Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society
Abstract
:1. Introduction
- Do synthetic measures of development designed on the basis of a set of diagnostic variables corresponding to sustainable development indicators have the capacity to generate information supporting the decision-making process in the area of enterprise management in terms of ecological, economic, and social goals?
- Are there any positive trends in the achieved level of environmental, economic, and social effects connected with the activities of enterprises that are harmful to the environment in individual voivodeships in Poland in 2005–2019?
2. Literature Review
3. Research Methodology and Data Description
3.1. Data and Variables
- Environmental indicators:
- Dust emission (t/plant; destimulant)
- Sulfur dioxide emission (SO2) (t/plant; destimulant)
- Nitrogen oxides emission (NOx) (t/plant; destimulant)
- Carbon oxide emission (CO) (t/plant; destimulant)
- Carbon dioxide emission (CO2) (t/plant; destimulant)
- Plants equipped with appliances for the reduction of dust pollutants in relation to plants emitting dust pollutants (%; stimulant)
- Plants equipped with appliances for the reduction of gaseous pollutants in relation to plants emitting gaseous pollutants (%; stimulant)
- The level of dust pollutants reduction in the appliances of the plants of significant nuisance to air quality (%; stimulant)
- The level of gaseous pollutants reduction in the appliances of the analyzed plants (%; stimulant)
- Share of renewable energy in the total production of energy (%; stimulant)
- Total electricity consumption in the industry sector and the energy sector per unit of gross value added (GWh/million PLN; destimulant)
- Economic indicators:
- Outlays on fixed assets with new combustion technologies (PLN per capita; stimulant)
- Outlays on fixed assets connected with the reduction of dust pollutants (PLN per capita; stimulant)
- Outlays on fixed assets connected with the reduction of gaseous pollutants (PLN per capita; stimulant)
- Outlays on fixed assets for saving energy (PLN per capita; stimulant)
- Financing fixed assets for environmental protection from domestic credits and loans (PLN per capita; stimulus)
- Financing fixed assets for environmental protection from ecological funds (PLN per capita; stimulus)
- Financing environmental protection from foreign funds (PLN per capita; stimulus)
- Financial inflows from air and climate protection fees (including penalty fees for exceeding the permissible emissions of air pollutants) (PLN per capita; destimulant).
- Deaths of the inhabitants of the voivodeship caused by the respiratory system diseases (pneumonia, bronchitis, emphysema, and asthma) (number of deaths/100,000 inhabitants; destimulant)
- Deaths caused by malignant neoplasms of the respiratory system (cancers of the trachea, bronchi, and lungs) (number of deaths/100,000 inhabitants; destimulant)
- Deaths caused by cardiovascular diseases (deaths/100,000 inhabitants; destimulant)
- Life expectancy for men at the age of 45 (years; stimulant)
- Life expectancy for women at the age of 45 (years; stimulant)
- Life expectancy for men at the age of 15 (years; stimulant)
- Life expectancy for women at the age of 15 (years; stimulant).
3.2. The Method of the Synthetic Indicator of Development and the Econometric Panel Model
- All diagnostic variables used for the analysis were classified into one of the three categories of variables: stimulant, destimulant, or nominant. Nominants measured on a ratio scale should be transformed into stimulants using the following transformation:
- 2.
- Next, the value of each diagnostic variable measured at least on the interval scale was standardized using the following formula:
- 3.
- A reference object (Ow) and an anti-reference object (Oa). They are respectively represented geometrically by the points and with the following coordinates:
- 4.
- The synthetic development measure (mi) for the i-th object was determined according to the relationships in Equations (5) and (6):
- 5.
- The objects were ordered in descending order in relation to the value of the synthetic measure, the voivodeship with the highest level of the synthetic measure value was given rank 1, and the voivodeship with the lowest level of the value was given rank 16.
