Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Inoculum
2.2. Experimental Setup
2.3. Analyses
3. Results and Discussion
3.1. An Impact of OLR and HRT on VFAs Synthesis
3.2. Impact of OLR and HRT on VFAs Composition
3.3. Metagenomic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MSW | municipal solid waste |
FW | food waste |
KW | kitchen waste |
DF | dark fermentation process |
DS | digested sludge |
VFAs | volatile fatty acids (g/L) |
OLR | organic loading rate (gVS/(L × d)) |
HRT | hydraulic retention time (d) |
TS | total solids (gTS/L), |
TVS/VSS/VS | total volatile solids/volatile suspended solids/volatile solids (gTVS/L or gVSS/L or gVS/L) |
C | total carbon content (% w/w) |
N | total nitrogen content (% w/w) |
References
- Han, W.; Yan, Y.; Gu, J.; Shi, Y.; Tang, J.; Li, Y. Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. Int. J. Hydrogen Energy 2016, 41, 22619–22625. [Google Scholar] [CrossRef] [Green Version]
- Monier, V.; Shailendra, M.; Escalon, V.; O’Connor, C.; Gibon, T.; Anderson, G.; Hortense, M.; Reisinger, H. Preparatory Study on Food Waste across EU 27. European Commission (DG ENV) Directorate C-Industry. Final Report. BIO Intelligence Service: Paris, France, 2010; Volume 33. [Google Scholar]
- Capson-Tojo, G.; Rouez, M.; Crest, M.; Steyer, J.P.; Delgenès, J.P.; Escudié, R. Food waste valorization via anaerobic processes: A review. Rev. Environ. Sci. Biotechnol. 2016, 15, 499–547. [Google Scholar] [CrossRef]
- Shen, F.; Yuan, H.; Pang, Y.; Chen, S.; Zhu, B.; Zou, D.; Liu, Y.; Ma, J.; Yu, L.; Li, X. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 2013, 144, 80–85. [Google Scholar] [CrossRef]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Bench, M.L.; Woodard, R.; Harder, M.K.; Stantzos, N. Waste minimisation: Home digestion trials of biodegradable waste. Resour. Conserv. Recycl. 2005, 45, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Yan, B.; Wong, J.W.C.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef]
- Fei, Q.; Chang, H.N.; Shang, L.; Choi, J.; Kim, N.J.; Kang, J.W. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour. Technol. 2011, 102, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Meng, H.; Nie, Z.; Zhang, M. Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresour. Technol. 2013, 128, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, J.; Yan, Y.; Feng, L. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl. Energy 2013, 102, 1197–1204. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Kim, H.W.; Kim, M.S.; Shin, H.S. Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour. Technol. 2011, 102, 8501–8506. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.M.; Zeng, G.M.; Zhou, Y. Effective hydrogen production using waste sludge and its filtrate. Energy 2010, 35, 3557–3562. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int. J. Hydrogen Energy 2017, 42, 4804–4823. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation (review). Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Temudo, M.F.; Muyzer, G.; Kleerebezem, R.; Van Loosdrecht, M.C.M. Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 2008, 80, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Cappai, G.; De Gioannis, G.; Friargiu, M.; Massi, E.; Muntoni, A.; Polettini, A.; Pomi, R.; Spiga, D. An experimental study on fermentative H2 production from food waste as affected by pH. Waste Manag. 2014, 34, 1510–1519. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Liberti, F.; Pistolesi, V.; Mouftahi, M.; Hidouri, N.; Bartocci, P.; Massoli, S.; Zampilli, M.; Fantozzi, F. An incubation system to enhance biogas and methane production: A case study of an existing biogas plant in Umbria, Italy. Processes 2019, 7, 925. [Google Scholar] [CrossRef] [Green Version]
- Strazzera, G.; Battista, F.; Garcia, N.H.; Frison, N.; Bolzonella, D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018, 226, 278–288. [Google Scholar] [CrossRef]
