A Novel Damage Model for Strata Layers and Coal Mass
Abstract
1. Introduction
2. Review of the Developed Damage Models in Brittle Materials
3. Analytical Approach
4. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, J.; Dou, L.-M.; Cao, A.-Y.; Gong, S.-Y.; Lü, J.-W. Rock burst induced by roof breakage and its prevention. J. Cent. South Univ. 2012, 19, 1086–1091. [Google Scholar] [CrossRef]
- Li, Z.; Dou, L.; Cai, W.; Wang, G.; He, J.; Gong, S.; Ding, Y. Investigation and analysis of the rock burst mechanism induced within fault–pillars. Int. J. Rock Mech. Min. Sci. 2014, 70, 192–200. [Google Scholar] [CrossRef]
- Li, Z.-L.; He, X.-Q.; Dou, L.-M.; Song, D.-Z. Comparison of rockburst occurrence during extraction of thick coal seams using top-coal caving versus slicing mining methods. Can. Geotech. J. 2018, 55, 1433–1450. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.; Maiti, J.; Kumar, R.; Mandal, P. Assessment of mining induced stress development over coal pillars during depillaring. Int. J. Rock Mech. Min. Sci. 2011, 48, 805–818. [Google Scholar] [CrossRef]
- Huang, B.; Liu, J.; Zhang, Q. The reasonable breaking location of overhanging hard roof for directional hydraulic fracturing to control strong strata behaviors of gob-side entry. Int. J. Rock Mech. Min. 2018, 103, 1–11. [Google Scholar] [CrossRef]
- Fan, J.; Dou, L.; He, H.; Du, T.; Zhang, S.; Gui, B.; Sun, X. Directional hydraulic fracturing to control hard-roof rockburst in coal mines. Int. J. Min. Sci. Technol. 2012, 22, 177–181. [Google Scholar] [CrossRef]
- Xiaojun, F.; Enyuan, W.; Rongxi, S.; Mingyao, W.; Yu, C.; Xinqi, C. The dynamic impact of rock burst induced by the fracture of the thick and hard key stratum. Procedia Eng. 2011, 26, 457–465. [Google Scholar] [CrossRef]
- Bräuner, G. Rockbursts in Coal Mines and Their Prevention; Routledge: London, UK, 2017. [Google Scholar]
- Marcak, H. Seismicity in mines due to roof layer bending rozwój/Sejsmiczności górniczej w rezultacie uginania się stropu. Arch. Min. Sci. 2012, 57, 229–250. [Google Scholar] [CrossRef]
- Chen, G.; Dou, L.; Xu, X. Research on prevention of rock burst with relieving shot in roof. Procedia Eng. 2012, 45, 904–909. [Google Scholar] [CrossRef][Green Version]
- Shen, B.; King, A.; Guo, H. Displacement, stress and seismicity in roadway roofs during mining-induced failure. Int. J. Rock Mech. Min. Sci. 2008, 45, 672–688. [Google Scholar] [CrossRef]
- Lai, X.; Li, Y.; Wang, N.; Liu, Y.; Ran, P. Roof deformation characteristics with full-mechanized caving face based on beam structure in extremely inclined coal seam. J. Min. Saf. Eng. 2015, 32, 871–876. [Google Scholar]
- Ryder, J. Excess shear stress in the assessment of geologically hazardous situations. J. South. Afr. Inst. Min. Metall. 1988, 88, 27–39. [Google Scholar]
- Martin, C.; Kaiser, P.; McCreath, D. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can. Geotech. J. 1999, 36, 136–151. [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P. Tunnelling in overstressed rocks. In Rock Engineering in Difficult Ground Conditions—Soft Rocks and Karst; Eurock2009 Lectures: Dubrovnik, Cavtat, Croatia, 2010. [Google Scholar]
- Kaiser, P.K.; Cai, M. Design of rock support system under rockburst condition. J. Rock Mech. Geotech. Eng. 2012, 4, 215–227. [Google Scholar] [CrossRef]
- Ortlepp, W.; Stacey, T. Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Space Technol. 1994, 9, 59–65. [Google Scholar] [CrossRef]
- Graham, C. Rockburst Research Handbook; CAMIRO Mining Division: Sudbury, ON, Canada, 1995. [Google Scholar]
