Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties
Abstract
:1. Introduction
- Ideal sliding motion of a discrete-time system is achieved in the presence of non-matched uncertainties, which is a result never before seen in literature on DSMC.
- It is demonstrated that, when the quasi-sliding mode band width is reduced to zero, the error of individual state variables is significantly reduced.
- In the case where the considered discrete-time system is subject to complex multidimensional disturbance, the proposed approach can still partially reject the effect of this disturbance and improve system dynamics as a result.
2. Discrete-Time Systems
2.1. Discrete-Time Sliding Mode Control
2.2. Relative Degree Two Sliding Variable
- for,
2.3. Properties of the Proposed Strategy
2.4. State Error Estimation
3. Systems Subject to Multidimensional Disturbance
3.1. Sliding Hyperplane Selection
3.2. Properties of the Sliding Mode Control Strategy
3.3. State Error Estimation
4. Simulation Results
4.1. Zero-Width QSMB
- 1.823 for ;
- 1.250 for ;
- 0.484 for ; and
- 0.821 for .
4.2. System Subject to Multidimensional Disturbance
- 4.446 for ;
- 1.722 for ;
- 1.247 for ; and
- 1.295 for .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DSMC | Discrete-time sliding mode control |
QSMB | Quasi-sliding mode band |
References
- Emelyanov, S.V. Variable Structure Control Systems; Nauka: Moscow, Russia, 1967. [Google Scholar]
- Utkin, V. Variable structure systems with sliding modes. IEEE Trans. Autom. Control 1977, 22, 212–222. [Google Scholar] [CrossRef]
- Sabzehgar, R.; Roshan, Y.M.; Fajri, P. Modeling and Control of a Multifunctional Three-Phase Converter for Bidirectional Power Flow in Plug-In Electric Vehicles. Energies 2020, 13, 2591. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, J.; Tan, K.; Huang, B.; He, W. Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM. Energies 2020, 13, 5991. [Google Scholar] [CrossRef]
- Draženović, B. The invariance conditions in variable structure systems. Automatica 1969, 5, 287–295. [Google Scholar] [CrossRef]
- Utkin, V.; Drakunov, S.V. On Discrete-Time Sliding Mode Control. In Proceedings of the IFAC Conference on Nonlinear Control Systems Design, Capri, Italy, 14–16 June 1989; pp. 484–489. [Google Scholar]
- Milosavljević, Č. General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems. Autom. Remote Control 1985, 46, 307–314. [Google Scholar]
- Vidal-Idiarte, E.; Restrepo, C.; El Aroudi, A.; Calvente, J.; Giral, R. Digital Control of a Buck Converter Based on Input-Output Linearization. An Interpretation Using Discrete-Time Sliding Control Theory. Energies 2019, 12, 2738. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wang, B.; Li, X. Computer-controlled variable structure systems: The state of the art. IEEE Trans. Ind. Informatics 2012, 8, 197–205. [Google Scholar] [CrossRef]
- Gao, W.; Hung, J. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55. [Google Scholar]
- Gao, W.; Wang, Y.; Homaifa, A. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 1995, 42, 117–122. [Google Scholar]
- Janardhanan, S.; Bandyopadhyay, B. Multirate output feedback based robust quasi-sliding mode control of discrete-time systems. IEEE Trans. Autom. Control 2007, 52, 499–503. [Google Scholar] [CrossRef]
- Niu, Y.; Ho, D.W.C.; Wang, Z. Improved sliding mode control for discrete-time systems via reaching law. IET Control Theory Appl. 2010, 4, 2245–2251. [Google Scholar] [CrossRef]
- Ma, H.; Wu, J.; Xiong, Z. Discrete-time sliding-mode control with improved quasi-sliding-mode domain. IEEE Trans. Ind. Electron. 2016, 63, 6292–6304. [Google Scholar] [CrossRef]
- Du, H.; Yu, M.C.; Li, S. Chattering-free discrete-time sliding mode control. Automatica 2016, 68, 87–91. [Google Scholar] [CrossRef]