- Lim, S.J.; Kim, B.J.; Jeong, C.M.; Choi, J.; Ahn, Y.H.; Chang, H.N. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour. Technol. 2008, 99, 7866–7874. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Yu, H.Q. Effect of HRT on mesophilic acidogenesis of dairy wastewater. J. Environ. Eng. 2000, 126, 1145–1149. [Google Scholar] [CrossRef] [Green Version]
- Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 2014, 105, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Scoma, A.; Bertin, L.; Fava, F. Effect of hydraulic retention time on biohydrogen and volatile fatty acids production during acidogenic digestion of dephenolized olive mill wastewaters. Biomass Bioenergy 2013, 48, 51–58. [Google Scholar] [CrossRef]
- Paudel, S.; Kang, Y.; Yoo, Y.S.; Seo, G.T. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Manag. 2017, 61, 484–493. [Google Scholar] [CrossRef]
- Li, Q.; Yuwen, C.; Cheng, X.; Yang, X.; Chen, R.; Wang, X.C. Responses of microbial capacity and community on the performance of mesophilic co-digestion of food waste and waste activated sludge in a high-frequency feeding CSTR. Bioresour. Technol. 2018, 260, 85–94. [Google Scholar] [CrossRef]
- Romero Aguilar, M.A.; Fdez-Güelfo, L.A.; Álvarez-Gallego, C.J.; Romero García, L.I. Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW. Chem. Eng. J. 2013, 219, 443–449. [Google Scholar] [CrossRef]
- Hong, C.; Haiyun, W. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology. Bioresour. Technol. 2010, 101, 5487–5493. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Da Ros, C.; Pavan, P.; Bolzonella, D. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour. Technol. 2017, 223, 59–64. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Grzelak, J.; Krzystek, L. Changes in the morphological composition of municipal solid waste in the city of Łódź in 1995–2011, with particular emphasis on the organic fraction. Inżynieria I. Apar. Chem. 2012, 51, 128–130. (In Polish) [Google Scholar]
- Slezak, R.; Grzelak, J.; Krzystek, L.; Ledakowicz, S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. Environ. Technol. 2020, 1–10. (In press) [Google Scholar] [CrossRef]
- Slezak, R.; Grzelak, J.; Krzystek, L.; Ledakowicz, S. The effect of initial organic load of the kitchen waste on the production of VFA and H 2 in dark fermentation. Waste Manag. 2017, 68, 610–617. [Google Scholar] [CrossRef]
- Grzelak, J.; Ślęzak, R.; Krzystek, L.; Ledakowicz, S. Effect of pH on the production of volatile fatty acids in dark fermentation process of organic waste. Ecol. Chem. Eng. S 2018, 25, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ngo, H.H.; Guo, W.; Liu, Y.; Nghiem, L.D.; Chang, S.W.; Nguyen, D.D.; Zhang, S.; Luo, G.; Jia, H. Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor. Bioresour. Technol. 2019, 271, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Gomez Almendros, M.; Rousset, R.; Boivineau, S.; Bouillon, P.A. Enzymatic hydrolysis at high dry matter content: The influence of the substrates’ physical properties and of loading strategies on mixing and energetic consumption. Bioresour. Technol. 2018, 250, 191–196. [Google Scholar] [CrossRef]
- Dinsdale, R.M.; Premier, G.C.; Hawkes, F.R.; Hawkes, D.L. Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresour. Technol. 2000, 72, 159–168. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; Visvanathan, C.; Abeynayaka, A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 2011, 102, 5353–5360. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, S.; Hallquist, J.; Werker, A.; Welander, T. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem. Eng. J. 2008, 40, 492–499. [Google Scholar] [CrossRef]
- Leite, J.A.C.; Fernandes, B.S.; Pozzi, E.; Barboza, M.; Zaiat, M. Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. Int. J. Hydrogen Energy 2008, 33, 579–586. [Google Scholar] [CrossRef]
- Lu, Y.; Slater, F.R.; Mohd-Zaki, Z.; Pratt, S.; Batstone, D.J. Impact of operating history on mixed culture fermentation microbial ecology and product mixture. Water Sci. Technol. 2011, 64, 760–765. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, X.; Fu, B.; Chen, J.; Yu, H.Q. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 2012, 46, 799–807. [Google Scholar] [CrossRef]