- Castro, L.; Bewick, R.; Carter, T. An Overview of Numerical Modelling Applied to Deep Mining; Innovative Numerical Modelling in Geomechanics; Taylor & Francis Group: London, UK, 2012; pp. 393–414. [Google Scholar]
- Feng, X.; Chen, B.; Ming, H.; Wu, S.; Xiao, Y.; Feng, G.; Zhou, H.; Qiu, S. Evolution law and mechanism of rockbursts in deep tunnels: Immediate rockburst. Chin. J. Rock Mech. Eng. 2012, 31, 433–444. [Google Scholar]
- He, J.; Dou, L.; Gong, S.; Li, J.; Ma, Z. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Int. J. Rock Mech. Min. Sci. 2017, 100, 46–53. [Google Scholar] [CrossRef]
- Szwedzicki, T. Rock mass behaviour prior to failure. Int. J. Rock Mech. Min. Sci. 2003, 40, 573–584. [Google Scholar] [CrossRef]
- Pan, J.-F.; Ning, Y.; Du, T.-T.; Zhang, Y.; Liu, J.; Xia, Y.-X.; Wei, X.-Z. The theory and system for preventing rock burst in large-scale areas. J. China Coal Soc. 2012, 37, 1803–1809. [Google Scholar]
- Ortlepp, W.D. The behaviour of tunnels at great depth under large static and dynamic pressures. Tunn. Undergr. Space Technol. 2001, 16, 41–48. [Google Scholar] [CrossRef]
- Ortlepp, W.D. Rock Fracture and Rockbursts: An Illustrative Study; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 1997. [Google Scholar]
- Kaiser, P.; Tang, C. Numerical simulation of damage accumulation and seismic energy release during brittle rock failure—Part II: Rib pillar collapse. Int. J. Rock Mech. Min. Sci. 1998, 35, 123–134. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.; Tasaka, Y.; Maejima, T.; Morioka, H.; Minami, M. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 2004, 41, 833–847. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P. Rockburst Support Reference Book—Volume I: Rockburst Phenomenon and Support Characteristics; Laurentian University: Greater Sudbury, ON, Canada, 2018; p. 284. [Google Scholar]
- Cai, M. Principles of rock support in burst-prone ground. Tunn. Undergr. Space Technol. 2013, 36, 46–56. [Google Scholar] [CrossRef]
- Galvin, J. Ground Engineering-Principles and Practices for Underground Coal Mining; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Szurgacz, D.; Brodny, J. Tests of Geometry of the Powered Roof Support Section. Energies 2019, 12, 3945. [Google Scholar] [CrossRef]
- Szurgacz, D.; Brodny, J. Analysis of the influence of dynamic load on the work parameters of a powered roof support’s hydraulic leg. Sustainability 2019, 11, 2570. [Google Scholar] [CrossRef]
- Edelen, D.; Green, A.; Laws, N. Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 1971, 43, 36–44. [Google Scholar] [CrossRef]
- Edelen, D.G.; Laws, N. On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 1971, 43, 24–35. [Google Scholar] [CrossRef]
- Lemaitre, J. How to use damage mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Krajcinovic, D. On the thermodynamics of systems with nonlocality. J. Appl. Mech. 1983, 50, 355–360. [Google Scholar] [CrossRef]
- Lemaitre, J. Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 1985, 51, 31–49. [Google Scholar] [CrossRef]
- Sammis, C.; King, G.; Biegel, R. The kinematics of gouge deformation. Pure Appl. Geophys. 1987, 125, 777–812. [Google Scholar] [CrossRef]
- Yazdani, S.; Schreyer, H. An anisotropic damage model with dilatation for concrete. Mech. Mater. 1988, 7, 231–244. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Pijaudier-Cabot, G. Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. 1989, 115, 755–767. [Google Scholar] [CrossRef]
