FFMCP: Feed-Forward Multi-Clustering Protocol Using Fuzzy Logic for Wireless Sensor Networks (WSNs)
Abstract
:1. Introduction
- Definition of two different combinations of input parameters for CH selection in a round of algorithm e;xecution. Each grouping of input parameters works separately for deciding CHs;
- Network structure in a round act significant function in deciding the CHs in the forthcoming round of the algorithm execution. Proper consideration of the input parameters, so that network information propagates forward and contributes to finalizing the CHs;
- Carry out the analysis of the proposed protocol with notable clustering methods for WSNs.
2. Related Works
3. Network Model
3.1. Assumptions
- The node location is a crucial parameter for the algorithm’s analysis and thus assumes random deployment;
- The configuration of the nodes in the network is similar;
- Assume the same initial energy for each node;
- The node’s position value is constant in each scenario of the network;
- The base station, centered in the area or positioned in the corner, has unrestricted power;
- The sink will remain stable for the entire protocol execution round;
- The ability of sensor nodes is limited in terms of liveliness;
- Received signal strength indicator (RSSI) is utilized to determine the distance value between nodes.
3.2. Energy Model
4. Proposed Algorithm
4.1. Opening Phase
4.1.1. Information Collection and Sharing
4.1.2. Distance Calculation
4.1.3. Degree and Range Calculation
4.2. Set-Up Phase
4.2.1. Advertisement Phase
4.2.2. Tentative CH Selection Phase
4.2.3. Final CH Selection Phase
Algorithm 1: FFMCP Algorithm |
Input: n_round, deployment area, p, sink_p, initial_e, c_range, n_nodes, t_node Output: R_VALUE={CHs, alive_n}
|
4.2.4. Cluster Formation Phase
4.3. Data Transmission Phase
5. Comparative Analysis of Result and Simulation Work
- −
- First scenario, S#1 (Figure 13) considers the network area of (200*200) with the base station located at (100, 100) and the initial energy of each node as 0.5 joules;
- −
- Second scenario, S#2 (Figure 14) has an area of (100*100), base station location as (50, 50) initial energy of each node as 0.5 joules;
- −
- Third scenario, S#3 (Figure 15) has an area of (500*500), base station location as (500, 500) initial energy of each node as 5 joules.
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-C.; Wen, C.-Y. Distributed Clustering With Directional Antennas for Wireless Sensor Networks. IEEE Sens. J. 2013, 13, 2166–2180. [Google Scholar] [CrossRef]
- Babaie, S.; Zadeh, A.K.; Amiri, M.G. The New Clustering Algorithm with Cluster Members bounds for energy dissipation avoidance in wireless sensor network. In Proceedings of the 2010 International Conference On Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 2, pp. V2-613–V2-617. [Google Scholar]
- Mishra, P.K.; Verma, S.K. A survey on clustering in wireless sensor network. In Proceedings of the 2020 11th International Conferenceon Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–5. [Google Scholar]
- Kaur, R.; Sharma, M. An approach to design habitat monitoring system using sensor networks. Int. J. Soft Comput. Eng. 2011, 1, 5–8. [Google Scholar]
- Suzuki, M.; Saruwatari, S.; Kurata, N.; Morikawa, H. A high-density earth quake monitoring system using wireless sensor networks. In Proceedings of the 5th International Conference on Bioinformatics and Computational Biology; Association for Computing Machinery: New York, NY, USA, 2007; pp. 373–374. [Google Scholar]
- Winkler, M.; Street, M.; Tuchs, K.D.; Wrona, K. Wireless sensor networks for military purposes. In Autonomous Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 365–394. [Google Scholar]
