A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Developed GIS-Based Model and Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Economic and Social Affairs, United Nations. Population Division World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working paper no. ESA/P/WP/248; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2017. [Google Scholar]
- Graham-Rowe, D. Agriculture: Beyond food versus fuel. Nature 2011, 474, S6–S8. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Sordi, A.; Cirulli, G.; Micale, C. Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time. Appl. Energy 2015, 150, 9–14. [Google Scholar] [CrossRef]
- Ingrao, C.; Selvaggi, R.; Valenti, F.; Matarazzo, A.; Pecorino, B.; Arcidiacono, C. Life cycle assessment of expanded clay granulate production using different fuels. Resour. Conserv. Recycl. 2019, 141, 398–409. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F. Assessment of fruit and vegetable residues suitable for renewable energy production: GIS-based model for developing new frontiers within the context of circular economy. Appl. Syst. Innov. 2021, 4, 1–15. [Google Scholar]
- Valenti, F.; Porto, S.M.C. Net electricity and heat generated by reusing Mediterranean agro-industrial by-products. Energies 2019, 12, 470. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Selvaggi, R.; Pecorino, B. Co-digestion of by-products and agricultural residues: A bioeconomy perspective for a Mediterranean feedstock mixture. Sci. Total Environ. 2020, 700, 134440. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Sodiq, A.; Baloch, A.A.B.; Khan, S.A.; Sezer, N.; Mahmoud, S.; Jama, M.; Abdelaal, A. Towards modern sustainable cities: Review of sustainability principles and trends. J. Clean. Prod. 2019, 227, 972e1001. [Google Scholar] [CrossRef]
- Peng, Y.; Wei, Y.; Bai, X. Scaling urban sustainability experiments: Contextualization as an innovation. J. Clean. Prod. 2019, 227, 302e312. [Google Scholar] [CrossRef]
- Pikaar, I.; Huang, X.; Fatone, F.; Guest, J.S. Resource recovery from water: From concept to standard practice. Water Res. 2020, 178, 115856. [Google Scholar] [CrossRef]
- Russo, N.; Marzo, A.; Randazzo, C.; Caggia, C.; Toscano, A.; Cirelli, G.L. Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants. Sci. Total Environ. 2019, 656, 558–566. [Google Scholar] [CrossRef]
- Xu, C.; Chen, W.; Hong, J. Life-cycle environmental and economic assessmentof sewage sludge treatment in China. J. Clean. Prod. 2014, 67, 79–87. [Google Scholar] [CrossRef]
- Li, H.; Jin, C.; Zhang, Z.; O’Hara, I.; Mundree, S. Environmental and economiclife cycle assessment of energy recovery from sewage sludge through differentanaerobic digestion pathways. Energy 2017, 126, 649–657. [Google Scholar] [CrossRef]
- Horttanainen, M.; Deviatkin, I.; Havukainen, J. Nitrogen release from mechanically dewatered sewage sludge during thermal drying and potential for recovery. J. Clean. Prod. 2017, 142, 1819–1826. [Google Scholar] [CrossRef]
- Song, C.; Li, R.; Zhao, Y.; Li, R.; Ma, D.; Kanshac, Y. Assessment of four sewage sludge treatment routes with efficientbiogas utilization and heat integration. Process Saf. Environ. Prot. 2019, 126, 205–213. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Toscano, A.; Hellio, C.; Marzo, A.; Milani, M.; Lebret, K.; Cirelli, G.L.; Langergraber, G. Removal efficiency of a constructed wetland combined with ultrasound and UV devices for wastewater reuse in agriculture. Environ. Technol. 2013, 34, 2327–2336. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Abelleira, J.; Pérez-Elvira, S.I.; Portela, J.R.; Sánchez-Oneto, J.; Nebot, E. Advanced thermal hydrolysis: Optimization of a novel thermochemical process to aid sewage sludge treatment. Environ. Sci. Technol. 2012, 46, 6158–6166. [Google Scholar] [CrossRef]
- Ghafarzadeh, M.; Abedini, R.; Rajabi, R. Optimization of ultrasonic wavesapplication in municipal wastewater sludge treatment using response surface method. J. Clean. Prod. 2017, 150, 361–370. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J. Environ. Manag. 2017. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Q.; Wu, S.; Qi, D.; Li, W.; Zuo, Z.; Dong, R. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Wickham, R.; Galway, B.; Bustamante, H.; Nghiem, L.D. Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int. Biodeterior. Biodegrad. 2016, 113, 3–8. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Smith, R.L. Production of Biofuels and Chemicals with Microwave; Springer: Dordrecht, The Netherlands, 2015; Volume 3. [Google Scholar]