- Ju, J. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids Struct. 1989, 25, 803–833. [Google Scholar] [CrossRef]
- Kattan, P.I.; Voyiadjis, G.Z. A coupled theory of damage mechanics and finite strain elasto-plasticity—I. Damage and elastic deformations. Int. J. Eng. Sci. 1990, 28, 421–435. [Google Scholar] [CrossRef]
- Bažant, Z.P. Why continuum damage is nonlocal: Micromechanics arguments. J. Eng. Mech. 1991, 117, 1070–1087. [Google Scholar] [CrossRef]
- Ladeveze, P.; LeDantec, E. Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 1992, 43, 257–267. [Google Scholar] [CrossRef]
- Pijaudier-Cabot, G.; Benallal, A. Strain localization and bifurcation in a nonlocal continuum. Int. J. Solids Struct. 1993, 30, 1761–1775. [Google Scholar] [CrossRef]
- Hansen, N.; Schreyer, H. A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 1994, 31, 359–389. [Google Scholar] [CrossRef]
- Perdikaris, P.C.; Romeo, A. Size effect on fracture energy of concrete and stability issues in three-point bending fracture toughness testing. Mater. J. 1995, 92, 483–496. [Google Scholar]
- Wong, T.F.; Wu, L.C. Tensile stress concentration and compressive failure in cemented granular material. Geophys. Res. Lett. 1995, 22, 1649–1652. [Google Scholar] [CrossRef]
- Feenstra, P.H.; De Borst, R. A composite plasticity model for concrete. Int. J. Solids Struct. 1996, 33, 707–730. [Google Scholar] [CrossRef]
- Luccioni, B.; Oller, S.; Danesi, R. Coupled plastic-damaged model. Comput. Methods Appl. Mech. Eng. 1996, 129, 81–89. [Google Scholar] [CrossRef]
- Bhasin, R.; Høeg, K. Numerical modelling of block size effects and influence of joint properties in multiply jointed rock. Tunn. Undergr. Space Technol. 1997, 12, 407–415. [Google Scholar] [CrossRef]
- Collins, I.; Houlsby, G. Application of thermomechanical principles to the modelling of geotechnical materials. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society: London, UK, 1997; pp. 1975–2001. [Google Scholar]
- Tang, C. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Faria, R.; Oliver, J.; Cervera, M. A strain-based plastic viscous-damage model for massive concrete structures. Int. J. Solids Struct. 1998, 35, 1533–1558. [Google Scholar] [CrossRef]
- Jirasek, M. Nonlocal models for damage and fracture: Comparison of approaches. Int. J. Solids Struct. 1998, 35, 4133–4145. [Google Scholar] [CrossRef]
- Polizzotto, C.; Borino, G. A thermodynamics-based formulation of gradient-dependent plasticity. Eur. J. Mech. A/Solids 1998, 17, 741–761. [Google Scholar] [CrossRef]
- Polizzotto, C.; Borino, G.; Fuschi, P. A thermodynamically consistent formulation of nonlocal and gradient plasticity. Mech. Res. Commun. 1998, 25, 75–82. [Google Scholar] [CrossRef]
- Meschke, G.; Lackner, R.; Mang, H.A. An anisotropic elastoplastic-damage model for plain concrete. Int. J. Numer. Methods Eng. 1998, 42, 703–727. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Borino, G.; Fuschi, P.; Polizzotto, C. A thermodynamic approach to nonlocal plasticity and related variational principles. J. Appl. Mech. 1999, 66, 952–963. [Google Scholar] [CrossRef]
- Houlsby, G.; Puzrin, A. A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 2000, 16, 1017–1047. [Google Scholar] [CrossRef]
- Zhao, J. Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int. J. Rock Mech. Min. Sci. 2000, 37, 1115–1121. [Google Scholar] [CrossRef]
- Li, Q. Energy correlations between a damaged macroscopic continuum and its sub-scale. Int. J. Solids Struct. 2000, 37, 4539–4556. [Google Scholar] [CrossRef]
