The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics
Abstract
:1. Introduction
2. Methodology
2.1. Combustion Model
2.2. Heat Transfer Model
2.3. Emission Model
2.3.1. NOx Formation Model
2.3.2. CO Formation Model
2.3.3. Soot Formation Model
2.3.4. Fuel Model
2.4. Modeling Diesel Engine AVL 5402
2.5. Experimental Setup
2.5.1. Power Measuring Equipment
2.5.2. Fuel Balance AVL733S
2.6. Simulation and Experimental Testing Condition
3. Results and Discussion
3.1. Model Validation
3.2. Combustion Characteristics
3.3. Engine Performance
3.4. Exhaust Emission
3.4.1. CO Emission
3.4.2. HC Emission
3.4.3. NOx Emission
3.4.4. Smoke Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belgiorno, G.; Boscolo, A.; Dileo, G.; Numidi, F.; Pesce, F.C.; Vassallo, A.; Ianniello, R.; Beatrice, C.; Di Blasio, G. Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency. SAE Int. J. Adv. Curr. Pr. Mobil. 2020, 3, 672–684. [Google Scholar] [CrossRef]
- Di Blasio, G.; Vassallo, A.; Pesce, F.C.; Beatrice, C.; Belgiorno, G.; Avolio, G. The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine. SAE Int. J. Engines 2019, 12, 129–144. [Google Scholar] [CrossRef]
- Graboski, M.S.; McCormick, R.L. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energy Combust. Sci. 1998, 24, 125–164. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Pham, M.; Zhao, D.; Deng, Y.; Le Hieu, D.; Zuo, W.; Zhuad, H.; Liuad, T.; Pengad, Q.; Zhangad, Z. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev. 2017, 80 (Suppl. C), 620–647. [Google Scholar]
- Saravanan, A.; Murugan, M.; Reddy, S.M.; Parida, S. Performance and emission characteristics of variable compression ratio CI engine fueled with dual biodiesel blends of Rapeseed and Mahua. Fuel 2019, 236, 116751. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Syazmi, Z.A.H.S.; Mofijur, M.; Abas, A.E.P.; Bilad, M.R.; Ong, H.C.; Silitonga, A.S. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Shah, A.N.; Yunshan, G.; Chao, H. Combustion and Emission Response by a Heavy duty Diesel Engine Fuelled with Biodiesel: An Experimental Study. MUET. Available online: https://journal.uet.edu.pk/ojs_old/index.php/pjeas/article/view/243 (accessed on 20 May 2021).
- Wu, F.; Wang, J.; Chen, W.; Shuai, S. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels. Atmos. Environ. 2009, 43, 1481–1485. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, L.; Babu, M.; Arora, P.; Singh, V.; Kumar, N.; Varyani, T. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 2009, 88, 1698–1707. [Google Scholar] [CrossRef]
- Tesfa, B.; Mishra, R.; Gu, F.; Ball, A. Combustion characteristics of CI engine running with biodiesel blends. Renew. Energy Power Qual. J. 2011, 747–754. [Google Scholar] [CrossRef]
- Tong, Y.D. Rice intensive cropping and balanced cropping in the Mekong Delta, Vietnam—Economic and ecological considerations. Ecol. Econ. 2017, 132, 205–212. [Google Scholar] [CrossRef]
- Ching-Velasquez, J.; Fernandez-Lafuente, R.; Rodrigues, R.C.; Plata, V.; Rosales-Quintero, A.; Torrestiana-Sanchez, B.; Tacias-Pascacio, V.G. Production and characterization of biodies el from oil of fi sh waste by enzymati c catalysis. Renew. Energy 2020, 153, 1346–1354. [Google Scholar] [CrossRef]
- Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-wealth: Biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 2019, 48, 4791–4822. [Google Scholar] [CrossRef] [PubMed]
- Paone, E.; Fazzino, F.; Pizzone, D.; Scurria, A.; Pagliaro, M.; Ciriminna, R.; Calabrò, P. Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene. Sustainability 2021, 13, 2428. [Google Scholar] [CrossRef]
- Buyukkaya, E. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2010, 89, 3099–3105. [Google Scholar] [CrossRef]
- Krahl, J.; Munack, A.; Schröder, O.; Stein, H.; Bunger, J. Influence of biodiesel and different designed diesel fuels on the exhaust gas emissions and health effects. SAE Pap. 2003, 2003-01-3199. [Google Scholar] [CrossRef]
- Lin, B.-F.; Huang, J.-H.; Huang, D.-Y. Experimental study of the effects of vegetable oil methyl ester on DI diesel engine performance characteristics and pollutant emissions. Fuel 2009, 88, 1779–1785. [Google Scholar] [CrossRef]
- Users Guide-AVL Boost Version 2011.1. Available online: https://www.avl.com/boost (accessed on 20 May 2021).