- Golo, G.; Milosavljević, Č. Robust discrete-time chattering free sliding mode control. Syst. Control Lett. 2000, 41, 19–28. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.; Xiao, F.; Wang, H. A novel reaching law approach of quasi-sliding-mode control for uncertain discrete-time systems. J. Cent. South Univ. 2012, 19, 2245–2251. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Bandyopadhyay, B. A generalized reaching law with different convergence rates. Automatica 2016, 63, 34–37. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Leśniewski, P. New switching and nonswitching type reaching laws for SMC of discrete time systems. IEEE Trans. Control Syst. Technol. 2016, 24, 670–677. [Google Scholar] [CrossRef]
- Bartolini, G.; Ferrara, A.; Usai, E. Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 1998, 43, 241–246. [Google Scholar] [CrossRef]
- Boiko, I.; Fridman, L.; Pisano, A.; Usai, E. Analysis of chattering in systems with second-order sliding modes. IEEE Trans. Autom. Control 2007, 52, 2085–2102. [Google Scholar] [CrossRef]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Birkhauser-Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Salgado, I.; Kamal, S.; Bandyopadhyay, B.; Chairez, I.; Fridman, L. Control of discrete time systems based on recurrent Super-Twisting-like algorithm. ISA Trans. 2016, 64, 47–55. [Google Scholar] [CrossRef]
- Sharma, N.K.; Janardhanan, S. Discrete higher order sliding mode: Concept to validation. IET Control Theory Appl. 2017, 11, 1098–1103. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shijun, M. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 1999; Volume 34. [Google Scholar]
- Betin, F.; Pinchon, D.; Capolino, G. A time-varying sliding surface for robust position control of a DC motor drive. IEEE Trans. Ind. Electron. 1999, 49, 462–473. [Google Scholar] [CrossRef]
- Wang, A.; Jia, X.; Dong, S. A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor. IEEE Trans. Magn. 2013, 49, 2409–2412. [Google Scholar] [CrossRef]
- Fallaha, C.J.; Saad, M.; Kanaan, H.Y.; Al-Haddad, K. Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 2011, 58, 600–610. [Google Scholar] [CrossRef]
- Corradini, M.L.; Fossi, V.; Giantomassi, A.; Ippoliti, G.; Longhi, S.; Orlando, G. Discrete time sliding mode control of robotic manipulators: Development and experimental validation. Control Eng. Pract. 2012, 20, 816–822. [Google Scholar] [CrossRef]
- Benallegue, A.; Mokhtari, A.; Fridman, L. High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 2008, 18, 427–440. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G. Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044–5056. [Google Scholar] [CrossRef]
- Laghrouche, S.; Plestan, F.; Glumineau, A. Practical Higher Order Sliding Mode Control: An Optimal Control Based Approach with Application to Electromechanical Systems. In Advances in Variable Structure and Sliding Mode Control; Springer: Berlin/Heidelberg, Germany, 2006; pp. 169–191. [Google Scholar]
- Nikkhah, M.; Ashrafiuon, H.; Fahimi, F. Robust control of underactuated bipeds using sliding modes. Robotica 2007, 25, 367. [Google Scholar] [CrossRef]
- Bartoszewicz, A.; Latosiński, P. Generalization of Gao’s reaching law for higher relative degree sliding variables. IEEE Trans. Autom. Control 2017, 63, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latosiński, P.; Bartoszewicz, A. Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties. Energies 2021, 14, 3011. https://doi.org/10.3390/en14113011
Latosiński P, Bartoszewicz A. Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties. Energies. 2021; 14(11):3011. https://doi.org/10.3390/en14113011
Chicago/Turabian StyleLatosiński, Paweł, and Andrzej Bartoszewicz. 2021. "Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties" Energies 14, no. 11: 3011. https://doi.org/10.3390/en14113011
APA StyleLatosiński, P., & Bartoszewicz, A. (2021). Zero-Width Quasi-Sliding Mode Band in the Presence of Non-Matched Uncertainties. Energies, 14(11), 3011. https://doi.org/10.3390/en14113011