4. Empirical Results and Discussion
4.1. Analysis of the Synthetic Development Measures for the Environmental, Economic, and Social Dimension
4.2. Estimation Results of Panel Data Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministerstwo Środowiska Departament Ochrony Powietrza. Krajowy Program Ochrony Powietrza do Roku 2020 (z Perspektywą do 2030); Ministerstwo Środowiska Departament Ochrony Powietrza: Warszawa, Poland, 2015.
- Bakst, D.; Tubb, K. A Proactive Environmental Policy Agenda for Congress and the Administration. Backgr. Herit. Found. 2020, 3555, 1–27. [Google Scholar]
- Mishra, P.; Yadav, M. Environmental capabilities, proactive environmental strategy and competitive advantage: A natural-resource-based view of firms operating in India. J. Clean. Prod. 2021, 291, 125249. [Google Scholar] [CrossRef]
- Potrich, L.; Cortimiglia, M.N.; Medeiros, J.F. A systematic literature review on firm-level proactive environmental management. J. Environ. Manag. 2019, 243, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, S.; Yu, Y. Consumer’s intention to purchase green furniture: Do health consciousness and environmental awareness matter? Sci. Total Environ. 2020, 704, 135275. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Zhang, T.; Ji, O.; Lucey, B. Awareness, energy consumption and pro-environmental choices of Chinese households. J. Clean. Prod. 2021, 279, 123734. [Google Scholar] [CrossRef]
- Ko, E.; Hwang, J.K.; Kim, E.Y. Green marketing’ functions in building corporate image in the retail setting. J. Bus. Res. 2013, 66, 1709–1715. [Google Scholar] [CrossRef]
- Herbst, K.C.; Hannah, S.T.; Allan, D. Advertisement Disclaimer Speed and Corporate Social Responsibility: “Costs” to Consumer Comprehension and Effects on Brand Trust and Purchase Intention. J. Bus. Ethics 2013, 117, 297–311. [Google Scholar] [CrossRef]
- Seggie, S.H.; Griffith, D.A. The moderating effects of economic and strategic relationship value in tolerating active and passive opportunism. J. Bus. Res. 2021, 128, 233–244. [Google Scholar] [CrossRef]
- Mazutis, D. Supererogation: Beyond Positive Deviance and Corporate Social Responsibility. J. Bus. Ethics 2014, 119, 517–528. [Google Scholar] [CrossRef]
- Li, X.; Nosheen, S.; Haq, N.U.; Gao, X. Value creation during fourth industrial revolution: Use of intellectual capital by most innovative companies of the world. Technol. Forecast. Soc. Chang. 2021, 163, 120479. [Google Scholar] [CrossRef]
- Mouritsen, J. Driving growth: Economic Value Added versus Intellectual Capital. Manag. Account. Res. 1998, 9, 461–482. [Google Scholar] [CrossRef]
- Seroka-Stolka, O. Ecological awareness and attitudes of managers. J. Ecol. Health 2011, 15, 71–76. [Google Scholar]
- Tomić, T.; Schneider, D.R. Municipal solid waste system analysis through energy consumption and return approach. J. Environ. Manag. 2017, 203, 973–987. [Google Scholar] [CrossRef]
- Ahn, K.; Chu, Z.; Lee, D. Effects of renewable energy use in the energy mix on social welfare. Energy Econ. 2021, 96, 105174. [Google Scholar] [CrossRef]
- Khastar, M.; Aslani, A.; Nejati, M. How does carbon tax affect social welfare and emission reduction in Finland? Energy Rep. 2020, 6, 736–744. [Google Scholar] [CrossRef]
- Sowa, A. Społeczne uwarunkowania stanu zdrowia w Polsce. Zdr. Publiczne Zarządzanie 2011, 2, 28–37. [Google Scholar]
- Nojszewska, E. Społeczno-ekonomiczne czynniki determinujące status zdrowotny społeczeństwa na przykładzie Polski. Ekon. Prawo Ochr. Zdrowia 2016, 1, 59–74. [Google Scholar]
