.2 | 7.0 | 7.9 | 9.1 | 10.7 | 15.5 | 21.0 | 16.2 | 4.6 |
Finland (5) | 1.000 | 0.583 | 2.2 | 4.6 | 6.3 | 7.5 | 9.4 | 12.3 | 20.2 | 28.8 | 7.0 | 1.7 |
Norway (6) | 1.000 | 0.576 | 5.2 | 8.2 | 8.9 | 8.6 | 9.4 | 9.3 | 9.9 | 11.6 | 13.4 | 15.4 |
Switzerland (7) | 1.000 | 0.571 | 5.6 | 8.5 | 9.0 | 9.3 | 8.5 | 9.2 | 8.1 | 9.5 | 20.3 | 12.0 |
Italy (8) | 0.919 | 0.554 | 1.2 | 3.5 | 5.1 | 7.8 | 11.3 | 23.7 | 31.0 | 14.1 | 2.3 | 0.1 |
Netherlands (9) | 1.000 | 0.523 | 5.2 | 8.9 | 9.5 | 9.9 | 10.5 | 11.0 | 13.1 | 17.9 | 10.9 | 3.0 |
France (10) | 1.000 | 0.516 | 6.8 | 10.3 | 9.9 | 9.5 | 10.1 | 9.1 | 10.9 | 15.9 | 12.9 | 4.6 |
Denmark (11) | 0.786 | 0.489 | 4.8 | 8.2 | 9.3 | 10.6 | 11.4 | 13.7 | 27.8 | 14.2 | 0.0 | 0.0 |
Iceland (12) | 0.984 | 0.477 | 6.9 | 10.5 | 10.4 | 10.9 | 11.1 | 10.8 | 15.3 | 20.1 | 3.9 | 0.2 |
Sweden (14) | 1.000 | 0.471 | 10.1 | 12.5 | 11.4 | 10.6 | 9.0 | 8.8 | 9.4 | 13.2 | 10.3 | 4.7 |
Germany (16) | 0.975 | 0.438 | 10.1 | 13.1 | 11.9 | 12.0 | 10.2 | 10.8 | 12.0 | 11.9 | 7.1 | 0.8 |
New Zealand (17) | 0.915 | 0.435 | 11.1 | 13.1 | 12.5 | 11.4 | 9.3 | 9.4 | 11.5 | 13.7 | 7.7 | 0.2 |
USA (24) | 0.949 | 0.381 | 13.7 | 15.1 | 13.9 | 11.9 | 11.1 | 12.0 | 11.5 | 8.1 | 2.7 | 0.1 |
UK (26) | 0.916 | 0.366 | 14.4 | 15.4 | 14.0 | 12.5 | 11.4 | 12.9 | 11.0 | 6.9 | 1.4 | 0.0 |
Qatar (35) | 0.914 | 0.318 | 16.0 | 17.5 | 16.7 | 15.1 | 13.3 | 12.2 | 6.8 | 1.9 | 0.3 | 0.0 |
Japan (42) | 0.886 | 0.263 | 26.6 | 21.6 | 14.5 | 12.3 | 10.0 | 6.4 | 5.0 | 2.8 | 0.8 | 0.0 |
Luxembourg (43) | 0.690 | 0.260 | 7.2 | 17.3 | 40.4 | 30.0 | 4.1 | 0.7 | 0.2 | 0.0 | 0.0 | 0.0 |
Algeria (54) | 0.769 | 0.225 | 16.7 | 29.3 | 28.2 | 16.5 | 6.8 | 1.8 | 0.5 | 0.1 | 0.0 | 0.0 |
Turkmenistan (75) | 0.775 | 0.143 | 44.3 | 30.0 | 16.2 | 6.5 | 1.9 | 0.8 | 0.2 | 0.1 | 0.0 | 0.0 |
United Arab Emirates (77) | 0.823 | 0.141 | 52.4 | 23.2 | 11.8 | 5.4 | 3.7 | 2.3 | 0.9 | 0.2 | 0.0 | 0.0 |
Costa Rica (78) | 0.863 | 0.138 | 57.8 | 20.4 | 8.7 | 5.4 | 3.0 | 2.5 | 1.4 | 0.6 | 0.2 | 0.0 |
Uruguay (83) | 0.749 | 0.115 | 60.6 | 23.0 | 8.4 | 4.3 | 2.0 | 1.1 | 0.5 | 0.1 | 0.0 | 0.0 |
Vietnam (91) | 0.548 | 0.100 | 63.1 | 24.3 | 8.4 | 3.1 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Yemen (98) | 0.650 | 0.083 | 69.5 | 22.9 | 5.7 | 1.3 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Syria (99) | 0.600 | 0.082 | 69.5 | 23.5 | 5.4 | 1.1 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Haiti (102) | 0.736 | 0.077 | 74.8 | 18.4 | 4.4 | 1.4 | 0.5 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 |
Niger (107) | 0.299 | 0.070 | 77.4 | 21.7 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cambodia (110) | 0.379 | 0.068 | 77.7 | 17.6 | 4.2 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Eritrea (111) | 0.485 | 0.061 | 81.9 | 15.2 | 2.3 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
