Small-Sized Pulsating Heat Pipes/Oscillating Heat Pipes with Low Thermal Resistance and High Heat Transport Capability
Abstract
:1. Introduction
2. Experimental Setup
2.1. Structure of Examined PHPs
2.2. Setup for Characterization of PHPs
2.2.1. PHP Characterization with Water Cooling at the Condenser Zone
2.2.2. PHP Characterization with Air Cooling at the Condenser Zone
3. Results and Discussion
3.1. Results Overview
- A PHP with a channel size of 1.5 × 1.5 mm2 and dimensions of 50 × 100 × 2.5 mm3;
- A PHP with a channel size of 1 × 1 mm2 and dimensions of 50 × 100 × 2.0 mm3.
3.2. Results Obtained for Water Cooling
3.2.1. PHPs with Channel Size of 1 × 1 mm2
3.2.2. PHPs with Channel Size of 1.5 × 1.5 mm2
3.2.3. Effect of Condenser Plate Width on PHP Properties
3.2.4. Heat Spreading Capability of PHPs with Channel Size of 1.5 × 1.5 mm2
3.2.5. Comparison to the Literature Data
3.3. Results Obtained for Air Cooling
3.3.1. PHPs with Channel Size of 1 × 1 mm2
3.3.2. PHPs with Channel Size of 1.5 × 1.5 mm2
4. Conclusions
- High fluid channel density;
- Proper channel size, also with respect to boundary conditions such as PHP orientation;
- Proper sizing of heater and condenser area.
- The interplay of PHP performance metrics with fluid channel density, channel size, filling ratio, working fluid, heater/condenser size and position, etc. Therefore, as a long-term goal, simulation and proper dimensioning of PHPs are envisioned by us in order to be able to find the proper parameters in a more straightforward manner without the need for extensive prototyping;
- Tests on the stability of the PHPs against aging and temperature effects;
- Investigation of the performance limit of the PHPs with regard to maximum heat load;
- Integration of PHPs in actual electrical systems with components with high thermal loads to be cooled.
Author Contributions
Funding
Conflicts of Interest
References
- Ma, H. Oscillating Heat Pipes; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2503-2. [Google Scholar]
- Zhang, Y.; Faghri, A. Advances and unsolved issues in pulsating heat pipes. Heat Transf. Eng. 2008, 29, 20–44. [Google Scholar] [CrossRef] [Green Version]
- Taft, B.S.; Williams, A.D.; Drolen, B.L. Review of pulsating heat pipe working fluid selection. J. Thermophys. Heat Transf. 2012, 26, 651–656. [Google Scholar] [CrossRef]
- Khandekar, S.; Charoensawan, P.; Groll, M.; Terdtoon, P. Closed loop pulsating heat pipes Part B: Visualization and semi-empirical modeling. Appl. Therm. Eng. 2003, 23, 2021–2033. [Google Scholar] [CrossRef]
- Holley, B.; Faghri, A. Analysis of pulsating heat pipe with capillary wick and varying channel diameter. Int. J. Heat Mass Transf. 2005, 48, 2635–2651. [Google Scholar] [CrossRef]
- Kwon, G.H.; Kim, S.J. Operational characteristics of pulsating heat pipes with a dual-diameter tube. Int. J. Heat Mass Transf. 2014, 75, 184–195. [Google Scholar] [CrossRef]
- Thompson, S.M.; Ma, H.B.; Wilson, C. Investigation of a flat-plate oscillating heat pipe with Tesla-type check valves. Exp. Therm. Fluid Sci. 2011, 35, 1265–1273. [Google Scholar] [CrossRef]
- Patel, V.M.; Gaurav; Mehta, H.B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe. Appl. Therm. Eng. 2017, 110, 1568–1577. [Google Scholar] [CrossRef]
