Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Determination of the Biomass Quality and the Energy Value of Willow Yield
2.3. Statistical Analysis
3. Results and Discussion
3.1. Energy Value of Yield
3.2. Thermophysical Properties and Elemental Composition of Biomass
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
RES | renewable energy sources |
EU | European Union |
UWM | University of Warmia and Mazury in Olsztyn |
d.m. | dry matter |
HHV | higher heating value |
LHV | lower heating value of fresh biomass (GJ Mg−1) |
Yev | biomass yield energy value (GJ ha−1) |
Yb | fresh biomass yield (Mg ha−1); |
C | carbon |
H | hydrogen |
S | sulphur |
N | nitrogen |
References
- Eurostat. Energy. Energy statistics—Quantities (nrg_quant). Available online: https://ec.europa.eu/eurostat/web/energy/data/database (accessed on 28 January 2020).
- Heller, M.C.; Keoleian, G.A.; Volk, T.A. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 2003, 25, 147–165. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.P.; Nowak, C.A.; Smart, L.B.; Tharakan, P.J.; White, E.H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 2006, 30, 715–727. [Google Scholar] [CrossRef]
- Vande Walle, I.; Van Camp, N.; Van de Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 2007, 31, 276–283. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Niksa, D. Energy consumption and costs of heating a detached house with wood briquettes in comparison to other fuels. Energy Convers. Manag. 2016, 121, 71–83. [Google Scholar] [CrossRef]
- Stolarski, M.; Krzyzaniak, M.; Warminski, K.; Tworkowski, J.; Szczukowski, S. Willow biomass energy generation efficiency and greenhouse gas reduction potential. Pol. J. Environ. Stud. 2015, 24, 2627–2640. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Cost of heat energy generation from willow biomass. Renew. Energy 2013, 59, 100–104. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Kariyapperuma, K.; Thevathasan, N.; Gordon, A.; Sidders, D.; Johannesson, G.H. Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada. Appl. Energy 2017, 204, 343–352. [Google Scholar] [CrossRef]
- Wang, Z.; Dunn, J.B.; Wang, M.Q. GREET Model Short Rotation Woody Crops (SRWC) Parameter Development. Center for Transportation Research. Argonne National Laboratory. 2012. Available online: Greet.es.anl.gov/files/greet-SRWC-Development,Lemont,Illinois,UnitedStates (accessed on 5 May 2018).
- Gonçalves, F.A.; Sanjinez-Argandona, E.J.; Fonseca, G.G. Cellulosic ethanol and its co-products from different substrates, pre-treatments, microorganisms and bioprocesses: A review. Nat. Sci. 2013, 5, 624–630. [Google Scholar]
- Krzyżaniak, M.; Stolarski, M.J.; Waliszewska, B.; Szczukowski, S.; Tworkowski, J.; Załuski, D.; Śnieg, M. Willow biomass as feedstock for an integrated multi-product biorefinery. Ind. Crops Prod. 2014, 58, 230–237. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Łuczyński, M.; Załuski, D.; Szczukowski, S.; Tworkowski, J.; Gołaszewski, J. Lignocellulosic biomass from short rotation woody crops as a feedstock for second-generation bioethanol production. Ind. Crops Prod. 2015, 75, 66–75. [Google Scholar] [CrossRef]
- Stolarski, M.; Szczukowski, S.; Tworkowski, J.; Klasa, A. Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 2008, 32, 1227–1234. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sustain. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Pitre, F.E.; Teodorescu, T.I.; Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 2013, 56, 361–369. [Google Scholar] [CrossRef]
