Glass Cullet as Additive to New Sustainable Composites Based on Alumina Binder
Abstract
:1. Introduction
2. Materials
2.1. Concrete Mixture
2.2. Cement
2.3. Aggregate
2.4. Water
3. Methods
3.1. Grading Analysis
3.2. Strength of Hardened Concrete
3.3. Tests of Concrete at Elevated Temperature
3.4. Studying Morphology and Elemental Composition in SEM and EDS
4. Results and Discussion
4.1. Sieve Analysis of the Waste Cullet
4.2. Analysis of Results Obtained from Strength Tests
4.2.1. Flexural Strength
4.2.2. Compressive Strength
4.2.3. Strength of Composite under High Temperature Load
4.3. Temperature Distribution in the Material
4.4. Analysis of Morphology and Topography of Composite Surface
4.5. Elemental Analysis
5. Conclusions
- If glass powder is used as a substitute for cement, after 28 days of curing, concrete Zc.I.5 was found to have the biggest increase of compressive strength by approximately 10% with the addition of cullet by approximately 5%, as compared to the control sample.
- Comparable parameters were obtained from bending tensile strength, after 14 and 28 days of curing with the control trial. This proves the Pozzolanic reactivity of cullet.
- The correlation between the average compressive strength and the average flexural strength is significant. In regards to concrete Zk, a decrease in compressive strength was recorded, as well as an increase in flexural strength, with an increase of the amount of cullet used in concrete. Meanwhile, for concrete Zc, the compressive strength and the flexural strength grew as the amount of recyclate in concrete increased.
- The obtained results provide proof that cullet positively affects the concrete strength in situations of a fire. Flexural strength, for all concrete samples heated up to temperature of 500 °C, considerably grew; concrete produced with the use of glass powder Zc increased to at least 52%. If 5% of fine glass cullet was added, concrete Zk.I.5 had a maximum strength equalling to 3.25 MPa, proving a significant increase (130%) in strength as compared to the basic sample. Tests of compressive strength of concrete types subjected to temperature loads of 500 °C, in which cullet was used as a substitute for aggregate, showed that an approximate increase was achieved by 46%–17%–18% for Zk.I.5–Zk.I.10–Zk.I.15, respectively.
- The level of compressive strength determined for all samples modified by glass aggregate, heated up to 800 °C, was slightly higher (or similar) in strength as compared to the control trial.
- Concentrations of elements in the tested material remained within admissible limits.
- Waste consisting of cullet is fully valuable material that can be reused in the production of concrete. Recyclate does not undergo biodegradation, and may be used both as substitute of fine aggregate and of cement.
Author Contributions
Funding
Conflicts of Interest
References
- Everything about Recycling. Glass Recycling. Available online: https://www.oostdam.pl/recykling-szkla/ (accessed on 30 March 2020).
- Waste Statistic. Eurostat. Statistic Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics/pl (accessed on 15 November 2019).
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What A Waste 2.0: A Global Snapshot of Solid Waste Management To 2050; World Bank Group: Washington, DC, USA, 2018; pp. 17–38. [Google Scholar]
- Record Collection of Glass Containers for Recycling Hits 76% in the EU. Available online: https://feve.org/record-collection-of-glass-containers-for-recycling-hits-76-in-the-eu/ (accessed on 20 February 2021).