- Losak, T.; Hlusek, J.; Zatloukalova, A.; Musilova, L.; Vitezova, M.; Skarpa, P.; Zlamalova, T.; Fryc, J.; Vitez, T.; Marecek, J.; et al. Digestate from biogas plants is an attractive alternative to mineral fertilisation of kohlrabi. J. Sustain. Dev. Energy Water Environ. Syst. 2014, 2, 309–318. [Google Scholar] [CrossRef]
- European Commission. Commission decision of 18 November 2011 establishing rules and calculation methods for verifying compliance with the targets set in Article 11[2] of Directive 2008/98/EC of the European Parliament and of the Council. Off. J. Eur. Union 2011, 310, 11. [Google Scholar]
- Lovrak, A.; Pukšec, T.; Duić, N. A Geographical Information System [GIS] based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Guiza, M.S.; Fonoll, X.; Press, M.; Astals, S. A critical review on anaerobic co-digestion achivements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Komilis, D.; Barrena, R.; Grando, R.L.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci Biol. 2017, 16, 347–360. [Google Scholar] [CrossRef]
- Wei, J.; Hao, X.; van Loosdrecht, M.C.M.; Li, J. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review. Renew. Sustain. Energy Rev. 2018, 89, 16–26. [Google Scholar] [CrossRef]
- Agabo-García, C.; Pérez, M.; Rodríguez-Morgado, B.; Parrado, J.; Solera, R. Biomethane production improvement by enzymatic pre-treatments and enhancers of sewage sludge anaerobic digestion. Fuel 2019, 255, 115713. [Google Scholar] [CrossRef]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manag. 2004, 70, 101–107. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, L.; Lin, R.; Yue, L.; Liu, J.; Zhou, J.; Cen, K. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Appl. Energy 2016, 184, 1–8. [Google Scholar] [CrossRef]
- Singh, A.D.; Upadhyay, A.; Shrivastava, S.; Vivekanand, V. Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour. Technol. 2020, 309, 123373. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Koch, K.; Bolzonella, D.; Drewes, J.E. Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renew. Sustain. Energy Rev. 2017, 72, 354–362. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants [WWTPs] in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sust. Energ. Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Macintosh, C.; Astals, S.; Sembera, C.; Ertl, A.; Drewes, J.E.; Jensen, P.D.; Koch, K. Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration. Appl. Energy 2019, 242, 797–808. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Sci. Total Environ. 2021, 765, 142753. [Google Scholar] [CrossRef]
- Cipolletta, G.; Gozde Ozbayram, E.; Eusebi, A.L.; Akyol, Ç.; Malamis, S.; Mino, E.; Fatone, F. Policy and legislative barriers to close water-related loops in innovative small water and wastewater systems in Europe: A critical analysis. J. Clean. Prod. 2021, 288, 125604. [Google Scholar] [CrossRef]
- Murray, A.T. Advances in location modeling: GIS linkages and contributions. J. Geogr. Syst. 2010, 12, 335–354. [Google Scholar] [CrossRef]
- Comber, A.; Dickie, J.; Jarvis, C.; Phillips, M.; Tansey, K. Locating bioenergy facilities using a modified GIS-based location-allocation-algorithm: Considering the spatial distribution of resource supply. Appl. Energy 2015, 154, 309–316. [Google Scholar] [CrossRef]
- Laasasenaho, K.; Lensu, A.; Lauhanen, R.; Rintala, J. GIS-data related route optimization, hierarchical clustering, location optimization, and kernel density methods are useful for promoting distributed bioenergy plant planning in rural areas. Sustain. Energy Technol. Assess. 2019, 32, 47–57. [Google Scholar] [CrossRef]
- ISTAT. Regione Emilia Romagna Censimento Agricoltura Dimensione Economica e Specializzazione Delle Aziende Agricole in Emilia-Romagna nel 2010 6 Censimento Generale Dell’agricoltura. 2010. Available online: http://statistica.regione.emilia-romagna.it/servizi-online/censimenti/6b0-censimento-dellagricoltura-2010 (accessed on 15 February 2021).