- Rodias, E.; Berruto, R.; Bochtis, D.; Sopegno, A.; Busato, P. Green, Yellow, and Woody Biomass Supply-Chain Management: A Review. Energies 2019, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Bioenergy Europe. Bioenergy Europe Statistical Report; Bioenergy Europe: Brussels, Belgium, 2018. [Google Scholar]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow production during 12 consecutive years—The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy 2019, 11, 635–656. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass and Bioenergy 2018, 119, 109–120. [Google Scholar] [CrossRef]
- Larsen, S.U.; Jørgensen, U.; Lærke, P.E. Willow Yield Is Highly Dependent on Clone and Site. BioEnergy Res. 2014, 7, 1280–1292. [Google Scholar] [CrossRef]
- Serapiglia, M.; Cameron, K.; Stipanovic, A.; Abrahamson, L.; Volk, T.; Smart, L. Yield and Woody Biomass Traits of Novel Shrub Willow Hybrids at Two Contrasting Sites. BioEnergy Res. 2012, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sevel, L.; Nord-Larsen, T.; Ingerslev, M.; Jørgensen, U.; Raulund-Rasmussen, K. Fertilization of SRC Willow, I: Biomass Production Response. BioEnergy Res. 2014, 7, 319–328. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.P.; Spinelli, R.; Eisenbies, M.; Schweier, J.; Mola-Yudego, B.; Magagnotti, N.; Acuna, M.; Dimitriou, I.; Ceulemans, R. Mechanised harvesting of short-rotation coppices. Renew. Sustain. Energy Rev. 2017, 76, 90–104. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, Ł.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the Effect of Perennial Energy Crops and Agricultural Crops on Weed Flora Diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Niksa, D. Analysis of the energy efficiency of short-rotation woody crops biomass as affected by different methods of soil enrichment. Energy 2016, 113, 748–761. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I.; Daigle, S. Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 1997, 12, 409–417. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Klasa, A. Yield, energy parameters and chemical composition of short-rotation willow biomass. Ind. Crops Prod. 2013, 46, 60–65. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Rybczyńska, B.; Krzyżaniak, M.; Lajszner, W.; Graban, Ł.; Peni, D.; Bordiean, A. Thermophysical properties and elemental composition of agricultural and forest solid biofuels versus fossil fuels. J. Elemntol. 2019, 24, 1215–1228. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Extensive willow biomass production on marginal land. Pol. J. Environ. Stud. 2019, 28, 4359–4367. [Google Scholar] [CrossRef]
- Nordborg, M.; Berndes, G.; Dimitriou, I.; Henriksson, A.; Mola-Yudego, B.; Rosenqvist, H. Energy analysis of willow production for bioenergy in Sweden. Renew. Sustain. Energy Rev. 2018, 93, 473–482. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Gołaszewski, J. Energy intensity and energy ratio in producing willow chips as feedstock for an integrated biorefinery. Biosyst. Eng. 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Manzone, M.; Calvo, A. Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renew. Energy 2016, 86, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic evaluation of a poplar plantation for woodchips production in Italy. Biomass Bioenergy 2014, 60, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Nassi, O.; Di Nasso, N.; Guidi, W.; Ragaglini, G.; Tozzini, C.; Bonari, E. Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB Bioenergy 2010, 2, 89–97. [Google Scholar] [CrossRef]