- Abramowicz, M.; Adamski, R.G. Bezpieczeństwo Pożarowe Budynków [Fire Safety of Buildings], Part 1; Main School of Fire Service: Warsaw, Poland, 2002; pp. 59–72. [Google Scholar]
- Meda, A.; Rinaldi, Z.; Spagnuolo, S.; De Rivaz, B.; Giamundo, N. Hybrid precast tunnel segments in fiber reinforced concrete with glass fiber reinforced bars. Tunn. Undergr. Space Technol. 2019, 86, 100–112. [Google Scholar] [CrossRef]
- Góra, J.; Franus, M.; Barnat-Hunek, D.; Franus, W. Utilization of Recycled Liquid Crystal Display (LCD) Panel Waste in Concrete. Materials 2019, 12, 2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.-H.; Zhan, P.-M.; Du, S.-G.; Liu, B.-J.; Yuan, W.-B. Creep behavior of concrete containing glass powder. Compos. Part B Eng. 2019, 166, 13–20. [Google Scholar] [CrossRef]
- Liu, H.; Shi, J.; Qu, H.; Ding, D. An investigation on physical, mechanical, leaching and radiation shielding behaviors of barite concrete containing recycled cathode ray tube funnel glass aggregate. J. Constr. Build. Mater. 2019, 201, 818–827. [Google Scholar] [CrossRef]
- Meddah, M.S. Use of Waste Window Glass as Substitute of Natural Sand in Concrete Production. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 32011. [Google Scholar] [CrossRef]
- Panedpojaman, P.; Tonnayopas, D. Rebound hammer test to estimate compressive strength of heat exposed concrete. J. Constr. Build. Mater. 2018, 172, 387–395. [Google Scholar] [CrossRef]
- Hyeongi, L.; Asad, H.; Muhammad, U.; Jongsung, S.; Hongseob, O. Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. J. Clean. Prod. 2018, 170, 683–693. [Google Scholar] [CrossRef]
- Kim, I.S.; Choi, S.Y.; Yang, E.I. Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate. J. Constr. Build. Mater. 2018, 184, 269–277. [Google Scholar] [CrossRef]
- Islam, G.S.; Rahman, M.H.; Kazi, N. Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. 2017, 6, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, Y.; Liu, C.; Liu, L.; Tang, K. Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag. J. Constr. Build. Mater. 2017, 142, 31–41. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Crespi, P.; Giordano, N. Damage in glass-concrete composite panels. J. Constr. Build. Mater. 2016, 116, 235–244. [Google Scholar] [CrossRef]
- Omran, A.; Tagnit-Hamou, A. Performance of glass-powder concrete in field applications. J. Constr. Build. Mater. 2016, 109, 84–95. [Google Scholar] [CrossRef]
- Spiesz, P.; Rouvas, S.; Brouwers, H.J.H. Utilization of waste glass in translucent and photocatalytic concrete. J. Constr. Build. Mater. 2016, 128, 436–448. [Google Scholar] [CrossRef]
- Mörtel, H.; Fuchs, F. Recycling of windshield glasses in fired bricks industry. Key Eng. Mater. 1997, 132–136, 2268–2271. [Google Scholar] [CrossRef]
- Matteucci, F.; Dondi, M.; Guarini, G. Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceram. Int. 2002, 28, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Tucci, A.; Esposito, L.; Rastelli, E.; Palmonari, C.; Rambaldi, E. Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware mix. J. Eur. Ceram. Soc. 2004, 24, 83–92. [Google Scholar] [CrossRef]
- Pontikes, Y.; Christogerou, A.; Angelopoulos, G.N.; Esposito, L.; Tucci, A. On the addition of soda-lime scrap glass for the production of heavy clay ceramics. Ceramurg. Ceram. Acta 2004, 34, 199–206. [Google Scholar]
- Dondi, M.; Guarini, G.; Raimondo, M.; Zanelli, C. Recycling PC and TV waste glass in clay bricks and roof tiles. Waste Manag. 2009, 29, 1945–1951. [Google Scholar] [CrossRef] [Green Version]
- Palmonari, C.; Tenaglia, A. Manufacture of heavy-clay products with the addition of residual sludges from other ceramic industries. Miner. Petrogr. Acta 1985, 29, 547–562. [Google Scholar]
- Andreola, F.; Barbieri, L.; Corradi, A.; Lancellotti, I. CRT glass state of the art. A case study: Recycling in ceramic glazes. J. Eur. Ceram. Soc. 2007, 27, 1623–1629. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Shao, Y.; Riefler, C. Alkali-aggregate reaction of concrete containing ground glass powder. In Proceedings of the 12th International Conference on AAR in Concrete, Beijing, China, 15–19 October 2004; pp. 789–795. [Google Scholar]