- Tang, W.; Li, H.; Chen, J. Optimizing carbon taxation target and level: Enterprises, consumers, or both? J. Clean. Prod. 2021, 282, 124515. [Google Scholar] [CrossRef]
- Frugoli, P.A.; Almeida, C.M.V.B.; Agostinho, F.; Giannetti, B.F.; Huisingh, D. Can measures of well-being and progress help societies to achieve sustainable development? J. Clean. Prod. 2015, 90, 370–380. [Google Scholar] [CrossRef]
- Tompkins, E.L.; Adger, W.N.; Boyd, E.; Nicholson-Cole, S.; Weatherhead, K.; Arnell, N. Observed adaptation to climate change: UK evidence of transition to a well-adapting society. Glob. Environ. Chang. 2010, 20, 627–635. [Google Scholar] [CrossRef]
- Everard, M.; Kass, G.; Longhurst, J.; Ermgassen, S.; Girardet, H.; Stewart-Evans, J.; Wentworth, J.; Austin, K.; Dwyer, C.; Fish, R.; et al. Reconnecting society with its ecological roots. Environ. Sci. Policy 2021, 116, 8–19. [Google Scholar] [CrossRef]
- Lundgren, T.; Zhou, W. Firm performance and the role of environmental management. J. Environ. Manag. 2017, 203, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Ghanbari, M.; Jamshidinavid, B.; Taherabadi, A. Does board independence moderate the relationship between environmental disclosure quality and performance? Evidence from static and dynamic panel data. Corp. Gov. 2019, 19, 580–610. [Google Scholar] [CrossRef]
- Shao, Y. Does FDI affect carbon intensity? New evidence from dynamic panel analysis. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 27–42. [Google Scholar] [CrossRef]
- Kapuria, C.; Singh, N. Determinants of sustainable FDI: A panel data investigation. Manag. Decis. 2019. Available online: https://www.emerald.com/insight/content/doi/10.1108/MD-01-2019-0064/full/pdf?casa_token=bI5RqtJbw7UAAAAA:hMDmPbfXUTF05bSbWcv6msJ55hZVd2pxGgWB0NikHlBArLSAxEWRJOaFW0cVaLRQWnyyPxwpxZOmLzvhQJPGaRAO4s2ifkoR0WrFg5kO3LCgVagAwLA (accessed on 9 February 2021). [CrossRef]
- Núñez-Velázquez, J.J.; Domínguez-Domínguez, J. A Proposal of a Synthetic Indicator to Measure Poverty Intensity, with an Application to EU-15 Countries. Soc. Study Econ. Inequal. 2007, 81, 1–28. [Google Scholar]
- Laxe, F.G.; Bermúdez, F.M.; Palmero, F.M.; Novo-Corti, I. Sustainability and the Spanish port system. Analysis of the relationship between economic and environmental indicators. Mar. Pollut. Bull. 2016, 113, 232–239. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Marques, R.C.; Pérez, F.; Gómez, T.; Sala-Garrido, R.; Caballero, R. Assessing the sustainability of water companies: A synthetic indicator approach. Ecol. Indic. 2016, 61, 577–587. [Google Scholar] [CrossRef]
- Marti, L.; Puertas, R. Assessment of sustainability using a synthetic index. Environ. Impact Assess. Rev. 2020, 84, 106375. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Y. The impact of environmental management on firm economic performance: The mediating effect of green innovation and the moderating effect of environmental leadership. J. Clean. Prod. 2021, 292, 126057. [Google Scholar] [CrossRef]
- Da Silva, P.C.; de Oliveira Neto, G.C.; Correia, J.M.F.; Tucci, H.N.P. Evaluation of economic, environmental and operational performance of the adoption of cleaner production: Survey in large textile industries. J. Clean. Prod. 2021, 278, 123855. [Google Scholar] [CrossRef]