- Wu, H.; Yang, D.; Zhou, Q.; Song, Z. The effect of pH on anaerobic fermentation of primary sludge at room temperature. J. Hazard. Mater. 2009, 172, 196–201. [Google Scholar] [CrossRef]
- Sundberg, C.; Al-Soud, W.A.; Larsson, M.; Alm, E.; Yekta, S.S.; Svensson, B.H.; Sørensen, S.J.; Karlsson, A. 454 Pyrosequencing Analyses of Bacterial and Archaeal Richness in 21 Full-Scale Biogas Digesters. FEMS Microbiol. Ecol. 2013, 85, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Goux, X.; Calusinska, M.; Lemaigre, S.; Marynowska, M.; Klocke, M.; Udelhoven, T.; Benizri, E.; Delfosse, P. Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol. Biofuels 2015, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gaby, J.C.; Zamanzadeh, M.; Horn, S.J. The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnol. Biofuels 2017, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Magdalena, J.A.; Greses, S.; González-Fernández, C. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hatamoto, M.; Kaneshige, M.; Nakamura, A.; Yamaguchi, T. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 2014, 64, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lv, C.; Tong, J.; Liu, J.; Liu, J.; Yu, D.; Wang, Y.; Chen, M.; Wei, Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016, 200, 253–261. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 2005, 55, 2257–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, A.; Akasaka, H.; Suzuki, D.; Ueki, K. Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 2006, 56, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Stolze, Y.; Zakrzewski, M.; Maus, I.; Eikmeyer, F.; Jaenicke, S.; Rottmann, N.; Siebner, C.; Pühler, A.; Schlüter, A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels 2015, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cabrol, L.; Marone, A.; Tapia-Venegas, E.; Steyer, J.P.; Ruiz-Filippi, G.; Trably, E. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 2017, 41, 158–181. [Google Scholar] [CrossRef]
- Yun, J.; Cho, K.S. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater. J. Appl. Microbiol. 2016, 121, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Palomo-Briones, R.; Razo-Flores, E.; Bernet, N.; Trably, E. Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Appl. Energy 2017, 198, 77–87. [Google Scholar] [CrossRef]
- Moreno-Andrade, I.; Carrillo-Reyes, J.; Santiago, S.G.; Bujanos-Adame, M.C. Biohydrogen from food waste in a discontinuous process: Effect of HRT and microbial community analysis. Int. J. Hydrogen Energy 2015, 40, 17246–17252. [Google Scholar] [CrossRef]
- Shida, G.M.; Sader, L.T.; Cavalcante De Amorim, E.L.; Sakamoto, I.K.; Maintinguer, S.I.; Saavedra, N.K.; Amâncio Varesche, M.B.; Silva, E.L. Performance and composition of bacterial communities in anaerobic fluidized bed reactors for hydrogen production: Effects of organic loading rate and alkalinity. Int. J. Hydrogen Energy 2012, 37, 16925–16934. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Chiranjeevi, P.; Chandrasekhar, K.; Babu, P.S.; Sarkar, O. Acidogenic Biohydrogen Production From Wastewater. In Biohydrogen; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 279–320. ISBN 9780444642035. [Google Scholar]
- Rivière, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 2009, 3, 700–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Luo, F.; Zhang, D.; Dai, L.; Chen, Y.; Dong, B. Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
No. | Substrate & Inoculum | OLR | HRT | VFA | Reference |
---|---|---|---|---|---|
1 | Domestic household and brown water | 17.7–106.0 gVS/(L × d) | 8–48 h | 8.5–9.2 g/L | [24] |
2 | FW and waste activated sludge | 3–22.1 gVS/(L × d) | - | 0.56–5.5 gCOD/L | [25] |
3 | Organic fraction of municipal solid waste | - | 1.5–15 d | 0.15–0.74 g/L | [26] |
4 | FW and waste activated sludge | 1.6–4.5 kg/(m3 × d) | - | 0.5–4 g/L | [22] |
5 | FW and DS | 5–13 g/(L × d) | 4–12 d | 0.5–3.0 g/L | [20] |
6 | Dephenolized olive mill wastewater and acidogenic inoculum | 5.5–38.8 g/(L × d) | 1–7 d | 0.5–10.5 gCOD/L | [23] |