- Kim, K.; Kim, K.; Hwang, J. LCD waste glass as a substitute for feldspar in the porcelain sanitary ware production. Ceram. Int. 2015, 141, 7097–7102. [Google Scholar] [CrossRef]
- Najduchowska, M.; Różycka, K.; Rolka, G. Ocena możliwości wykorzystania stłuczki szklanej w przemyśle budowlanym w aspekcie jej wpływu na środowisko naturalne [Assessment of the feasibility of using cullet in the construction industry from the viewpoint of its impact on the natural environment]. Inst. Ceram. Mater. Bud. 2014, 17, 46–56. [Google Scholar]
- Drzymała, T.; Zegardło, B.; Tofiło, P. Properties of Concrete Containing Recycled Glass Aggregates Produced of Exploded Lighting Materials. Materials 2020, 13, 226. [Google Scholar] [CrossRef] [Green Version]
- Powęzka, A.; Szulej, J.; Ogrodnik, P. Reuse of Heat Resistant Glass Cullet in Cement Composites Subjected to Thermal Load. Materials 2020, 13, 4434. [Google Scholar] [CrossRef]
- Powęzka, A.; Szulej, J.; Ogrodnik, P. Effect of High Temperatures on the Impact Strength of Concrete Based on Recycled Aggregate Made of Heat-Resistant Cullet. Materials 2020, 13, 465. [Google Scholar] [CrossRef] [Green Version]
- Powęzka, A.; Ogrodnik, P.; Biedugnis, S.; Szulej, J. Assessment of selected parameters of concrete composite containing recyclate obtained from fire-resistant cullet. J. Phys. Conf. 2019, 1398, 12011. [Google Scholar] [CrossRef]
- Degirmenci, N.; Yilmaz, A.; Cakir, O.A. Utilization of waste glass as sand replacement in cement mortar. Indian J. Eng. Mater. Sci. 2011, 18, 303–308. [Google Scholar]
- Terro, M.J. Properties of concrete made with recycled crushed glass at elevated temperatures. Build. Environ. 2006, 41, 633–639. [Google Scholar] [CrossRef]
- Schwarz, N.; Cam, H.; Neithalath, N. Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cem. Concr. Compos. 2008, 30, 486–496. [Google Scholar] [CrossRef]
- Nassar, R.; Soroushian, P. Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Constr. Build. Mater. 2012, 29, 368–377. [Google Scholar] [CrossRef]
- Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Abadir, E.F.; Hussain, A.I. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Mater. Des. 2012, 33, 127–135. [Google Scholar] [CrossRef]
- Pawluczuk, E.; Kalinowska-Wichrowska, K.; Bołtryk, M.; Jiménez, J.R.; Fernández, M. The Influence of Heat and Mechanical Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete. Materials 2019, 12, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omran, A.F.; Etienne, D.; Harbec, D.; Tagnit-Hamou, A. Long-term performance of glass-powder concrete in large-scale field applications. Constr. Build. Mater. 2017, 135, 43–58. [Google Scholar] [CrossRef]
- Nowak, A.; Tora, B.; Tejchman, Z.; Peszko, B. Badanie możliwości utylizacji pozostałości po recyclingu odpadów szklanych w produkcji kruszywa piaskowego [Study of possibilities of using remnants from recycling of glass waste in the production of sand aggregate]. Gór. Geoinż. 2008, 34, 203–206. [Google Scholar]
- Chyłek, E.K. Nowa strategia Komisji Europejskiej dotyczące biogospodarki i gospodarki wewnętrznej o obiegu zamkniętym [New strategy of the European Commission concerning bio-economy and closed loop internal economy]. Pol. J. Agron. 2016, 25, 3–12. [Google Scholar]
- Liu, G.; Florea, M.V.A.; Brouwers, H.J.H. Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Constr. Build. Mater. 2019, 202, 574–588. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234–247. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Properties of high-volume glass powder concrete. Cem. Concr. Compos. 2017, 75, 22–29. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhan, B.J.; Duan, Z.H.; Poon, C.S. Using glass powder to improve the durability of architectural mortar prepared with glass aggregates. Mater. Des. 2017, 135, 102–111. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Pugazhmani, G.; Sripragadeesh, R.; Muthu, D.; Venkatasubramanian, C. Experimental study on the mechanical and durability properties of concrete with waste glass powder and ground granulated blast furnace slag as supplementary cementitious materials. Constr. Build. Mater. 2017, 156, 739–749. [Google Scholar] [CrossRef]