- Marengo, M.; Nikolayev, V.S. Chapter 1: Pulsating heat pipes: Experimental analysis, design and application. In Encyclopedia of Two-Phase Heat Transfer and Flow IV: Modeling Methodologies, Boiling of CO2, and Micro-Two-Phase Cooling; Thome, J.R., Ed.; World Scientific: Singapore, 2018; pp. 1–62. [Google Scholar]
- Yang, H.; Khandekar, S.; Groll, M. Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int. J. Therm. Sci. 2009, 48, 815–824. [Google Scholar] [CrossRef]
- Taft, B.S. Non-Condensable gases and oscillating heat pipe operation. Front. Heat Pipes 2013, 4. [Google Scholar] [CrossRef]
- Takawale, A.; Abraham, S.; Sielaff, A.; Mahapatra, P.S.; Pattamatta, A.; Stephan, P. A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe. Appl. Therm. Eng. 2019, 149, 613–624. [Google Scholar] [CrossRef]
- Laun, F.F.; Lu, H.; Ma, H.B. An experimental investigation of an oscillating heat pipe heat spreader. J. Therm. Sci. Eng. Appl. 2015, 7. [Google Scholar] [CrossRef]
- Borkar, R.S.; Pachghare, P.R. Effect of working fluid, filling ratio and number of turns on pulsating heat pipe thermal performance. Front. Heat Pipes 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Charoensawan, P.; Khandekar, S.; Groll, M.; Terdtoon, P. Closed loop pulsating heat pipes Part A: Parametric experimental investigations. Appl. Therm. Eng. 2003, 23, 2009–2020. [Google Scholar] [CrossRef]
- Senjaya, R.; Inoue, T. Oscillating heat pipe simulation considering dryout phenomena. Heat Mass Transf. 2014, 50, 1429–1441. [Google Scholar] [CrossRef]
- Pan, L.S.; Kania, D.R. (Eds.) Diamond: Electronic Properties and Applications; Springer: Boston, MA, USA, 1995; ISBN 978-0-7923-9524-9. [Google Scholar]
- Srikrishna, P.; Siddharth, N.; Reddy, S.U.M.; Narasimham, G.S.V.L. Experimental investigation of flat plate closed loop pulsating heat pipe. Heat Mass Transf. 2019, 29, 20. [Google Scholar] [CrossRef]
- Wits, W.W.; Groeneveld, G.; van Gerner, H.J. Experimental investigation of a flat-plate closed-loop pulsating heat. In Proceedings of the Joint 19th IHPC and 13th IHPS, Pisa, Italy, 10–14 June 2018. [Google Scholar]
- Thompson, S.M.; Ma, H.B. Effect of localized heating on three-dimensional flat-plate oscillating heat pipe. Adv. Mech. Eng. 2010, 2, 465153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.Z.; Winholtz, R.A.; Black, W.J.; Wilson, M.R.; Taub, H.; Ma, H.B. Effect of hydrophilic nanostructured cupric oxide surfaces on the heat transport capability of a flat-plate oscillating heat pipe. J. Heat Transf. 2016, 138. [Google Scholar] [CrossRef]
- Hoesing, M. Integration of a pulsating heat pipe in a flat plate heat sink. J. Undergrad. Res. 2014, 12, 21–36. [Google Scholar]
- Youn, Y.J.; Kim, S.J. Fabrication and evaluation of a slicon-based micro pulsating heat spreader. Sens. Actuators A Phys. 2012, 174, 189–197. [Google Scholar] [CrossRef]
- Nekrashevych, I.; Nikolayev, V.S. Pulsating heat pipe simulations: Impact of PHP orientation. Microgravity Sci. Technol. 2019, 31, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Betancur, L. (Ed.) Experimental study of start-up in a closed loop pulsating heat pipe with alternating superhydrophobic channels. In Proceedings of the Joint 19th IHPC and 13th IHPS, Pisa, Italy, 10–14 June 2018. [Google Scholar]
- Hao, T.; Ma, X.; Lan, Z.; Li, N.; Zhao, Y.; Ma, H. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int. J. Heat Mass Transf. 2014, 72, 50–65. [Google Scholar] [CrossRef]