- Comi, C. A non-local model with tension and compression damage mechanisms. Eur. J. Mech. A/Solids 2001, 20, 1–22. [Google Scholar] [CrossRef]
- Picandet, V.; Khelidj, A.; Bastian, G. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cem. Concr. Res. 2001, 31, 1525–1532. [Google Scholar] [CrossRef]
- Benvenuti, E.; Borino, G.; Tralli, A. A thermodynamically consistent nonlocal formulation for damaging materials. Eur. J. Mech. A/Solids 2002, 21, 535–553. [Google Scholar] [CrossRef]
- Jirásek, M.; Patzák, B. Consistent tangent stiffness for nonlocal damage models. Comput. Struct. 2002, 80, 1279–1293. [Google Scholar] [CrossRef]
- Borino, G.; Failla, B.; Parrinello, F. A symmetric nonlocal damage theory. Int. J. Solids Struct. 2003, 40, 3621–3645. [Google Scholar] [CrossRef]
- Jirásek, M.; Rolshoven, S. Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 2003, 41, 1553–1602. [Google Scholar] [CrossRef]
- Simone, A.; Wells, G.N.; Sluys, L.J. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput. Methods Appl. Mech. Eng. 2003, 192, 4581–4607. [Google Scholar] [CrossRef]
- Rodrıguez-Ferran, A.; Morata, I.; Huerta, A. Efficient and reliable nonlocal damage models. Comput. Methods Appl. Mech. Eng. 2004, 193, 3431–3455. [Google Scholar] [CrossRef]
- Salari, M.; Saeb, S.; Willam, K.; Patchet, S.; Carrasco, R. A coupled elastoplastic damage model for geomaterials. Comput. Methods Appl. Mech. Eng. 2004, 193, 2625–2643. [Google Scholar] [CrossRef]
- Peerlings, R.; Massart, T.; Geers, M. A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Comput. Methods Appl. Mech. Eng. 2004, 193, 3403–3417. [Google Scholar] [CrossRef]
- Grassl, P.; Jirásek, M. Plastic model with non-local damage applied to concrete. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 71–90. [Google Scholar] [CrossRef]
- Makowski, J.; Stumpf, H.; Hackl, K. The fundamental role of nonlocal and local balance laws of material forces in finite elastoplasticity and damage mechanics. Int. J. Solids Struct. 2006, 43, 3940–3959. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, Y.-C.; Wang, J. A damage-softening statistical constitutive model considering rock residual strength. Comput. Geosci. 2007, 33, 1–9. [Google Scholar] [CrossRef]
- Comi, C.; Mariani, S.; Perego, U. An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 213–238. [Google Scholar] [CrossRef]
- Choinska, M.; Khelidj, A.; Chatzigeorgiou, G.; Pijaudier-Cabot, G. Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem. Concr. Res. 2007, 37, 79–88. [Google Scholar] [CrossRef]
- Nguyen, G.D.; Houlsby, G.T. A coupled damage–plasticity model for concrete based on thermodynamic principles: Part I: Model formulation and parameter identification. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 353–389. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Kattan, P.I. A comparative study of damage variables in continuum damage mechanics. Int. J. Damage Mech. 2009, 18, 315–340. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, F. An elasto-plastic damage constitutive model with double yield surfaces for saturated soft rock. Int. J. Rock Mech. Min. Sci. 2010, 47, 385–395. [Google Scholar] [CrossRef]
- Feng, X.-Q.; Yu, S.-W. Damage micromechanics for constitutive relations and failure of microcracked quasi-brittle materials. Int. J. Damage Mech. 2010, 19, 911–948. [Google Scholar] [CrossRef]
- Ferrero, A.; Migliazza, M.; Tebaldi, G. Development of a new experimental apparatus for the study of the mechanical behaviour of a rock discontinuity under monotonic and cyclic loads. Rock Mech. Rock Eng. 2010, 43, 685–695. [Google Scholar] [CrossRef]