South Sudan (112) | 0.475 | 0.059 | 82.6 | 14.8 | 2.0 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Venezuela (115) | 0.511 | 0.054 | 85.3 | 11.2 | 2.8 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
China (116) | 0.471 | 0.051 | 86.7 | 9.5 | 2.7 | 0.9 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Paraguay (119) | 1.000 | 0.048 | 88.2 | 8.0 | 2.1 | 0.9 | 0.4 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 |
Myanmar (123) | 0.362 | 0.043 | 90.5 | 8.2 | 1.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
North Korea (124) | 0.344 | 0.042 | 90.1 | 8.5 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kenya (128) | 0.407 | 0.036 | 93.4 | 5.5 | 1.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Libya (130) | 0.979 | 0.035 | 93.1 | 5.2 | 0.9 | 0.3 | 0.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Iraq (132) | 0.568 | 0.034 | 93.7 | 5.1 | 0.8 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nepal (126) | 0.258 | 0.031 | 94.8 | 5.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nigeria (138) | 0.355 | 0.020 | 98.3 | 1.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Congo, Dem. Rep. (139) | 0.189 | 0.018 | 98.8 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Togo (140) | 0.033 | 0.015 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Indicator Removed | Correlation |
---|---|
1 (input) | 0.998 |
2 (input) | 0.872 |
3 (output) | 0.999 |
4 (output) | 0.998 |
5 (output) | 0.995 |
6 (input) | 0.871 |
7 (output) | 0.996 |
8 (output) | 0.998 |
9 (output) | 0.999 |
10 (output) | 1.000 |
11 (input) | 0.874 |
12 (output) | 0.999 |
Country | Best (Ro*) | Expected (ERo) | Rank | ERAI | Rank | ERAI | Rank | ERAI |
---|---|---|---|---|---|---|---|---|
South Korea (1) | 1 | 3.6 | 1 | 46.8 | 2 | 25.5 | 3 | 5.3 |
Canada (2) | 1 | 4.1 | 3 | 21.5 | 1 | 20.9 | 6 | 18.1 |
Singapore (3) | 1 | 4.6 | 2 | 42.0 | 1 | 25.2 | 3 | 4.9 |
Switzerland (6) | 1 | 8.0 | 8 | 14.2 | 9 | 12.5 | 5 | 8.3 |
Denmark (11) | 2 | 12.4 | 10 | 14.5 | 11 | 14.3 | 9 | 13.9 |
USA (28) | 1 | 30.1 | 30 | 4.6 | 29 | 4.4 | 26 | 4.2 |
UK (32) | 2 | 32.8 | 35 | 4.3 | 30 | 4.2 | 30 | 4.2 |
Japan (55) | 2 | 53.8 | 50 | 2.9 | 50 | 2.9 | 50 | 2.9 |
Turkmenistan (77) | 1 | 76.8 | 66 | 2.7 | 77 | 2.6 | 70 | 2.5 |
Costa Rica (79) | 1 | 79.1 | 102 | 2.7 | 103 | 2.6 | 99 | 2.4 |
Uruguay (83) | 2 | 83.9 | 89 | 3.6 | 87 | 3.2 | 95 | 3.0 |
United Arab Emirates (88) | 3 | 87.3 | 75 | 2.9 | 94 | 2.0 | 111 | 1.9 |
Syria (98) | 10 | 98.9 | 105 | 3.5 | 86 | 2.8 | 78 | 2.7 |
Niger (99) | 44 | 99.1 | 89 | 3.6 | 87 | 3.5 | 87 | 3.5 |
Libya (129) | 1 | 126.8 | 138 | 12.0 | 139 | 11.4 | 137 | 10.7 |
Nigeria (139) | 32 | 135.4 | 140 | 31.6 | 139 | 19.2 | 138 | 8.6 |
Congo, Dem. Rep. (140) | 120 | 137.9 | 140 | 42.1 | 139 | 16.5 | 137 | 9.0 |
Country | Canada | Congo, Dem. Rep. | Denmark | Libya | Niger | Nigeria | Singapore | South Korea | Switzerland | Syria | Togo |