7 | FW and dewatered excess sludge | 4–12 gVSS/(L × d) | 4–12 d | 3.9–29 g/L | [27] |
8 | Maize silage and cow manure | 11–35 kgTVS/(m3 × d) | 2–6 d | 6.7–14.7 gCOD/L | [28] |
9 | Simulated FW (4 compounds) and anaerobic DS | 5–16 gTS/(L × d) | - | 4–47.8 g/L | [29] |
Parameter | DS | KW |
---|---|---|
pH (-) | 7.76 ± 0.25 | 4.48 ± 0.12 |
TS (gTS/L) | 31.31 ± 0.49 | 128.92 ± 2.33 |
VS (gVS/L) | 19.67 ± 0.35 | 115.91 ± 2.84 |
VS/TS (-) | 0.63 ± 0.01 | 0.90 ± 0.01 |
C (% w/w) | 32.56 ± 0.89 | 48.69 ± 1.13 |
N (% w/w) | 4.21 ± 0.12 | 2.18 ± 0.04 |
C/N (-) | 7.73 ± 0.21 | 23.33 ± 0.37 |
Process No | OLR (gVS/(L × d)) | HRT (d) | Process Duration (d) |
---|---|---|---|
1 | 5 | 10 | 30 |
2 | 2.5 | 10 | 30 |
3 | 5 | 5 | 15 |
4 | 2.5 | 5 | 15 |
Type of Analysis | Instrument Used | Method Used |
---|---|---|
The separation of liquid and solid fractions | Centrifuge, model MPW-250 (MPW Med-Instruments, Poland) | 13,000 rpm for 15 min |
C and N content of the solid fraction | Elemental analyzer, model NA 2500 (CE Instruments, USA) | PN-ISO 13878:2002 |
TS and VS in the solid fraction | Laboratory dryer, model SLN 115 Simple (POL-EKO-APARATURA, Poland) Laboratory muffle furnace, model FCF22S (Czylok, Poland) | PN-EN 12880:2004, PN-EN 12879:2004 |
The concentration and the composition of VFAs in the liquid fraction | Gas chromatograph, model CP3800 (VARIAN, USA) | [32] |
DNA analysis of the liquid fraction | DNA sequencer, model MiSeq (Illumina, USA) | [32] |
Domain | Phylum | Class | Order | Family | Genus | Start | Steady-State |
---|---|---|---|---|---|---|---|
Archaea | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanosphaera | 0.0 | 7.2 |
Methanomicrobia | Methanosarcinales | Methanosarcinaeae | Mehanosarcina | 0.0 | 1.2 | ||
Methanosarcinales | Methanosaetaceae | Methanosaeta | 5.8 | 0.3 | |||
Bacteria | Actinobacteria | Acidimicrobia | Acidimicrobiales | Microthrixaceae | Candidatus Microthrix | 2.1 | 0.1 |
Bacteroidetes | Bacteroidia | Bacteroidales | - | - | 13.5 | 0.7 | |
Bacteroidaceae | Bacteroides | 0.3 | 15.8 | ||||
Porphyromonadaceae | - | 0.4 | 8.3 | ||||
Prevotellaceae | Prevotella | 0.0 | 3.4 | ||||
Chloroflexi | Anaerolineae | Anaerolineales | Anaerolinaceae | T78 | 2.9 | 1.2 | |
Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus | 0.1 | 13.8 | |
Lactobacillaceae | Lactobacillus | 0.8 | 0.1 | ||||
Streptococcaceae | Streptococcus | 0.0 | 2.0 | ||||
Clostridia | Clostridiales | - | - | 0.4 | 1.5 | ||
Clostridiaceae | - | 1.0 | 2.5 | ||||
Lachnospiraceae | Blautia | 0.0 | 1.9 | ||||
Caprococcus | 0.1 | 5.4 | |||||
Lachnospira | 0.0 | 1.1 | |||||
Ruminococcaceae | - | 0.4 | 2.9 | ||||
Ruminococcus | 0.0 | 2.7 | |||||
Veillonellaceae | Megamonas | 0.0 | 4.3 | ||||
Proteobacteria | Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | - | 0.7 | 3.0 | |
Deltaproteobacteria | Syntrophobacterales | Syntrophaceae | Syntrophus | 2.1 | 0.0 | ||
Spirochaetes | Spirochaetes | Spirochaetales | Spirochaetaceae | Treponema | 10.1 | 1.3 | |
Sphaerochaeta | 0.0 | 1.1 | |||||
Thermotogae | Thermotogae | Thermotogales | Thermotogaceae | Fervidobacterium | 2.5 | 0.2 | |
WS6 | SC72 | A-2AF | - | - | 2.0 | 0.6 | |
WWE1 | Cloacamonae | Cloacamonales | Cloacamonaceae | W22 | 8.5 | 0.8 | |
W5 | 1.2 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swiatkiewicz, J.; Slezak, R.; Krzystek, L.; Ledakowicz, S. Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. Energies 2021, 14, 2993. https://doi.org/10.3390/en14112993
Swiatkiewicz J, Slezak R, Krzystek L, Ledakowicz S. Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. Energies. 2021; 14(11):2993. https://doi.org/10.3390/en14112993
Chicago/Turabian StyleSwiatkiewicz, Justyna, Radoslaw Slezak, Liliana Krzystek, and Stanislaw Ledakowicz. 2021. "Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time" Energies 14, no. 11: 2993. https://doi.org/10.3390/en14112993
APA StyleSwiatkiewicz, J., Slezak, R., Krzystek, L., & Ledakowicz, S. (2021). Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. Energies, 14(11), 2993. https://doi.org/10.3390/en14112993