- Nordborg, M.; Berndes, G.; Dimitriou, I.; Henriksson, A.; Mola-Yudego, B.; Rosenqvist, H. Energy analysis of poplar production for bioenergy in Sweden. Biomass Bioenergy 2018, 112, 110–120. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic sustainability of wood chip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel 2015, 140, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Budzyńnski, W.S.; Bórawski, P.; Bułkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskien, D.; Liaudanskienė, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physic-mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Szempliński, W.; Parzonka, A.; Sałek, T. Yield and energy efficiency of biomass production of some species of plants grown for biogas. Acta Sci. Pol. Agric. 2014, 13, 67–80. [Google Scholar]
- Angelini, L.G.; Ceccarinia, L.; Nassi o Di Nasso, N.; Bonari, E. Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass Bioenergy 2009, 33, 635–643. [Google Scholar] [CrossRef]
- Felten, D.; Fröba, N.; Fries, J.; Emmerling, C. Energy balances and greenhouse gas–mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany. Renew. Energy 2013, 55, 160–174. [Google Scholar] [CrossRef]
- Monedero, E.; Hernández, J.J.; Collado, R. Combustion-related properties of poplar, willow and black locust to be used as fuels in power plants. Energies 2017, 10, 997. [Google Scholar] [CrossRef] [Green Version]
- Krzyzaniak, M.; Stolarski, M.J.; Szczukowski, S.; Tworkowski, J. Thermophysical and chemical properties of biomass obtained from willow coppice cultivated in one- and three-year rotation cycles. J. Elem. 2015, 20, 161–175. [Google Scholar] [CrossRef]
- Afzal, M.T.; Bedane, A.H.; Sokhansanj, S.; Mahmood, W. Storage of comminuted and uncomminuted forest biomass and its effect on fuel quality. BioResources 2010, 5, 55–69. [Google Scholar]
- Krzyżaniak, M.; Stolarski, M.J.; Niksa, D.; Tworkowski, J.; Szczukowski, S. Effect of storage methods on willow chips quality. Biomass Bioenergy 2016, 92, 61–69. [Google Scholar] [CrossRef]
- Bajcar, M.; Zaguła, G.; Saletnik, B.; Tarapatskyy, M.; Puchalski, C. Relationship between torrefaction parameters and physicochemical properties of torrefied products obtained from selected plant biomass. Energies 2018, 11, 2919. [Google Scholar] [CrossRef] [Green Version]
- Jagustyn, B.; Patyna, I.; Skawińska, A. Evaluation of physicochemical properties of Palm Kernel Shell as agro biomass used in the energy industry. Chemik 2013, 67, 552–559. [Google Scholar]
P Value for | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Yield Energy Value | Moisture | Ash | Volatile Matter | Fixed Carbon | HHV | LHV | C | H | S | N |
Site (A) | <0.001 * | 0.857 | 0.318 | <0.001 * | <0.001 * | 0.001 * | 0.455 | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Variety or clone (B) | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
A × B | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Item | Yield Energy Value (GJ ha−1) | Higher Heating Value (MJ kg−1 d.m.) | Lower Heating Value (MJ kg−1) | |
---|---|---|---|---|
Site | Obory | 1004.9 ± 392.9 B | 19.5 ± 0.1 B | 8.6 ± 0.4 |
Kocibórz | 1118.6 ± 457.0 A | 19.5 ± 0.2 B | 8.6 ± 0.6 | |
Leginy | 746.7 ± 149.5 C | 19.6 ± 0.1 A | 8.6 ± 0.5 | |
Variety or clone | Turbo | 880.9 ± 132.1 c | 19.6 ± 0.1 a | 8.9 ± 0.2 b |