- Nishitani, K.; Kokubu, K. Can firms enhance economic performance by contributing to sustainable consumption and production? Analyzing the patterns of influence of environmental performance in Japanese manufacturing firms. Sustain. Prod. Consum. 2020, 21, 156–169. [Google Scholar] [CrossRef]
- Farlinno, A.; Bernawati, Y. The company characteristics and environmental performance. Pol. J. Manag. Stud. 2020, 22, 111–126. [Google Scholar]
- Mardijuwono, A.W.; Kurnianto, S.; Basuki, B.; Rahman, V.N.; Sucahyati, D. Managing the firm environmental and financial performance: New insight from government ownership. Pol. J. Manag. Stud. 2020, 21, 256–267. [Google Scholar] [CrossRef]
- Wahyuni, D.; Ratnatunga, J. Carbon strategies and management practices in an uncertain carbonomic environment—Lessons learned from the coal-face. J. Clean. Prod. 2015, 96, 397–406. [Google Scholar] [CrossRef]
- Damert, M.; Paul, A.; Baumgartner, R.J. Exploring the determinants and long-term performance outcomes of corporate carbon strategies. J. Clean. Prod. 2017, 160, 123–138. [Google Scholar] [CrossRef]
- Böttcher, C.F.; Müller, M. Drivers, practices and outcomes of low-carbon operations: Approaches of German automotive suppliers to cutting carbon emissions. Bus. Strategy Environ. 2015, 24, 477–498. [Google Scholar] [CrossRef]
- Boiral, O.; Henri, J.-F.; Talbot, D. Modeling the impacts of corporate commitment on climate change. Bus. Strategy Environ. 2012, 21, 495–516. [Google Scholar] [CrossRef]
- Doda, B.; Gennaioli, C.; Gouldson, A.; Grover, D.; Sullivan, R. Are corporate carbon managements practices reducing corporate carbon emissions? Corp. Soc. Responsib. Environ. Manag. 2016, 23, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.W.; Pan, S.J.; Liu, G.Q.; Zhou, P. Does energy efficiency affect financial performance? Evidence from Chinese energy-intensive firms. J. Clean. Prod. 2017, 151, 53–59. [Google Scholar] [CrossRef]
- Ruggiero, S.; Lehkonen, H. Renewable energy growth and the financial performance of electric utilities: A panel data study. J. Clean. Prod. 2017, 142, 3676–3688. [Google Scholar] [CrossRef] [Green Version]
- Gonenc, H.; Scholtens, B. Environmental and Financial Performance of Fossil Fuel Firms: A Closer Inspection of their Interaction. Ecol. Econ. 2017, 132, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Horváthová, E. The impact of environmental performance on firm performance: Short-term costs and long-term benefits? Ecol. Econ. 2012, 84, 91–97. [Google Scholar] [CrossRef]
- Włodarczyk, A. Economic and environmental performance analysis of Polish energy companies. Glob. J. Environ. Sci. Manag. 2019, 5, 1–11. [Google Scholar]
- Główny Urząd Statystyczny. Available online: Stat.gov.pl (accessed on 9 February 2021).
- Wskaźniki Zrównoważonego Rozwoju Polski. Available online: https://stat.gov.pl/cps/rde/xbcr/gus/oz_wskazniki_zrownowazonego_rozwoju_Polski_us_kat.pdf (accessed on 9 February 2021).
- Raport Greenpeace: Węgiel Zabija. Available online: https://www.greenpeace.org/poland/raporty/2216/raport-greenpeace-wegiel-zabija/ (accessed on 9 February 2021).
- Bank Danych Lokalnych. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat/19/498/3177 (accessed on 9 February 2021).
- Ekonomiczne Aspekty Ochrony Srodowiska. 2020. Available online: File:///C:/Users/Agata/AppData/Local/Temp/ekonomiczne_aspekty_ochrony_srodowiska_2020.pdf (accessed on 9 February 2021).
- Ochrona Środowiska 2006–2020. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 9 February 2021).