- ARPAE (Agenzia Regionale per la Prevenzione, l´Ambiente e l´Energia). Eraclito. Emilia Romagna Region: Eraclito Climate dataset. 2021. Available online: https://dati.arpae.it/dataset/erg5-eraclito (accessed on 18 January 2021).
- Cavicchi, B.; Bryden, J.M.; Vittuari, M. A comparison of bioenergy policies and institutional frameworks in the rural areas of Emilia Romagna and Norway. Energy Policy 2014, 67, 355–363. [Google Scholar] [CrossRef]
- Cavicchi, B. Emerging Green Innovation Platforms. A Comparative Study on Renewable Energy Policy in Emilia Romagna and Norway; NILF Report 2013-1; Norsk Institutt for Landbruksøkonomisk Forskning: Oslo, Norway, 2013. [Google Scholar]
- Carrosio, G. Energy production from biogas in the Italian countryside: Policies and organizational models. Energy Policy 2013, 63, 3–9. [Google Scholar] [CrossRef]
- Cavicchi, B. Sustainability that backfires: The case of biogas in Emilia Romagna. Environ. Innov. Soc. Transit. 2016, 21, 13–27. [Google Scholar] [CrossRef]
- ISTAT. National Statistical Institute Database. 2021. Available online: http://www.dati.istat.it (accessed on 15 February 2021).
- EBA—European Biogas Association. EBA Statistical Report 2020. 2020. Available online: https://www.europeanbiogas.eu/eba-statistical-report-2020/ (accessed on 4 February 2021).
- minERva. Emilia Romagna Region Dataset. 2021. Available online: https://datacatalog.regione.emilia-romagna.it/catalogCTA/ (accessed on 18 January 2021).
Region | Area (kmq) | P (n.) | WWTP_2015 (n.) | PE (n.) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Primary | Secondary | Tertiary | Total | Primary | Secondary | Tertiary | Total | |||
Piedmont | 25,387.08 | 4,424,467 | 2619 | 1177 | 92 | 3888 | 341,859 | 1,306,759 | 4,554,540 | 6,203,158 |
Aosta Valley | 3260.90 | 128,298 | 274 | 25 | 4 | 303 | 40,382 | 161,364 | 131,540 | 333,286 |
Liguria | 5416.22 | 1,583,263 | 650 | 100 | 26 | 776 | 442,387 | 1,337,891 | 783,894 | 2,564,172 |
Lombardy | 23,863.45 | 10,002,615 | 725 | 400 | 373 | 1498 | 128,780 | 1,106,203 | 10,167,397 | 11,402,380 |
Trentino Alto Adige | 13,604.92 | 1,055,934 | 118 | 30 | 87 | 235 | 49,796 | 82,500 | 2,379,328 | 2,511,624 |
Veneto | 18,407.27 | 4,927,596 | 665 | 224 | 259 | 1148 | 105,175 | 625,858 | 4,729,467 | 5,460,575 |
Friuli-Venezia Giulia | 7862.27 | 1,227,122 | 398 | 265 | 82 | 745 | 62,658 | 254,377 | 1,094,068 | 1,411,103 |
Emilia-Romagna | 22,452.55 | 4,450,508 | 1341 | 451 | 245 | 2037 | 108,032 | 691,231 | 5,069,226 | 5,868,489 |
Tuscany | 22,986.95 | 3,752,654 | 610 | 493 | 200 | 1303 | 112,033 | 932,667 | 5,064,484 | 6,109,184 |
Umbria | 8464.25 | 894,762 | 511 | 252 | 46 | 809 | 32,656 | 192,744 | 885,398 | 1,110,798 |