Tur | 842.7 ± 162.5 d | 19.6 ± 0.1 a | 9.2 ± 0.1 a | |
UWM 095 | 1167.0 ± 242.9 b | 19.6 ± 0.1 a | 8.0 ± 0.1 d | |
UWM 200 | 541.3 ± 18.8 f | 19.4 ± 0.1 b | 8.0 ± 0.3 d | |
Ekotur | 1521.7 ± 453.0 a | 19.4 ± 0.2 b | 8.5 ± 0.2 c | |
UWM 046 | 786.8 ± 132.9 e | 19.6 ± 0.1 a | 8.9 ± 0.3 b | |
Mean | 956.8 ± 385.1 | 19.5 ± 0.1 | 8.6 ± 0.5 |
Item | Moisture | Ash | Volatile Matter | Fixed Carbon | HHV | LHV | C | H | S | N |
---|---|---|---|---|---|---|---|---|---|---|
Moisture | 1.00 | |||||||||
Ash | 0.12 | 1.00 | ||||||||
Volatile matter | 0.29 * | −0.58 * | 1.00 | |||||||
Fixed Carbon | −0.34 * | 0.44 * | −0.99 * | 1.00 | ||||||
HHV | −0.19 | 0.26 | −0.27 * | 0.25 | 1.00 | |||||
LHV | −0.99 * | −0.08 | −0.32 * | 0.37 * | 0.32 * | 1.00 | ||||
C | −0.50 * | −0.07 | −0.08 | 0.10 | 0.02 | 0.48 * | 1.00 | |||
H | −0.42 * | −0.27 * | 0.21 | −0.18 | 0.05 | 0.41 * | 0.71 * | 1.00 | ||
S | −0.21 | 0.52 * | −0.63 * | 0.59 * | 0.56 * | 0.28 * | 0.16 | 0.06 | 1.00 | |
N | −0.26 | 0.26 | −0.07 | 0.03 | 0.17 | 0.28 * | 0.23 | 0.09 | 0.22 | 1.00 |
Item | Moisture Content (%) | Ash Content (% d.m.) | Volatile Matter (% d.m.) | Fixed Carbon (% d.m.) | |
---|---|---|---|---|---|
Site | Obory | 49.8 ± 1.8 | 1.3±0.3 | 80.2 ± 1.2 A | 18.6 ± 1.0 B |
Kocibórz | 49.7 ± 2.7 | 1.3 ± 0.2 | 80.0 ± 1.6 A | 18.7 ± 1.5 B | |
Leginy | 49.7 ± 2.3 | 1.3 ± 0.2 | 79.0 ± 0.4 B | 19.7 ± 0.4 A | |
Variety or clone | Turbo | 48.7 ± 0.9 c | 1.4 ± 0.3 a | 78.8 ± 0.4 b | 19.8 ± 0.4 a |
Tur | 47.1 ± 0.4 d | 1.1 ± 0.2 c | 79.9 ± 1.1 a | 19.0 ± 0.9 b | |
UWM 095 | 52.6 ± 0.4 a | 1.3 ± 0.1 b | 79.9 ± 1.4 a | 18.8 ± 1.3 b | |
UWM 200 | 52.2 ± 1.3 a | 1.4 ± 0.2 a | 80.2 ± 1.3 a | 18.5 ± 1.1 c | |
Ekotur | 49.7 ± 0.6 b | 1.1 ± 0.1 c | 80.5 ± 1.1 a | 18.4 ± 1.1 c | |
UWM 046 | 48.2 ± 1.5 c | 1.4 ± 0.2 a | 79.1 ± 1.5 b | 19.5 ± 1.4 a | |
Mean | 49.8 ± 2.2 | 1.3 ± 0.2 | 79.7 ± 1.3 | 19.0 ± 1.2 |
Item | C | H | S | N | |
---|---|---|---|---|---|
Site | Obory | 51.5 ± 0.7 A | 6.0 ± 0.1 A | 0.039 ± 0.013 B | 0.34 ± 0.03 B |
Kocibórz | 50.9 ± 0.7 B | 5.9 ± 0.1 B | 0.038 ± 0.009 C | 0.35 ± 0.06 A | |
Leginy | 50.8 ± 0.9 B | 5.8 ± 0.1 B | 0.041 ± 0.007 A | 0.26 ± 0.02 C | |
Variety or clone | Turbo | 51.1 ± 0.4 b | 5.9 ± 0.1 a | 0.052 ± 0.005 a | 0.32 ± 0.04 b |
Tur | 51.8 ± 0.9 a | 6.0 ± 0.2 a | 0.038 ± 0.005 d | 0.31 ± 0.04 b | |
UWM 095 | 50.7 ± 0.8 c | 5.8 ± 0.1 b | 0.045 ± 0.007 b | 0.32 ± 0.04 b | |
UWM 200 | 50.6 ± 0.6 c | 5.8 ± 0.1 b | 0.029 ± 0.003 f | 0.29 ± 0.04 c | |
Ekotur | 50.7 ± 1.1 c | 6.0 ± 0.2 a | 0.030 ± 0.002 e | 0.28 ± 0.03 d | |
UWM 046 | 51.4 ± 0.4 b | 5.9 ± 0.1 a | 0.040 ± 0.009 c | 0.37 ± 0.07 a | |
Mean | 51.1 ± 0.8 | 5.9 ± 0.1 | 0.039 ± 0.010 | 0.32 ± 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarski, M.J.; Szczukowski, S.; Krzyżaniak, M.; Tworkowski, J. Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies 2020, 13, 2144. https://doi.org/10.3390/en13092144
Stolarski MJ, Szczukowski S, Krzyżaniak M, Tworkowski J. Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies. 2020; 13(9):2144. https://doi.org/10.3390/en13092144
Chicago/Turabian StyleStolarski, Mariusz Jerzy, Stefan Szczukowski, Michał Krzyżaniak, and Józef Tworkowski. 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil" Energies 13, no. 9: 2144. https://doi.org/10.3390/en13092144
APA StyleStolarski, M. J., Szczukowski, S., Krzyżaniak, M., & Tworkowski, J. (2020). Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil. Energies, 13(9), 2144. https://doi.org/10.3390/en13092144