Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm
Abstract
:1. Introduction
2. Modeling Historical Data for CNN Predictors
3. Proposed Forecasting Strategy
3.1. CNN Classification For Suitable Weather-Type Identification
3.2. SSA-CNN Regression For Short-Term PV Power Forecasting
3.3. Benchmark Algorithms and Evaluation Index
3.3.1. Long Short-Term Memory-SSA (LSTM-SSA)
3.3.2. Support Vector Machine-SSA (SVM-SSA)
3.3.3. Evaluation Index
4. Simulation Results
4.1. Test System
4.2. Short-Term PV Power Forecasting
4.3. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alkaabi, S.; Zeineldin, H.; Khadkikar, V. Short-Term Reactive Power Planning to Minimize Cost of Energy Losses Considering PV Systems. IEEE Trans. Smart Grid 2019, 10, 2923–2935. [Google Scholar] [CrossRef]
- Fleischhacker, A.; Auer, H.; Lettner, G.; Botterud, A. Sharing Solar PV and Energy Storage in Apartment Buildings: Resource Allocation and Pricing. IEEE Trans. Smart Grid 2019, 10, 3963–3973. [Google Scholar] [CrossRef]
- Chakraborty, P.; Baeyens, E.; Khargonekar, P.; Poolla, K.; Varaiya, P. Analysis of Solar Energy Aggregation Under Various Billing Mechanisms. IEEE Trans. Smart Grid 2019, 10, 4175–4187. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Jia, H.; Marnay, C. Techno-Economic Evaluation of Mixed AC and DC Power Distribution Network for Integrating Large-Scale Photovoltaic Power Generation. IEEE Access 2019, 7, 105019–105029. [Google Scholar] [CrossRef]
- Mills, A.; Wiser, R. Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power; Technical Report LBNL-3884E; Lawrence Berkeley National Laboratory: Washington, DC, USA, 2010. [Google Scholar]
- Zhang, J.; Hodge, B.M.; Lu, S.; Hamann, H.F.; Lehman, B.; Simmons, J.; Campos, E.; Banunarayanan, V.; Black, J.; Tedesco, J. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting. Sol. Energy 2015, 122, 804–819. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.T.; Liao, J. MF-APSO-Based Multiobjective Optimization for PV System Reactive Power Regulation. IEEE Trans. Sustain. Energy 2015, 6, 1346–1355. [Google Scholar] [CrossRef]
- Di Piazza, M.; Luna, M.; La Tona, G.; Di Piazza, A. Improving Grid Integration of Hybrid PV-Storage Systems Through a Suitable Energy Management Strategy. IEEE Trans. Ind. Appl. 2019, 55, 60–68. [Google Scholar] [CrossRef]
- Nguyen, Q.; Padullaparti, H.; Lao, K.; Santoso, S.; Ke, X.; Samaan, N. Exact Optimal Power Dispatch in Unbalanced Distribution Systems with High PV Penetration. IEEE Trans. Power Syst. 2019, 34, 718–728. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Malvoni, M.; Congedo, P.M. Photovoltaic power forecasting using statistical methods: Impact of weather data. IET Sci. Meas. Technol. 2014, 8, 90–97. [Google Scholar] [CrossRef]
- Raza, M.Q.; Nadarajah, M.; Ekanayake, C. On recent advances in PV output power forecast. Sol. Energy 2016, 136, 125–144. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Mellit, A.; Massi Pavan, A.; Lughi, V. Short-term forecasting of power production in a large-scale photovoltaic plant. Sol. Energy 2014, 105, 401–413. [Google Scholar] [CrossRef]
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies 2015, 8, 1138–1153. [Google Scholar] [CrossRef] [Green Version]
- Nespoli, A.; Ogliari, E.; Leva, S.; Pavan, A.M.; Mellit, A.; Lughi, V.; Dolara, A. Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Qiao, W. Short-term solar power prediction using a support vector machine. Renew. Energy 2013, 52, 118–127. [Google Scholar] [CrossRef]
- Preda, S.; Oprea, S.; Bâra, A.; Belciu (Velicanu), A. PV Forecasting Using Support Vector Machine Learning in a Big Data Analytics Context. Symmetry 2018, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Sun, G.; Chen, Q.; Zhang, M.; Zhu, H.; Rehman, M. A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting. IEEE Access 2019, 7, 28309–28318. [Google Scholar] [CrossRef]