---|---|---|---|---|---|---|---|---|---|---|---|
Canada | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 34.1 | 33.9 | 97.1 | 100.0 | 100.0 |
Congo, Dem. Rep. | 0.0 | 100.0 | 0.0 | 28.0 | 0.5 | 46.1 | 0.0 | 0.0 | 0.0 | 0.1 | 32.3 |
Denmark | 0.0 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 9.0 | 5.1 | 27.9 | 100.0 | 100.0 |
Japan | 0.0 | 100.0 | 5.6 | 100.0 | 97.6 | 100.0 | 3.9 | 3.8 | 0.3 | 99.2 | 100.0 |
Libya | 0.0 | 72.0 | 0.1 | 100.0 | 4.4 | 98.2 | 0.0 | 0.0 | 0.0 | 1.9 | 62.3 |
Niger | 0.0 | 99.5 | 0.0 | 95.6 | 100.0 | 99.6 | 0.0 | 0.0 | 0.0 | 49.9 | 99.5 |
Nigeria | 0.0 | 53.9 | 0.0 | 1.8 | 0.4 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.3 |
Singapore | 65.9 | 100.0 | 91.0 | 100.0 | 100.0 | 100.0 | 100.0 | 41.7 | 76.1 | 100.0 | 100.0 |
South Korea | 66.1 | 100.0 | 94.9 | 100.0 | 100.0 | 100.0 | 58.3 | 100.0 | 77.8 | 100.0 | 100.0 |
Switzerland | 2.9 | 100.0 | 72.1 | 100.0 | 100.0 | 100.0 | 23.9 | 22.2 | 100.0 | 100.0 | 100.0 |
Syria | 0.0 | 99.9 | 0.0 | 98.1 | 50.1 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 97.7 |
Togo | 0.0 | 67.7 | 0.0 | 37.7 | 0.5 | 57.7 | 0.0 | 0.0 | 0.0 | 2.3 | 100.0 |
UK | 0.0 | 100.0 | 11.3 | 100.0 | 100.0 | 100.0 | 7.9 | 6.0 | 0.8 | 100.0 | 100.0 |
Uruguay | 0.0 | 100.0 | 0.3 | 92.0 | 66.8 | 99.1 | 0.1 | 0.3 | 0.0 | 66.0 | 100.0 |
USA | 0.0 | 100.0 | 13.5 | 100.0 | 100.0 | 100.0 | 9.0 | 7.8 | 1.2 | 100.0 | 100.0 |
Efficiency Interval | Average Efficiency | [0.0–0.1] | [0.1–0.2] | [0.2–0.3] | [0.3–0.4] | [0.4–0.5] | [0.5–0.6] | [0.6–0.7] | [0.7–0.8] | [0.8–0.9] | [0.9–1] |
---|---|---|---|---|---|---|---|---|---|---|---|
South Korea | 0.905 | 0.0 | 0.3 | 0.0 | 0.2 | 0.3 | 1.1 | 4.3 | 11.9 | 19.7 | 62.2 |
Singapore new | 0.872 | 0.1 | 0.2 | 0.2 | 0.3 | 0.9 | 2.7 | 6.2 | 15.6 | 22.8 | 51.0 |
Canada | 0.680 | 2.6 | 6.5 | 6.8 | 6.5 | 7.5 | 8.3 | 8.1 | 8.4 | 8.6 | 36.7 |
Singapore original | 0.852 | 0.0 | 0.1 | 0.3 | 0.6 | 1.6 | 4.6 | 9.4 | 15.6 | 19.9 | 47.8 |
ERAI | ERo | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 |
South Korea | 3.7 | 43.2 | 26.8 | 6.2 | 3.1 | 4.1 | 2.3 | 0.9 | 1.3 | 0.9 | 0.7 |
Canada | 4.0 | 20.4 | 11.3 | 22.2 | 7.3 | 8.2 | 17.9 | 3.6 | 1.5 | 4.2 | 1.3 |
Singapore new | 4.3 | 27.7 | 40.6 | 5.1 | 4.5 | 2.7 | 2.6 | 0.9 | 1.4 | 1.6 | 1.9 |
Singapore original | 4.6 | 25.2 | 42.0 | 4.9 | 3.2 | 2.6 | 2.5 | 2.3 | 1.4 | 1.6 | 1.0 |
Efficiency Interval | Average Efficiency | [0.0–0.1] | [0.1–0.2] | [0.2–0.3] | [0.3–0.4] | [0.4–0.5] | [0.5–0.6] | [0.6–0.7] | [0.7–0.8] | [0.8–0.9] | [0.9–1] |
---|---|---|---|---|---|---|---|---|---|---|---|
Singapore new | 0.912 | 0.0 | 0.1 | 0.1 | 0.2 | 0.5 | 1.5 | 5.5 | 8.7 | 17.2 | 66.2 |
South Korea | 0.878 | 0.0 | 0.1 | 0.1 | 0.0 | 0.4 | 1.7 | 5.5 | 17.8 | 26.3 | 48.1 |
Canada | 0.662 | 3.1 | 7.2 | 7.2 | 7.2 | 7.0 | 7.6 | 7.2 | 10.3 | 11.3 | 31.9 |
Singapore original | 0.852 | 0.0 | 0.1 | 0.3 | 0.6 | 1.6 | 4.6 | 9.4 | 15.6 | 19.9 | 47.8 |