- Omrane, M.; Kenai, S.; Kadri, E.H.; Aït-Mokhtar, A. Performance and durability of self-compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod. 2017, 165, 415–430. [Google Scholar] [CrossRef]
- Soliman, N.A.; Tagnit-Hamou, A. Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Constr. Build. Mater. 2017, 139, 374–383. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 24, 866–877. [Google Scholar] [CrossRef]
- Afshinnia, K.; Rangaraju, P.R. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 2016, 117, 263–272. [Google Scholar] [CrossRef]
- Kushartomo, W.; Bali, I.; Sulaiman, B. Mechanical Behavior of Reactive Powder Concrete with Glass Powder Substitute. Procedia Eng. 2015, 125, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, P.S.; Tajne, K.M. Use of waste glass in cement mortar. Int. J. Civ. Struct. Eng. 2013, 3, 704–711. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Öznur, H.; Taha, I.; Taner, M. Failure characteristics of self-compacting concretes made with recycled aggregates. J. Constr. Build. Mater. 2015, 98, 334–344. [Google Scholar] [CrossRef]
- AL-Zubaid, A.B.; Shabeeb, K.M.; Ali, A.I. Study the Effect of Recycled Glass on The Mechanical Properties of Green Concrete. Energy Procedia 2017, 119, 680–692. [Google Scholar] [CrossRef]
- Zheng, K. Recycled glass concrete. In Eco-Efficient Concrete; Woodhead Publishing: Cambridge, UK, 2013; pp. 241–270. [Google Scholar]
- De Castro, S.; de Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zeng, H.H.; Wu, J.Y. A study on the macro and micro properties of concrete with LCD glass. Constr. Build. Mater. 2014, 50, 664–670. [Google Scholar] [CrossRef]
- Wang, H.Y.; Huang, W.L. Durability of self-consolidating concrete using waste LCD glass. Constr. Build. Mater. 2010, 6, 1008–1013. [Google Scholar] [CrossRef]
- Rutkowska, G.; Wichowski, P.; Fronczyk, J.; Franus, M.; Chalecki, M. Use of fly ashes from municipal sewage sludge combustion in production of ash concretes. Constr. Build. Mater. 2018, 188, 874–883. [Google Scholar] [CrossRef]
- Siddique, R.; Cachim, P. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Woodhead Publishing: Duxford, UK, 2018. [Google Scholar]
- Jamroży, Z. Beton i Jego Technologie [Concrete and Its Technologies], 2nd ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015. [Google Scholar]
- Kucharska, L. W/C-wskaźnik wpływu warstwy przejściowej na właściwości mechaniczne betonów zwykłych i BWW i ich podział [W/C–index of the impact of the transient layer on mechanical properties of ordinary and BWW concrete and their division]. Cem. Wapno Beton 1999, 2, 39–45. [Google Scholar]
- Kuznetsova, T.V. High aluminate cement production in Russia. Cem. Wapno Beton 2008, 75, 291–298. [Google Scholar]
- George, C.M.; Montgomery, R.G.J. Calcium aluminate cement concrete: Durability and conversion–A fresh look at an old subject. Mater. Constr. 1992, 42, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Ogrodnik, P.; Szulej, J. The impact of aeration of concrete based on ceramic aggregate, exposed to high temperatures, on its strength parameters. Constr. Build. Mater. 2017, 157, 909–916. [Google Scholar] [CrossRef]
- Zegardło, B.; Szeląg, M.; Ogrodnik, P.; Bombik, A. Physico-mechanical properties and microstructure of Polymer Concrete with Recycled Glass Aggregate. Materials 2018, 11, 1213. [Google Scholar] [CrossRef] [Green Version]
- Wiłun, Z. Zarys Geotechniki [Overview of Geotechnics], 10th ed.; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 2020. [Google Scholar]
- ASTM D 2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2006; Available online: www.astm.org (accessed on 16 February 2021). [CrossRef]
- EN 1997-2. Eurocode 7. Geotechnical Design. Part 2: Ground Investigation and Testing; European Committee for Standardization, EU: Brussels, Belgium, 2007; Available online: www.phd.eng.br (accessed on 16 February 2021).