- Binderman, Z.; Borkowski, B.; Kozera, R.; Prokopenya, A.N.; Szczesny, W. On Mathematical Modelling of Synthetic Measures. Math. Model. Anal. 2018, 23, 699–711. [Google Scholar]
- Walesiak, M. Porządkowanie liniowe z wykorzystaniem uogólnionej miary odległości GDM2 dla danych porządkowych i programu R*. Pr. Nauk. Uniw. Ekon. Wrocławiu Ekonom. 30 2011, 163, 9–18. [Google Scholar]
- Doornik, J.A.; Hendry, D.F. Econometric Modelling. PcGive™14; Timberlake Consultants Ltd: London, UK, 2013; Volume III. [Google Scholar]
- Martí-Ballester, C.-P. Sustainable energy systems and company performance: Does the implementation of sustainable energy systems improve companies’ financial performance? J. Clean. Prod. 2017, 162, 535–550. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S.R. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equation. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Windmeijer, F. A finite sample correction for the variance of linear two-step GMM estimators. J. Econom. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Mesjasz-Lech, A. Logistics performance of European Union markets: Towards the development of entrepreneurship in the transport and storage sector. Glob. J. Environ. Sci. Manag. 2019, 5, 122–130. [Google Scholar]
- Domański, C.; Pruska, K. Nieklasyczne Metody Statystyczne; PWE: Warszawa, Poland, 2000. [Google Scholar]
- Levin, A.; Lin, C.-F.; Chu, C.-S. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Pesaran, H. A simple unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, A.; Lucchetti, R.J. Gretl User’s Giude. Gnu Regression, Econometrics and Time-series Library. March 2021. Available online: http://ricardo.ecn.wfu.edu/pub/gretl/manual/PDF/gretl-guide-a4.pdf (accessed on 9 February 2021).
- Zużycie Paliw i Nośników Energii w 2019 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-paliw-i-nosnikow-energii-w-2019-roku,6,14.html (accessed on 9 February 2021).
- Basakha, M.; Kamal, S.H.M. Industrial development and social welfare: A case study of Iran. Socio Econ. Plan. Sci. 2019, 68, 100661. [Google Scholar] [CrossRef]
- Zhang, W.; He, L.; Yuan, H. Enterprises’ decisions on adopting low-carbon technology by considering the consumer perception disparity. Technovation 2021, 102238. [Google Scholar] [CrossRef]
- Severo, E.A.; De Guimarães, J.C.F.; Dellarmelin, M.L. Impact of the COVID-19 pandemic on environmental awareness, sustainable consumption and social responsibility: Evidence from generations in Brazil and Portugal. J. Clean. Prod. 2021, 286, 124947. [Google Scholar] [CrossRef]
- He, C.; Yang, L.; Cai, B.; Ruan, Q.; Hong, S.; Wang, Z. Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China. Appl. Energy 2021, 281, 116042. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Xie, Y.; Wang, C.; Xue, J. China’s COVID-19 lockdown challenges the ultralow emission policy. Atmos. Pollut. Res. 2021, 12, 395–403. [Google Scholar] [CrossRef]