Section | Cooling | Channel Size [mm × mm] | b 1 [mm] | L 2 [mm] | Objective of Experiment |
---|---|---|---|---|---|
3.2.1., 3.2.2. | Water | 1 × 1 1.5 × 1.5 | 8 | 14 | Performance test with water cooling (PHP thermal resistance and heater temperature) |
3.2.3. | Water | 1.5 × 1.5 | 25 | 10–50 | Analysis of effect of condenser plate width on PHP performance |
3.2.4. | Water | 1.5 × 1.5 | 8 | 10–40 | Capability of PHPs to spread heat from small parts (i.e., evaporator areas) to significantly larger condenser areas |
3.3.1., 3.3.2. | Air | 1 × 1 1.5 × 1.5 | 8 | 14 | Performance test with air cooling (PHP thermal resistance and heater temperature) |
Total PHP Size 1 [mm] | Ch. Size [mm] | # chs. | Ch. Dens. 2 [1/mm2] × 103 | Container Material | Fluid | Max. Test. Heat Pow. 3 [W] | Max. Pow. Dens. 4 [W/cm2] | Or. H/V 5 | Eff. Th. Cond. [W/mK] | Ratio Rth Filled/Dry | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
100 × 50 × 2.0 | 1 × 1 | 26 | 5.2 | Copper | Acetone | 175 6 175 6 | 44 44 | H V | 2000 2000 | <0.20 7 <0.20 7 | t.w. |
100 × 50 × 2.5 | 1.5 × 1.5 | 20 | 4.0 | Copper | Acetone | 128 6 175 6 | 28 44 | H V | 1500 2300 | <0.26 7 <0.17 7 | t.w. |
177 × 127 × 3.8 | 2 × 2 | 20 | 0.89 | Aluminum | Water | 100 | 3.8 | V | - | 0.25 | [22] |
300 × 300 × 6 | 1.3 × 1.3 | 40 | 0.44 | Aluminum | Acetone | 500 | 2.2 | H | - | 0.30 | [11] |
132 × 50 × 3 | 2.2 × 2.0 | 12 | 1.8 | Aluminum | Methanol | 90 | 13 | V | - | 0.13 | [18] |
194 × 101 × 5 | 1.2 × 1.2 | 34 | 1.7 | Copper | Ethanol | 160 | 6.3 | V | - | 0.65 | [12] |
180 × 120 × 3 | 1 × 1 | 66 | 3.1 | Copper | Ethanol | 190 240 | 6.3 8 | H V | - - | 0.15 0.13 | [10] |
180 × 120 × 3 | 2 × 2 | 40 | 1.9 | Aluminum | Ethanol | 370 400 | 12 13 | H V | - - | 0.06 0.05 | [10] |
88 × 50 × 3.5 | 1 × 1.5 | 20 | 4.6 | Copper 8 | Water | 275 | 28 | V | - | - | [21] |
50 × 15.5 × 1.5 | 1 × 0.4 | 10 | 12.9 | Silicon | Ethanol | 3 4 | 1.3 1.8 | H V | 300 600 | 0.4 0.2 | [23] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, M.; Rapp, D.; Mahlke, A.; Zunftmeister, F.; Vergez, M.; Wischerhoff, E.; Clade, J.; Bartholomé, K.; Schäfer-Welsen, O. Small-Sized Pulsating Heat Pipes/Oscillating Heat Pipes with Low Thermal Resistance and High Heat Transport Capability. Energies 2020, 13, 1736. https://doi.org/10.3390/en13071736
Winkler M, Rapp D, Mahlke A, Zunftmeister F, Vergez M, Wischerhoff E, Clade J, Bartholomé K, Schäfer-Welsen O. Small-Sized Pulsating Heat Pipes/Oscillating Heat Pipes with Low Thermal Resistance and High Heat Transport Capability. Energies. 2020; 13(7):1736. https://doi.org/10.3390/en13071736
Chicago/Turabian StyleWinkler, Markus, David Rapp, Andreas Mahlke, Felix Zunftmeister, Marc Vergez, Erik Wischerhoff, Jürgen Clade, Kilian Bartholomé, and Olaf Schäfer-Welsen. 2020. "Small-Sized Pulsating Heat Pipes/Oscillating Heat Pipes with Low Thermal Resistance and High Heat Transport Capability" Energies 13, no. 7: 1736. https://doi.org/10.3390/en13071736
APA StyleWinkler, M., Rapp, D., Mahlke, A., Zunftmeister, F., Vergez, M., Wischerhoff, E., Clade, J., Bartholomé, K., & Schäfer-Welsen, O. (2020). Small-Sized Pulsating Heat Pipes/Oscillating Heat Pipes with Low Thermal Resistance and High Heat Transport Capability. Energies, 13(7), 1736. https://doi.org/10.3390/en13071736