- Winkler, M.; Tuchs, K.D.; Hughes, K.; Barclay, G. Theoretical and practical aspects of military wireless sensor networks. J. Telecommun. Inf. Technol. 2008, 2, 37–45. [Google Scholar]
- Ko, J.; Lim, J.H.; Chen, Y.; Musvaloiu, E.R.; Terzis, A.; Masson, G.M. MEDiSN:Medical emergency detection in sensor networks. Acm Trans. Embed. Comput. Syst. 2010, 10, 11. [Google Scholar] [CrossRef]
- Woznowski, P.; Burrows, A.; Diethe, T.; Fafoutis, X.; Hall, J.; Hannuna, S.; Camplani, M.; Twomey, N.; Kozlowski, M.; Tan, B.; et al. SPHERE: A Sensor Platform for Health care in a Residential Environment. In Designing, Developing, and Facilitating Smart Cities; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 315–333. [Google Scholar]
- Rashid, B.; Rehmani, M.H. Applications of wireless sensor networks for urban areas: A survey. J. Netw. Comput. Appl. 2016, 60, 192–219. [Google Scholar] [CrossRef]
- Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corra, M. Monitoring heritage buildings with wireless sensor networks: The torreaquila deployment. In Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 277–288. [Google Scholar]
- Dong, Q.; Yu, L.; Lu, H.; Hong, Z.; Chen, Y. Design of Building Monitoring Systems Based on Wireless Sensor Networks. Wirel. Sens. Netw. 2010, 2, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Stojkoska, B.L.R.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 2017, 140, 1454–1464. [Google Scholar] [CrossRef]
- Suryadevara, N.K. Wireless sensor sequence data model for smart home and IoT data analytics. In Proceedings of the First International Conference on Computational Intelligence and Informatics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 441–447. [Google Scholar]
- Kafi, M.A.; Challal, Y.; Djenouri, D.; Doudou, M.; Bouabdallah, A.; Badache, N. A Study of Wireless Sensor Networks for Urban Traffic Monitoring: Applications and Architectures. Procedia Comput. Sci. 2013, 19, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Zhu, Y.; Kong, L.; Liu, C.; Gu, Y.; Vasilakos, A.V.; Wu, M.-Y. CDC: Compressive Data Collection for Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 2188–2197. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, A.; Arghavani, M.; Parandin, F.; Arghavani, A. Energy Efficient Reservation-Based Cluster Head Selection in WSNs. Wirel. Pers. Commun. 2018, 100, 667–679. [Google Scholar] [CrossRef]
- Deepa, C.; Latha, B. HHSRP: A cluster based hybrid hierarchical secure routing protocol for wireless sensor networks. Clust. Comput. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Huang, J.; Hong, Y.; Zhao, Z.; Yuan, Y. An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Clust. Comput. 2017, 20, 3071–3083. [Google Scholar] [CrossRef]
- Maddali, B.K. Core network supported multicast routing protocol for wireless sensor networks. IET Wirel. Sens. Syst. 2015, 5, 175–182. [Google Scholar] [CrossRef]
- Mohammed, T.; Kemal, E.T.; Sasan, A.; Shervin, E. Survey of multi path routing protocols for mobile adhoc networks. J. Netw. Comput. Appl. 2009, 32, 1125–1143. [Google Scholar]
- Du, R.; Chen, C.; Yang, B.; Lu, N.; Guan, X.; Shen, X. Effective Urban Traffic Monitoring by Vehicular Sensor Networks. IEEE Trans. Veh. Technol. 2015, 64, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Younis, O.; Fahmy, S. HEED: A hybrid energy-efficient, distributed clustering approach for adhoc sensor networks. IEEE Trans. Mob. Comput. 2004, 3, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.C.; Yadav, P.; Kumar, R.; Panda, S.K. Real-Time Implementation of a Harmony Search Algorithm-Based Clustering Protocol for Energy-Efficient Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2013, 10, 774–783. [Google Scholar] [CrossRef]