- Aktar, M.A.; Alam, M.M.; Al-Amin, A.Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 2021, 26, 770–781. [Google Scholar] [CrossRef]
- Dai, R.; Feng, H.; Hu, J.; Jin, Q.; Li, H.; Wang, R.; Wang, R.; Xu, L.; Zhang, X. The impact of COVID-19 on small and medium-sized enterprises (SMEs): Evidence from two-wave phone surveys in China. China Econ. Rev. 2021, 67, 101607. [Google Scholar] [CrossRef]
- Shafi, M.; Liu, J.; Ren, W. Impact of COVID-19 pandemic on micro, small, and medium-sized Enterprises operating in Pakistan. Res. Glob. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Jiang, P.; Van Fan, Y.; Klemeš, J.J. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Appl. Energy 2021, 285, 116441. [Google Scholar] [CrossRef]
- Prol, J.L.; Sungmin, O. Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States. iScience 2020, 23, 101639. [Google Scholar] [CrossRef]
Variable | Mean | Median | Q1 | Q3 | Me − Q | Me + Q | K/K1 |
---|---|---|---|---|---|---|---|
Dust emission 2005 | 62.88 | 65.19 | 46.13 | 78.71 | 48.90 | 81.48 | 2 |
Dust emission 2013 | 26.58 | 28.04 | 21.67 | 30.36 | 23.70 | 32.38 | 2/0 |
Dust emission 2019 | 13.85 | 13.78 | 10.48 | 16.85 | 10.60 | 16.96 | 4/0 |
SO2 emission 2005 | 462.22 | 327.86 | 151.11 | 455.51 | 175.66 | 480.06 | 4 |
SO2 emission 2013 | 210.98 | 165.78 | 111.24 | 245.46 | 98.67 | 232.89 | 5/2 |
SO2 emission 2019 | 90.19 | 61.87 | 49.94 | 89.92 | 41.88 | 81.86 | 5/0 |
NOx emission 2005 | 192.38 | 159.48 | 90.48 | 244.25 | 82.59 | 236.36 | 4 |
NOx emission 2013 | 158.01 | 152.15 | 77.62 | 203.03 | 89.45 | 214.86 | 3/2 |
NOx emission 2019 | 97.18 | 78.41 | 55.71 | 119.36 | 46.59 | 110.24 | 4/1 |
CO emission 2005 | 170.91 | 126.06 | 65.86 | 256.90 | 30.54 | 221.58 | 4 |
CO emission 2013 | 153.98 | 78.83 | 51.24 | 229.40 | 0 | 167.91 | 6/4 |
CO emission 2019 | 125.2 | 55.56 | 37.13 | 187.18 | 0 | 130.59 | 5/3 |
CO2 emission 2005 | 117,406.3 | 107,725.4 | 46,008.6 | 141,321.0 | 60,068.9 | 155,381.3 | 3 |
CO2 emission 2013 | 111,522.8 | 101,313.7 | 45,424.9 | 137,384.7 | 55,333.7 | 147,293.6 | 2/2 |
CO2 emission 2019 | 100,594.9 | 75,170.5 | 49,257.4 | 126,316.1 | 36,641.1 | 113,699.8 | 4/3 |
Variable | v < V | Z’ | p-Value | T | Z | p-Value |
---|---|---|---|---|---|---|
EI 2013/2005 | 81.25000 | 2.250000 | 0.024449 | 16.00000 | 2.688856 | 0.007170 |
EI 2019/2013 | 68.75000 | 1.250000 | 0.211300 | 40.00000 | 1.447846 | 0.147661 |
EI 2019/2005 | 43.75000 | 0.250000 | 0.802587 | 49.00000 | 0.982467 | 0.325871 |
GI 2013/2005 | 31.25000 | 1.250000 | 0.211300 | 33.00000 | 1.809807 | 0.070327 |
GI 2019/2013 | 25.00000 | 1.750000 | 0.080118 | 16.00000 | 2.688856 | 0.007170 |
GI 2019/2005 | 6.25000 | 3.250000 | 0.001154 | 2.00000 | 3.412779 | 0.000643 |