- Theory-AVL Boost Version 2011.1. Available online: https://www.avl.com/boost (accessed on 20 May 2021).
- Khoa, N.X.; Lim, O.T. Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine. Energies 2020, 13, 1330. [Google Scholar] [CrossRef] [Green Version]
- Khoa, N.X.; Lim, O.T. Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine. Appl. Energy 2020, 278, 115699. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Minh-Hieu, P.; Yuanwang, D.; Tuannghia, N.; Vinh-Nguyen, D.; Duc-Hieu, L.; Wei, Z.; Qingguo, P.; Zhiqing, Z. Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends. Energy 2018, 149, 979–989. [Google Scholar]
- Muralidharan, K.; Vasudevan, D. Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Appl. Energy 2011, 88, 3959–3968. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Vu, K.T.; Tran, T.; Thu, H.; Le Anh, T. Effects of Injection Timing on Performance and Emissions of a Common-Rail Diesel Engine Fuelled with Waste Cooking Oil Blend. In Proceedings of the 5th AUN/SEED-Net Regional Conference on New/Renewable Energy, Hanoi, Vietnam, 26 September 2012; pp. 164–169. [Google Scholar]
- Ren, Y.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K.; Liu, B.; Wang, X. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel 2008, 87, 2691–2697. [Google Scholar] [CrossRef]
- Qi, D.; Geng, L.; Chen, H.; Bian, Y.; Liu, J.; Ren, X. Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renew. Energy 2009, 34, 2706–2713. [Google Scholar] [CrossRef]
- Han, D.E.J.; Deng, Y.; Zuo, W.; Qian, C.; Wu, G.; Peng, Q.; Zhang, Z. Performance enhancement of a baffle-cut heat exchanger of exhaust gas recirculation. Appl. Therm. Eng. 2018, 134, 86–94. [Google Scholar]
- Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Rahman, S.M.A.; Shahir, S.A. The effect of additives on properties, performance, and emission of biodiesel fuelled compression ignition engine. Energy Convers. Manag. 2014, 88, 348–364. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Samaras, Z. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 2010, 89, 3442–3449. [Google Scholar] [CrossRef]
- Zhang, Z.E.J.; Deng, Y.; Pham, M.; Zuo, W.; Peng, Q.; Yin, Z. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Convers. Manag. 2018, 159, 244–253. [Google Scholar] [CrossRef]
- Gnanasekaran, S.; Saravanan, N.; Ilangkumaran, M. Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel. Energy 2016, 116, 1218–1229. [Google Scholar] [CrossRef]
- Bhaskar, K.; Nagarajan, G.; Sampath, S. Optimization of FOME (fish oil methyl esters) blend and EGR (exhaust gas recirculation) for simultaneous control of NOx and particulate matter emissions in diesel engines. Energy 2013, 62, 224–234. [Google Scholar] [CrossRef]
- Godiganur, S.; Murthy, C.S.; Reddy, R.P. Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters. Renew. Energy 2010, 35, 355–359. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Pham, P.M.; Tuan, L.A. Spray, combustion, performance and emission characteristics of a common rail diesel engine fueled by fish-oil biodiesel blends. Fuel 2020, 269, 117108. [Google Scholar] [CrossRef]
Rate | Stoichio Metry | |
---|---|---|
r1 | N2+ O = NO + N | r1 = k1.CN2.CO |
r2 | O2+ N = NO + O | r2 = k2.CO2.CN |
r3 | N + OH = NO + H | r3 = k3.COH.CN |
r4 | N2O + O = NO + NO | r4 = k4.CN2O.CO |
r5 | O2+ N2= N2O + O | r5 = k5.CO2.CN2 |
r6 | OH + N2= N2O + H | r6 = k6.COH.CN2 |
Reactions Rates | Stoichio Metry | Rate |
---|---|---|
r7 | CO + OH = CO2+ H | |