- Yan, K.; Li, W.; Ji, Z.; Qi, M.; Du, Y. A Hybrid LSTM Neural Network for Energy Consumption Forecasting of Individual Households. IEEE Access 2019, 7, 157633–157642. [Google Scholar] [CrossRef]
- Han, L.; Peng, Y.; Li, Y.; Yong, B.; Zhou, Q.; Shu, L. Enhanced Deep Networks for Short-Term and Medium-Term Load Forecasting. IEEE Access 2019, 7, 4045–4055. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Liang, Z.; Wei, Z.; Sun, G. Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network. IET Gener. Transm. Distrib. 2018, 12, 4557–4567. [Google Scholar] [CrossRef]
- Huang, C.; Kuo, P. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access 2019, 7, 74822–74834. [Google Scholar] [CrossRef]
- Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting. Electronics 2019, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting. IEEE Access 2019, 7, 88058–88071. [Google Scholar] [CrossRef]
- Du, L.; Zhang, L.; Tian, X. Deep Power Forecasting Model for Building Attached Photovoltaic System. IEEE Access 2018, 6, 52639–52651. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.; Park, J.; Kim, J.; Kim, Y. Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks. IEEE Access 2018, 6, 73068–73080. [Google Scholar] [CrossRef]
- Riaz, S.; Arshad, A.; Jiao, L. Fuzzy Rough C-Mean Based Unsupervised CNN Clustering for Large-Scale Image Data. Appl. Sci. 2018, 8, 1869. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Hur, J. Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models. Energies 2018, 11, 2982. [Google Scholar] [CrossRef] [Green Version]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017, 28, 162169. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Kameda, Y.; Kondoh, J. A Power-Forecasting Method for Geographically Distributed PV Power Systems using Their Previous Datasets. Energies 2019, 12, 4815. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Gandomi, A.; Mirjalili, S.M.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Saez, D.; Avila, F.; Olivares, D.; Canizares, C.; Marin, L. Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids. IEEE Trans. Smart Grid 2015, 6, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R. Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond. Int. J. Forecast. 2016, 32, 896–913. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network. Energy Convers. Manag. 2017, 153, 409–422. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; Carpinelli, G.; Di Fazio, A.; Ferruzzi, G. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control. Energies 2013, 6, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Rodriguez, F.J.; Hernandez, J.C.; Jurado, F. Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion. Electr. Power Syst. Res. 2012, 89, 129–138. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-De-Pison, F.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Mellit, A.; Massi Pavan, A. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected {PV} plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821. [Google Scholar] [CrossRef]
- Brecl, K.; Topič, M. Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jung, J.; Sim, M. A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using Machine Learning. Sustainability 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Liu, L.; Sun, Q.; Wang, X. Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network. Energy Procedia 2018, 152, 1224–1229. [Google Scholar] [CrossRef]
- Hubel, D.; Wiesel, T. Receptive Fields of Single Neurons in The Cat’s Striate Cortex. J. Physiol. 1959, 148, 574–591. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Kuo, P. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, H. Multi-Site Photovoltaic Forecasting Exploiting Space-Time Convolutional Neural Network. Energies 2019, 12, 4490. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems, Stateline, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