- Demigha, O.; Hidouci, W.-K.; Ahmed, T. On Energy Efficiency in Collaborative Target Tracking in Wireless Sensor Network: A Review. IEEE Commun. Surv. Tutor. 2012, 15, 1210–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, B.; Luan, T.H.; Hou, F.; Gui, L.; Li, Y.; Yu, Q.; Shen, X. Chain Cluster: Engineering a Cooperative Content Distribution Framework for Highway Vehicular Communications. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2644–2657. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, L.; Chen, C.; Guan, X. Joint Clustering and Routing Design for Reliable and Efficient Data Collection in Large-Scale Wireless Sensor Networks. IEEE Internet Things J. 2015, 3, 520–532. [Google Scholar] [CrossRef]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless micro sensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January 2000; p. 8020. [Google Scholar]
- Manjeshwar, A.; Agrawal, D. TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In Proceedings of the 15th International Parallel and Distributed Processing Symposium, San Francisco, CA, USA, 23–27 April 2001; pp. 2009–2015. [Google Scholar]
- Bagci, H.; Yazici, A. An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Appl. Soft Comput. 2013, 13, 1741–1749. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Balachandran, S. FLECH: Fuzzy logic based energy efficient clustering hierarchy for non-uniform wireless sensor networks. Wirel. Commun. Mob. Comput. 2017, 1214720. [Google Scholar] [CrossRef] [Green Version]
- Baranidharan, B.; Santhi, B. DUCF: Distributed load balancing Unequal Clustering in wireless sensor networks using Fuzzy approach. Appl. Soft Comput. 2016, 40, 495–506. [Google Scholar] [CrossRef]
- Phoemphon, S.; So-In, C.; Aimtongkham, P.; Nguyen, T.G. An energy-efficient fuzzy-based scheme for unequal multi hop clustering in wireless sensor networks. J. Ambient. Intell. Hum. Comput. 2021, 12, 873–895. [Google Scholar] [CrossRef]
- Boubiche, S.; Boubiche, D.E.; Bilami, A.; Toral-Cruz, H. Big Data Challenges and Data Aggregation Strategies in Wireless Sensor Networks. IEEE Access 2018, 6, 20558–20571. [Google Scholar] [CrossRef]
- Dwivedi, A.; Sharma, A. FEECA: Fuzzy based Energy Efficient Clustering Approach in Wireless Sensor Network. ICST Trans. Scalable Inf. Syst. 2018, 7. [Google Scholar] [CrossRef]
- Hidoussi, F.; Toral-Cruz, H.; Boubiche, D.E.; Martínez-Peláez, R.; Velarde-Alvarado, P.; Barbosa, R.; Chan, F. PEAL: Power Efficient and Adaptive Latency Hierarchical Routing Protocol for Cluster-Based WSN. Wirel. Pers. Commun. 2017, 96, 4929–4945. [Google Scholar] [CrossRef]
- Sert, S.A.; Alchihabi, A.; Yazici, A. A Two-Tier Distributed Fuzzy Logic Based Protocol for Efficient Data Aggregation in Multihop Wireless Sensor Networks. IEEE Trans. Fuzzy Syst. 2018, 26, 3615–3629. [Google Scholar] [CrossRef]
- Lee, J.-S.; Teng, C.-L. An Enhanced Hierarchical Clustering Approach for Mobile Sensor Networks Using Fuzzy Inference Systems. IEEE Internet Things J. 2017, 4, 1095–1103. [Google Scholar] [CrossRef]
- ElAlami, H.; Najid, A. ECH: An Enhanced Clustering Hierarchy Approach to Maximize Lifetime of Wireless Sensor Networks. IEEE Access 2019, 7, 107142–107153. [Google Scholar] [CrossRef]
- ElAlami, H.; Najid, A. Energy-efficient fuzzy logic cluster head selection in wireless sensor networks. In Proceedings of the 2016 International Conference on Information Technology for Organizations Development (IT4OD), Fez, Morocco, 30 March–1 April 2016; pp. 1–7. [Google Scholar]
- Lee, J.-S.; Cheng, W.-L. Fuzzy-Logic-Based Clustering Approach for Wireless Sensor Networks using Energy Predication. IEEE Sens. J. 2012, 12, 2891–2897. [Google Scholar] [CrossRef]
- Su, S.; Zhao, S. An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustain. Comput. Inform. Syst. 2018, 18, 127–134. [Google Scholar] [CrossRef]