ERAI | ERo | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 |
Singapore new | 3.2 | 47.2 | 29.7 | 3.8 | 3.3 | 3.1 | 1.7 | 1.1 | 1.5 | 1.0 | 1.2 |
Canada | 3.9 | 18.8 | 12.2 | 24.2 | 9.1 | 7.0 | 17.6 | 3.5 | 0.9 | 3.7 | 1.2 |
South Korea | 4.1 | 27.5 | 39.0 | 7.1 | 4.5 | 3.4 | 1.7 | 1.9 | 1.4 | 1.4 | 2.0 |
Singapore original | 4.6 | 25.2 | 42.0 | 4.9 | 3.2 | 2.6 | 2.5 | 2.3 | 1.4 | 1.6 | 1.0 |
Indicator | i2: Severe Accident Risk | i5: Electricity Mix Diversity | i7: Equivalent Availability Factor |
---|---|---|---|
Unit | Fatalities/GWeyr | Normalized Shannon Index | % |
Original performance | 0.0782 | 0.6526 | 78.14 |
Required performance | 0.0765 | 0.6664 | 79.80 |
Technology Share | Coal | Oil | Natural Gas | Biofuels | Waste | Nuclear | Hydropower | Geothermal | Solar PV | Wind |
---|---|---|---|---|---|---|---|---|---|---|
Original | 32.96% | 9.85% | 39.36% | 3.32% | 0.66% | 0.91% | 8.76% | 0.25% | 3.44% | 0.50% |
Portfolio 1 | 32.19% | 10.05% | 38.84% | 4.67% | 0.52% | 1.38% | 8.70% | 1.90% | 1.75% | 0.02% |
Portfolio 2 | 30.71% | 9.65% | 40.27% | 4.15% | 1.89% | 0.10% | 8.16% | 2.98% | 1.64% | 0.46% |
Portfolio 3 | 32.34% | 9.02% | 37.30% | 4.99% | 2.75% | 1.09% | 10.12% | 1.45% | 0.86% | 0.07% |
Portfolio 4 | 32.20% | 8.50% | 41.23% | 3.98% | 1.02% | 0.76% | 6.24% | 2.62% | 1.78% | 1.67% |
Portfolio 5 | 31.14% | 9.51% | 41.61% | 4.69% | 0.52% | 0.58% | 6.25% | 2.02% | 1.76% | 1.91% |
Portfolio 6 | 33.73% | 8.43% | 38.17% | 2.10% | 2.13% | 3.92% | 9.18% | 0.73% | 0.64% | 0.96% |
Portfolio 7 | 32.04% | 11.35% | 36.59% | 4.01% | 2.38% | 2.33% | 10.30% | 0.19% | 0.29% | 0.52% |
Portfolio 8 | 31.72% | 7.28% | 40.74% | 5.02% | 2.88% | 0.98% | 5.88% | 1.83% | 3.53% | 0.13% |
Portfolio 9 | 34.52% | 7.01% | 38.91% | 1.96% | 3.31% | 1.51% | 8.13% | 2.34% | 1.28% | 1.02% |
Portfolio 10 | 31.58% | 9.76% | 37.66% | 1.66% | 3.60% | 3.38% | 11.27% | 0.66% | 0.31% | 0.11% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasser, P.; Cinelli, M.; Labijak, A.; Spada, M.; Burgherr, P.; Kadziński, M.; Stojadinović, B. Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis. Energies 2020, 13, 1535. https://doi.org/10.3390/en13071535
Gasser P, Cinelli M, Labijak A, Spada M, Burgherr P, Kadziński M, Stojadinović B. Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis. Energies. 2020; 13(7):1535. https://doi.org/10.3390/en13071535
Chicago/Turabian StyleGasser, Patrick, Marco Cinelli, Anna Labijak, Matteo Spada, Peter Burgherr, Miłosz Kadziński, and Božidar Stojadinović. 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis" Energies 13, no. 7: 1535. https://doi.org/10.3390/en13071535
APA StyleGasser, P., Cinelli, M., Labijak, A., Spada, M., Burgherr, P., Kadziński, M., & Stojadinović, B. (2020). Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis. Energies, 13(7), 1535. https://doi.org/10.3390/en13071535