r8 | CO2+ O = CO + O2 |
Property | Unit | Method | B0 | B10 | B20 | B30 | B40 | B50 | B100 |
---|---|---|---|---|---|---|---|---|---|
Heating value | MJ/kg | ASTM D240 | 42.76 | 42.26 | 41.84 | 41.29 | 41.03 | 41.29 | 37.58 |
Cetane value | ASTM D613 | 49 | 50 | 51 | 52 | 53 | 54 | 56 | |
Density at 15 °C | kg/m3 | ASTM D1298 | 838 | 840 | 845 | 848 | 852 | 857 | 866 |
Kinematic viscosity at 40 °C | ASTM D445 | 3.22 | 3.31 | 3.47 | 3.56 | 3.67 | 3.76 | 4.40 | |
Flash point | cSt | ASTM D93 | 67 | 71 | 75 | 80 | 84 | 89 | 142 |
Sulfur content | ppm | ASTM D5453 | 428 | 430 | 433 | 436 | 439 | 441 | 26 |
Water content | ppm | ASTM D6304 | 62 | 84 | 96 | 110 | 122 | 136 | 215 |
Chemical Compound | Ratio (% Volume) |
---|---|
C15H30O2 | 0.0107 |
C17H34O2 | 0.146 |
C19H38O2 | 0.0655 |
C19H36O2 | 0.399 |
C19H34O2 | 0.376 |
C19H32O2 | 0.0028 |
No | Parameter | Value |
---|---|---|
1 | Cylinder diameter (D) | 85 mm |
2 | Stroke (S) | 90 mm |
3 | Displacement volume | 510.7 cm3 |
4 | Compression ratio | 17:1 |
5 | Rate power/speed | 9/3200 kW/rpm |
No | Parameter | Parameter | Unit |
---|---|---|---|
1 | Type of engine | 4 Stroke | |
2 | Environmental pressure | 1 | at |
3 | Environment temperature | 25 | °C |
4 | Theoretical A/F ratio | 14.7 | |
5 | Fire model | AVL MCC | |
6 | Number of injuction holes | 5 | |
7 | Injuction hole diameter | 0.17 | mm |
8 | Injection pressure | 600 | bar |
9 | Early Injector angle at 1400 (rpm) | 14 | degrees |
10 | Early Injector angle at 2200 (rpm) | 18 | degrees |
Speed (rpm) | Fuel Mass Injection, gct (g) | ||
---|---|---|---|
75% Load | 50% Load | 25% Load | |
1400 | 0.0173 | 0.0115 | 0.00675 |
2200 | 0.0175 | 0.01225 | 0.00715 |
Speed (rpm) | Consumption Fuel (g/cycle) | B0 | B10 | B20 | B30 | B40 | B50 |
---|---|---|---|---|---|---|---|
Injection Duration (ms) | |||||||
1400 | 0.00675 | 361 | 366 | 370 | 378 | 383 | 388 |
0.0115 | 465 | 481 | 484 | 488 | 494 | 501 | |
0.0173 | 585 | 612 | 641 | 644 | 648 | 653 | |
2200 | 0.00715 | 372 | 376 | 378 | 387 | 391 | 394 |
0.01225 | 480 | 497 | 503 | 508 | 513 | 519 | |
0.0175 | 581 | 607 | 636 | 639 | 643 | 648 |
Combustion Parameters | Unit | B0 | B10 | B20 | B30 | B40 | B50 |
---|---|---|---|---|---|---|---|
Cylinder pressure max | MPa | 75.46 | 75.25 | 74.91 | 74.52 | 74.31 | 74.08 |
Pressure angle max after TDC | °TK | 3.29 | 3.02 | 2.80 | 2.67 | 2.23 | 2.01 |
Speed of increasing pressure max | MPa/°TK | 5.68 | 5.67 | 5.60 | 5.58 | 5.53 | 5.48 |
Combustion starting angle before TDC | °TK | 5.20 | 5.28 | 5.35 | 5.48 | 5.50 | 5.58 |
The rate of heat release max | kJ/°TK | 37.5 | 36.7 | 36.0 | 35.3 | 34.8 | 34.4 |
Heat release angle max before TDC | °TK | 0.5 | 0.6 | 0.7 | 0.85 | 1.0 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.; Khoa, N.X.; Tuan, L.A. The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics. Energies 2021, 14, 2986. https://doi.org/10.3390/en14112986
Nguyen TN, Khoa NX, Tuan LA. The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics. Energies. 2021; 14(11):2986. https://doi.org/10.3390/en14112986
Chicago/Turabian StyleNguyen, Tuan Nghia, Nguyen Xuan Khoa, and Le Anh Tuan. 2021. "The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics" Energies 14, no. 11: 2986. https://doi.org/10.3390/en14112986
APA StyleNguyen, T. N., Khoa, N. X., & Tuan, L. A. (2021). The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics. Energies, 14(11), 2986. https://doi.org/10.3390/en14112986