- Bruscato, L.T.; Heimfarth, T.; DeFreitas, E.P. Enhancing Time Synchronization Support in Wireless Sensor Networks. Sensors 2017, 17, 2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Yuan, Y.; Bi, Y. A Design of a Time Synchronization Protocol Based on Dynamic Route and Forwarding Certification. Sensors 2020, 20, 5061. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, P.; Zhou, M.; Li, D.; Wang, J. Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks. Sensors 2017, 17, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Short Biography of Authors
| Pankaj Kumar Mishra received his M.E. degree in Computer Science & Engineearing from Panjab University, Chandigarh and B.Tech. in Computer Science & Engineering from P.U., Jaunpur, Uttar Pradesh. He is currently an assistant professor at G.B.P.U.A.&T., Pantnagar, Uttrakhand and Ph.D. student in the Department of Computer Science and Engineering at G.B.P.E.C., Pauri, Uttarakhand. His major research fields are Wireless Networks, Computer Organization, and Cloud Computing. |
| Shashi Kant Verma received the B.E. from G.B.P.E.C, and M.E. from MNNIT Allahabad in 1999 and 2002 respectively, and the Ph.D. degree in 2014. He is now an assistant professor in Department of Computer Science at G.B.P.I.E.T. Ghurdauri. His current research interests are Embedded Systems, WSN, and Signal Processing. |
Residual Energy | Count | Chance 1 |
---|---|---|
Low | Low | Verylow |
Medium | Low | Low |
High | Low | Medium |
Low | Medium | Low |
Medium | Medium | Medium |
High | Medium | Medium |
Low | High | Medium |
Medium | High | High |
High | High | Veryhigh |
Residual Energy | MCH | Chance 2 |
---|---|---|
Low | Far | Very small (VS) |
Medium | Far | Small (S) |
High | Far | Rather small (RS) |
Low | Medium | Mediumsmall (MS) |
Medium | Medium | Medium (M) |
High | Medium | Mediumlarge (ML) |
Low | Close | Ratherlarge (RL) |
Medium | Close | Large (L) |
High | Close | Verylarge (VL) |
Algorithm | TND | HND | E_800 | AVG_PR |
---|---|---|---|---|
LEACH | 433 | 629 | 1.01 | 0.0612 |
EAUCF | 591 | 639 | 1.26 | 0.0609 |
FLECH | 611 | 665 | 2.21 | 0.0597 |
DUCF | 671 | 737 | 4.28 | 0.0571 |
EEFUC | 689 | 791 | 5.21 | 0.0553 |
FFMCP | 926 | 985 | 9.98 | 0.0500 |
Algorithm | TND | HND | E_800 | AVG_PR |
---|---|---|---|---|
LEACH | 445 | 761 | 1.12 | 0.0611 |
EAUCF | 651 | 811 | 1.81 | 0.0602 |
FLECH | 665 | 825 | 2.44 | 0.0594 |
DUCF | 711 | 854 | 5.15 | 0.0560 |
EEFUC | 732 | 887 | 6.65 | 0.0559 |
FFMCP | 1084 | 1103 | 13.38 | 0.0457 |
Algorithm | TND | HND | E_800 | AVG_PR |
---|---|---|---|---|
LEACH | 141 | 472 | 9.12 | 0.0612 |
EAUCF | 225 | 522 | 10.11 | 0.0582 |
FLECH | 234 | 537 | 11.06 | 0.0532 |
DUCF | 244 | 546 | 12.8 | 0.0511 |
EEFUC | 245 | 551 | 13.54 | 0.0501 |
FFMCP | 295 | 611 | 18.54 | 0.0481 |
#Parameters | #Value |
---|---|
Nodes totality | 100 |
Eelec | 50 nJ/bit |
Efs | 10 pJ/bit/m2 |
Emp | 0.0013 pJ/bit/m4 |
EDA | 5 nJ/bit/message |
Datasize | 4000 bits |
Control message | 200 bits |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, P.K.; Verma, S.K. FFMCP: Feed-Forward Multi-Clustering Protocol Using Fuzzy Logic for Wireless Sensor Networks (WSNs). Energies 2021, 14, 2866. https://doi.org/10.3390/en14102866
Mishra PK, Verma SK. FFMCP: Feed-Forward Multi-Clustering Protocol Using Fuzzy Logic for Wireless Sensor Networks (WSNs). Energies. 2021; 14(10):2866. https://doi.org/10.3390/en14102866
Chicago/Turabian StyleMishra, Pankaj Kumar, and Shashi Kant Verma. 2021. "FFMCP: Feed-Forward Multi-Clustering Protocol Using Fuzzy Logic for Wireless Sensor Networks (WSNs)" Energies 14, no. 10: 2866. https://doi.org/10.3390/en14102866
APA StyleMishra, P. K., & Verma, S. K. (2021). FFMCP: Feed-Forward Multi-Clustering Protocol Using Fuzzy Logic for Wireless Sensor Networks (WSNs). Energies, 14(10), 2866. https://doi.org/10.3390/en14102866