Marche | 9401.33 | 1,550,796 | 376 | 310 | 119 | 805 | 34,049 | 283,074 | 1,061,342 | 1,378,465 |
Lazio | 17,232.12 | 5,892,425 | 88 | 405 | 142 | 635 | 132,592 | 4,175,148 | 1,914,769 | 6,222,509 |
Abruzzo | 10,831.68 | 1,331,574 | 1043 | 362 | 30 | 1435 | 145,460 | 1,122,805 | 620,768 | 1,889,033 |
Molise | 4460.51 | 313,348 | 66 | 113 | 23 | 202 | 81,364 | 163,127 | 268,739 | 513,230 |
Campania | 13,670.84 | 5,861,529 | 165 | 219 | 89 | 473 | 327,563 | 4,009,536 | 2,333,745 | 6,670,844 |
Apulia | 19,540.85 | 4,090,105 | 5 | 8 | 176 | 189 | 29,998 | 351,627 | 4,406,093 | 4,787,751 |
Basilicata | 10,073.29 | 576,619 | 2 | 82 | 88 | 172 | 1601 | 214,545 | 445,675 | 661,821 |
Calabria | 15,221.90 | 1,976,631 | 188 | 206 | 48 | 442 | 382,240 | 1,112,019 | 765,307 | 2,259,566 |
Sicily | 25,832.40 | 5,092,080 | 118 | 239 | 57 | 414 | 398,022 | 3,349,392 | 957,952 | 4,705,366 |
Sardinia | 24,100.14 | 1,663,286 | 22 | 243 | 123 | 388 | 72,887 | 537,546 | 2,565,122 | 3,175,555 |
Total | 302,070.92 | 60,795,612 | 9984 | 5604 | 2309 | 17,897 | 3,029,642 | 22,010,413 | 50,198,854 | 75,238,909 |
Provinces | WWTPs | PE | ||
---|---|---|---|---|
ST | TT | Total | ||
Piacenza | 87 | 14 | 101 | 393,077 |
Parma | 85 | 42 | 127 | 797,930 |
Modena | 47 | 33 | 80 | 1,217,634 |
Bologna | 110 | 34 | 144 | 1,449,060 |
Reggio Emilia | 61 | 19 | 80 | 762,985 |
Forlì-Cesena | 39 | 9 | 46 | 788,026 |
Rimini | 25 | 5 | 30 | 928,761 |
Ferrara | 74 | 20 | 94 | 719,823 |
Ravenna | 16 | 15 | 31 | 1,188,098 |
Total | 544 | 191 | 733 | 8,245,394 |
Provinces | WWTPs | PE | Average PE | PEindex |
---|---|---|---|---|
Piacenza | 101 | 393,077 | 3892 | 0.990 |
Parma | 127 | 797,930 | 6283 | 0.787 |
Modena | 80 | 1,217,634 | 15,220 | 1.250 |
Bologna | 144 | 1,449,060 | 10,063 | 0.694 |
Reggio Emilia | 80 | 762,985 | 9537 | 1.250 |
Forlì-Cesena | 46 | 788,026 | 17,131 | 2.174 |
Rimini | 30 | 928,761 | 30,959 | 3.333 |
Ferrara | 94 | 719,823 | 7658 | 1.064 |
Ravenna | 31 | 1,188,098 | 38,326 | 3.226 |
Total | 733 | 8,245,394 | - | - |
Average | 81 | 916,155 | 15,452 | 1.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenti, F.; Toscano, A. A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus. Energies 2021, 14, 2838. https://doi.org/10.3390/en14102838
Valenti F, Toscano A. A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus. Energies. 2021; 14(10):2838. https://doi.org/10.3390/en14102838
Chicago/Turabian StyleValenti, Francesca, and Attilio Toscano. 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus" Energies 14, no. 10: 2838. https://doi.org/10.3390/en14102838
APA StyleValenti, F., & Toscano, A. (2021). A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus. Energies, 14(10), 2838. https://doi.org/10.3390/en14102838