- Duriez, J.; Darve, F.; Donze, F.-V. A discrete modeling-based constitutive relation for infilled rock joints. Int. J. Rock Mech. Min. Sci. 2011, 48, 458–468. [Google Scholar] [CrossRef]
- Li, X.; Cao, W.-G.; Su, Y.-H. A statistical damage constitutive model for softening behavior of rocks. Eng. Geol. 2012, 143, 1–17. [Google Scholar] [CrossRef]
- Liu, E.; Huang, R.; He, S. Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions. Rock Mech. Rock Eng. 2012, 45, 89–102. [Google Scholar] [CrossRef]
- Song, H.; Zhang, H.; Fu, D.; Kang, Y.; Huang, G.; Qu, C.; Cai, Z. Experimental study on damage evolution of rock under uniform and concentrated loading conditions using digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 760–768. [Google Scholar] [CrossRef]
- Song, H.; Zhang, H.; Kang, Y.; Huang, G.; Fu, D.; Qu, C. Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics 2013, 608, 1343–1348. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Remennikov, A. Simulation of the reinforced concrete slabs under impact loading. In Proceedings of the Australasian Structural Engineering Conference 2008: Engaging with Structural Engineering, Melbourne, Australia, 27 June 2008; p. 920. [Google Scholar]
- Pourhosseini, O.; Shabanimashcool, M. Development of an elasto-plastic constitutive model for intact rocks. Int. J. Rock Mech. Min. Sci. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Ning, J.; Tan, Y.; Gu, Q. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int. J. Rock Mech. Min. Sci. 2016, 85, 27–32. [Google Scholar] [CrossRef]
- Vu, V.D.; Mir, A.; Nguyen, G.D.; Sheikh, A.H. A thermodynamics-based formulation for constitutive modelling using damage mechanics and plasticity theory. Eng. Struct. 2017, 143, 22–39. [Google Scholar] [CrossRef]
- Tengattini, A.; Das, A.; Nguyen, G.D.; Viggiani, G.; Hall, S.A.; Einav, I. A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I—Theory. J. Mech. Phys. Solids 2014, 70, 281–296. [Google Scholar] [CrossRef]
- Einav, I. Breakage mechanics—Part I: Theory. J. Mech. Phys. Solids 2007, 55, 1274–1297. [Google Scholar] [CrossRef]
- Einav, I. Breakage mechanics—Part II: Modelling granular materials. J. Mech. Phys. Solids 2007, 55, 1298–1320. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Barton, N.; Bandis, S. Review of predictive capabilities of JRC-JCS model in engineering practice. In Rock Joints, Proceedings International Symposium on Rock Joints, Loen, Norway; Barton, N., Stephenson, O., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar]
- Palmstrøm, A. Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi). Tunn. Undergr. Space Technol. 1996, 11, 175–188. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahmasebinia, F.; Zhang, C.; Canbulat, I.; Sepasgozar, S.; Saydam, S. A Novel Damage Model for Strata Layers and Coal Mass. Energies 2020, 13, 1928. https://doi.org/10.3390/en13081928
Tahmasebinia F, Zhang C, Canbulat I, Sepasgozar S, Saydam S. A Novel Damage Model for Strata Layers and Coal Mass. Energies. 2020; 13(8):1928. https://doi.org/10.3390/en13081928
Chicago/Turabian StyleTahmasebinia, Faham, Chengguo Zhang, Ismet Canbulat, Samad Sepasgozar, and Serkan Saydam. 2020. "A Novel Damage Model for Strata Layers and Coal Mass" Energies 13, no. 8: 1928. https://doi.org/10.3390/en13081928
APA StyleTahmasebinia, F., Zhang, C., Canbulat, I., Sepasgozar, S., & Saydam, S. (2020). A Novel Damage Model for Strata Layers and Coal Mass. Energies, 13(8), 1928. https://doi.org/10.3390/en13081928