No. | Input Variables | R | p-Value | Correlated (1)/Not Correlated (0) |
---|---|---|---|---|
1 | Hourly temperature | 7.58 × 10−2 | 2.06 × 10−1 | 1 |
2 | PV power average | 2.62 × 10−1 | 8.85 × 10−6 | 1 |
3 | PV standard deviation | 2.45 × 10−1 | 3.42 × 10−5 | 1 |
4 | PV peak | 2.43 × 10−1 | 4.08 × 10−5 | 1 |
5 | Maximum temperature | 1.19 × 10−1 | 4.66 × 10−2 | 1 |
6 | Minimum temperature | 3.68 × 10−2 | 5.40 × 10−1 | 1 |
7 | Precipitation | −1.35 × 10−1 | 2.42 × 10−2 | 0 |
8 | Hour of the day | −7.60 × 10−2 | 2.05 × 10−1 | 1 |
CNN Parameter | Rainy | Heavy Cloudy | Cloudy | Light Cloudy | Sunny |
---|---|---|---|---|---|
Convolutional layer | 2 | 3 | 2 | 2 | 3 |
Max-pooling layer | 2 | 2 | 3 | 2 | 2 |
Dropout layer | 0.0315 | 0.03585 | 0.315 | 0.5 | 0.5 |
Initial learn rate | 0.01875 | 0.0125 | 0.012 | 0.01875 | 0.01875 |
Mini batch size | 2 | 4 | 2 | 2 | 2 |
LSTM Parameters | Rainy | Heavy Cloudy | Cloudy | Light Cloudy | Sunny |
---|---|---|---|---|---|
Hidden unit | 7 | 8 | 7 | 3 | 7 |
Max epoch | 178 | 190 | 193 | 200 | 194 |
Gradient threshold | 546 | 460 | 479 | 516 | 509 |
Initial learn rate | 0.010172 | 0.011980 | 0.010300 | 0.010357 | 0.028262 |
Learn rate drop period | 79 | 96 | 64 | 55 | 80 |
Learnt rate drop factor | 0.573521 | 0.505356 | 0.806389 | 0.570080 | 0.819285 |
Observation | Evaluation | Rainy | Heavy Cloudy | Cloudy | Light Cloudy | Sunny |
---|---|---|---|---|---|---|
Day ahead | MRE (%) | 3.35 | 2.67 | 1.94 | 3.80 | 1.43 |
MAPE (%) | 42.55 | 12.12 | 9.59 | 14.73 | 5.34 | |
Computation time (min) | 16.76 | 14.57 | 14.75 | 16.75 | 15.69 | |
3 days ahead | MRE (%) | 2.39 | 4.41 | 2.57 | 2.35 | 2.33 |
MAPE (%) | 37.12 | 59.61 | 17.72 | 14.92 | 15.30 | |
Computation time (min) | 15.59 | 15.93 | 13.25 | 14.73 | 13.65 |
Method | Evaluation | Rainy | Heavy Cloudy | Cloudy | Light Cloudy | Sunny |
---|---|---|---|---|---|---|
CNN-SSA | MAPE (%) | 21.17 | 15.27 | 12.25 | 12.75 | 5.5 |
MRE (%) | 2.62 | 3.14 | 2.55 | 2.11 | 2.45 | |
Computation time (min) | 16.91 | 18.81 | 26.58 | 12.03 | 28.38 | |
LSTM-SSA | MAPE (%) | 32.1 | 28.83 | 21.56 | 16.07 | 9.6 |
MRE (%) | 3.7 | 6.39 | 4.34 | 3.7 | 4.11 | |
Computation time (min) | 6.1 | 5.83 | 5.91 | 5.78 | 5.63 | |
`SVM-SSA | MAPE (%) | 34.75 | 21.56 | 16.25 | 14.3 | 7.93 |
MRE (%) | 4.69 | 5.63 | 2.62 | 2.85 | 2.76 | |
Computation time (min) | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | |
CNN | MAPE (%) | 29.72 | 53.87 | 20.62 | 12.79 | 12.91 |
MRE (%) | 2.94 | 4.02 | 2.74 | 2.7 | 2.53 | |
Computation time (min) | 15.6 | 15.93 | 13.25 | 14.73 | 13.65 | |
LSTM | MAPE (%) | 35.85 | 33.36 | 26.94 | 24.39 | 16.51 |
MRE (%) | 5.99 | 6.51 | 5.00 | 4.44 | 5.96 | |
Computation time (min) | 6.14 | 5.92 | 5.28 | 6.30 | 5.34 | |
SVM | MAPE (%) | 30.66 | 25.21 | 24.72 | 16.68 | 10.87 |
MRE (%) | 4.59 | 5.98 | 4.08 | 3.71 | 3.57 | |
Computation time (min) | 2.74 | 3.51 | 2.86 | 2.47 | 2.82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprillia, H.; Yang, H.-T.; Huang, C.-M. Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm. Energies 2020, 13, 1879. https://doi.org/10.3390/en13081879
Aprillia H, Yang H-T, Huang C-M. Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm. Energies. 2020; 13(8):1879. https://doi.org/10.3390/en13081879
Chicago/Turabian StyleAprillia, Happy, Hong-Tzer Yang, and Chao-Ming Huang. 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm" Energies 13, no. 8: 1879. https://doi.org/10.3390/en13081879
APA StyleAprillia, H., Yang, H.-T., & Huang, C.-M. (2020). Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm. Energies, 13(8), 1879. https://doi.org/10.3390/en13081879