SI 2013/2005 | 25.00000 | 1.750000 | 0.080118 | 23.00000 | 2.326895 | 0.019971 |
SI 2019/2013 | 50.00000 | −0.25000 | 0.802587 | 67.00000 | 0.051709 | 0.958761 |
SI 2019/2005 | 31.25000 | 1.250000 | 0.211300 | 32.00000 | 1.861516 | 0.062672 |
Voivodship | 2005 | 2013 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
EI | GI | SI | EI | GI | SI | EI | GI | SI | |
Dolnośląskie | 4 | 6 | 14 | 4 | 11 | 11 | 5 | 7 | 12 |
Kujawsko-pomorskie | 3 | 9 | 13 | 7 | 16 | 9 | 7 | 15 | 11 |
Lubelskie | 9 | 15 | 9 | 9 | 10 | 5 | 11 | 5 | 5 |
Lubuskie | 15 | 4 | 8 | 12 | 14 | 14 | 10 | 8 | 15 |
Łódzkie | 16 | 7 | 16 | 16 | 8 | 16 | 16 | 4 | 16 |
Małopolskie | 10 | 3 | 2 | 5 | 5 | 2 | 4 | 9 | 2 |
Mazowieckie | 12 | 2 | 10 | 15 | 7 | 12 | 13 | 1 | 6 |
Opolskie | 13 | 1 | 5 | 11 | 1 | 4 | 14 | 2 | 7 |
Podkarpackie | 2 | 13 | 1 | 2 | 13 | 1 | 2 | 12 | 1 |
Podlaskie | 6 | 8 | 3 | 3 | 9 | 3 | 9 | 10 | 3 |
Pomorskie | 1 | 16 | 4 | 1 | 6 | 6 | 1 | 13 | 4 |
Śląskie | 14 | 5 | 15 | 13 | 2 | 15 | 12 | 3 | 10 |
Świętokrzyskie | 8 | 10 | 7 | 14 | 3 | 8 | 15 | 6 | 9 |
Warmińsko-mazurskie | 7 | 14 | 11 | 10 | 12 | 13 | 8 | 14 | 13 |
Wielkopolskie | 11 | 11 | 6 | 8 | 15 | 7 | 3 | 16 | 8 |
Zachodniopomorskie | 5 | 12 | 12 | 6 | 4 | 10 | 6 | 11 | 14 |
Pair of Indicators | Spearman Coefficient | Pair of Indicators | Spearman Coefficient |
---|---|---|---|
GI—EI 2005 | −0.624 ** | EI—SI 2019 | 0.371 |
GI—EI 2013 | −0.241 | GI—SI 2005 | −0.103 |
GI—EI 2019 | −0.768 ** | GI—SI 2013 | 0.035 |
EI—SI 2005 | 0.276 | GI—SI 2019 | −0.053 |
EI—SI 2013 | 0.659 ** |
Statistics | EI | GI | SI | GVA|lnGVA [(Thousand) 2005 PLN per Capita] | |
---|---|---|---|---|---|
Mean | 0.507753 | 0.257105 | 0.470732 | 6.730628 | |
Median | 0.515857 | 0.246124 | 0.449889 | 6.468714 | |
Std. Dev. | 0.109429 | 0.085192 | 0.184669 | 2.096668 | |
Observations | 240 | 240 | 240 | 240 | |
LLC | −3.80779 [0.0001] | −6.09897 [0.0000] | −1.81111 [0.0351] | −2.50461 [0.0061] | −4.31882 [0.000] |
IPS | −2.10973 [0.0174] | −3.78438 [0.0001] | −1.67813 [0.0467] | 1.77363 [0.9619] | −0.01834 [0.4927] |
Pesaran CIPS | −3.27468 *** | −19.31223 *** | −2.19038 * | 1.88543 | −3.23531 *** |
Coefficient/Test | S1—Basic Specification | S2—Basic Specification | S3—Social and Environmental Effects | S4—Social and Environmental Effects | S5—Social, Environmental, Economic Effects | S6—Social, Environmental, Economic Effects |
---|---|---|---|---|---|---|
ρ1 (SIi,t−1) | 0.345703 [0.2126] | 0.716213 *** [0.0001] | 0.56852 *** [0.0001] | 0.62163 4 *** [0.0001] | 0.247851 [0.1794] | 0.621069 *** [0.0004] |
β0 (EIi,t) | 0.646941 [0.1044] | - | 0.227812 [0.4332] | - | 0.62613 * [0.0766] | - |
β1 (EIi,t−1) | 0.0587319 [0.7775] | 0.301430 *** [0.0001] | 0.23379 [0.2780] | 0.411967 *** [0.0004] | 0.239337 [0.4496] | 0.425755 *** [0.0091] |
γ0 (GIi,t) | 0.0245438 [0.4852] | - | - | - | 0.082309 [0.4215] | - |
γ1 (GIi,t−1) | 0.143207 ** [0.0438] | 0.0676436 ** [0.0414] | - | - | 0.22584 *** [0.0018] | 0.120380 *** [0.0001] |
ϕ0 (lnGVAi,t) | - | - | −0.110389 ** [0.0341] | −0.06627 *** [0.0001] | −0.13347 [0.1933] | −0.06712 *** [0.0004] |
ϕ1 (lnGVA,it−1) | - | - | −0.032594 [0.5229] | - | 0.0062714 [0.9434] | - |
α0 | −0.097 ** [0.0391] | −0.0426982 [0.2186] | 0.105425 ** [0.0498] | 0.090205 ** [0.0346] | 0.07216 [0.3602] | 0.057563 [0.2955] |
α1 (D2013,t) | - | - | −0.049424 *** [0.0001] | −0.050449 *** [0.0001] | −0.05507 *** [0.0001] | −0.05739 *** [0.0001] |
α2 (DE,it−1) | - | - | 0.015502 [0.4218] | 0.011387 [0.4271] | 0.010375 [0.5648] | 0.007147 [0.7015] |
AR(1) | −1.86 [0.0629] | −2.92359 [0.0035] | −3.2875 [0.0010] | −3.07268 [0.0021] | −2.06958 [0.0385] | −3.08849 [0.0020] |
AR(2) | −0.113037 [0.9100] | 0.578743 [0.5628] | 1.82245 [0.0684] | 1.78138 [0.0748] | 1.25041 [0.2111] | 1.8471 [0.0647] |
Sargan test | 12.7513 [1.0000] | 14.6824 [1.0000] | 12.6957 [1.0000] | 13.4983 [1.000] | 8.86812 [1.0000] | 13.428 [1.0000] |
Wald test (joint) | 294.088 [0.0000] | 411.174 [0.0000] | 608.376 [0.0000] | 536.261 [0.0000] | 556.711 [0.0000] | 367.113 [0.0000] |
Dependent Variable | S2—Basic Specification | S4—Social and Environmental Effects | S6—Social, Environmental, Economic Effects |
---|---|---|---|
ρ1 (SIi,t−1) | 0.819406 *** [0.000] | 0.659888 *** [0.000] | 0.629948 *** [0.001] |
β1 (EIi,t−1) | 0.169356 [0.190] | 0.340466 * [0.072] | 0.345664 ** [0.035] |
γ1 (GIi,t−1) | 0.0337076 [0.651] | - | 0.0969681 [0.310] |
ϕ0 (lnGVAi,t) | - | −0.0456059 [0.195] | −0.0300258 [0.266] |
α0 | −0.0123760 [0.860] | 0.0774981 [0.233] | 0.0367818 [0.615] |
α1 (D2013,t) | - | −0.0505751 *** [0.000] | −0.0504264 *** [0.006] |
α2 (DE,it−1) | - | −0.0152285 [0.860] | −0.0155184 [0.799] |
AR(1) | −2.744 [0.006] | −2.800 [0.005] | −2.819 [0.005] |
AR(2) | 0.6029 [0.547] | 1.653 [0.098] | 1.637 [0.102] |
Sargan test | 14.52 [1.000] | 12.83 [1.000] | 12.13 [1.000] |
Wald test (joint) | 68.74 [0.000] | 237.9 [0.000] | 142.8 [0.000] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczyk, A.; Mesjasz-Lech, A. Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society. Energies 2021, 14, 2884. https://doi.org/10.3390/en14102884
Włodarczyk A, Mesjasz-Lech A. Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society. Energies. 2021; 14(10):2884. https://doi.org/10.3390/en14102884
Chicago/Turabian StyleWłodarczyk, Aneta, and Agata Mesjasz-Lech. 2021. "Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society" Energies 14, no. 10: 2884. https://doi.org/10.3390/en14102884
APA StyleWłodarczyk, A., & Mesjasz-Lech, A. (2021). Ecological and Economic Context of Managing Enterprises That Are Particularly Harmful to the Environment and the Well-Being of Society. Energies, 14(10), 2884. https://doi.org/10.3390/en14102884