- Sas, W.; Miszkowska, A.; Głuchowski, A. Impact of crushing vulnerability on recycled concrete aggregate physical and mechanical properties. Sci. Rev. Eng. Environ. Sci. 2015, 67, 40–53. [Google Scholar]
- Patakiewicz, M.A.; Zabielska-Adamska, K. Coefficient of curvature and compaction parameters for non-cohesive soils with bimodal grain size distribution. Acta Sci. Pol. Archit. 2013, 12, 111–123. [Google Scholar]
- EN 1338. Concrete Paving Blocks. Requirements and Test Methods; BSI: London, UK, 2003. [Google Scholar]
- EN 1339. Concrete Paving Flags. Requirements and Test Methods; BSI: London, UK, 2003. [Google Scholar]
- Du, H.; Tan, K.H. Concrete with recycled glass as fine aggregates. ACI Mater. J. 2014, 111, 47–58. [Google Scholar]
- Stinnessen, I.; Buhr, A.; Kockegey-Lorenz, R.; Racher, R. High Purity Calcium Aluminate Cements, Production and Properties. Available online: https://almatis-umbraco.azurewebsites.net/media/3985/high_purity_calcium-aluminate-cements_production_and_properties.pdf (accessed on 9 May 2021).
- Powęzka, A. Nośność Elementów Konstrukcyjnych Żelbetowych Poddanych Zginaniu W Sytuacji Ogniowej [Load Bearing Capacity of Reinforced Concrete Structural Elements Subjected to Bending in Fire Situations]; Computational Study Based on Eurocodes and on the Available Empirical Research; Main School of Fire Service, Institute of Fire Security Engineering: Warsaw, Poland, 2011. [Google Scholar]
- Gawlicki, M.; Bobrowski, A.; Spyrka, J. Immobilizacja metali ciężkich w zaczynach cementowych [Immobilisation of heavy metals in cement slurry]. Pol. Com. Nauk Ceramic. PAN 1994, 46, 237–241. [Google Scholar]
- Diamond, S. The microstructures of cement paste in concrete. In Proceedings of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, 22–27 September 1986; pp. 2–9. [Google Scholar]
- Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals. Nanoscale Res. Lett. 2011, 6, 106. [Google Scholar] [CrossRef] [Green Version]
Component | Z.I.0 | Zk.I.5 | Zk.I.10 | Zk.I.15 |
---|---|---|---|---|
Alumina cement | 488 | 488 | 488 | 488 |
Sand 0/2 mm | 562 | 562 | 562 | 562 |
Gravel 2/8 mm | 833 | 791.35 | 749.7 | 708.05 |
Glass aggregate 0/4 mm | - | 42 | 83 | 125 |
Glass powder 0/0.125 mm | - | - | - | - |
Water | 196 | 196 | 196 | 196 |
w/c 1 | 0.40 | 0.40 | 0.40 | 0.40 |
Component | Z.I.0 | Zc.I.5 | Zc.I.10 | Zc.I.15 |
---|---|---|---|---|
Alumina cement | 488 | 463.6 | 439.2 | 414.8 |
Sand 0/2 mm | 562 | 562 | 562 | 562 |
Gravel 2/8 mm | 833 | 833 | 833 | 833 |
Glass aggregate 0/4 mm | - | - | - | - |
Glass powder 0/0.125 mm | - | 24.4 | 48.8 | 73.2 |
Water | 196 | 196 | 196 | 196 |
w/c 1 | 0.40 | 0.42 | 0.45 | 0.47 |
Al2O3 1 | CaO 1 | SiO2 1 | Fe2O3 1 | Na2O + K2O 1 |
---|---|---|---|---|
69–71 | 28–30 | ˂0.5 | ˂0.3 | ˂0.5 |
Bending Strength after 24 h, MPa | Compressive Strength after 24 h, MPa | Commencement of Binding Time, min | End of Binding Time, min |
---|---|---|---|
˃5 | ˂30 | ˃160 | ˂240 |
Specific Surface Area according to Blaine, cm2/g | Typical Ordinary Flame Resistance, sP | Density, g/cm3 | Bulk Density, g/cm3 |
---|---|---|---|
4000–4500 | ≥158 | 3.0 | 1.1 |
Component | Requirements |
---|---|
Transformation temperature, °C | 535 |
Temperature of dilatometric softening, °C | 635 |
Lower annealing temperature, °C | 520 |
Upper annealing temperature, °C | 550 |
Permissible working range, °C | −40 ÷ 300 |
Density at 20 °C, g/cm3 | 2.23 |
Hydrolytic stability of glass grains at the temperature of 98 °C | HGB 1 |
Average coefficient of linear thermal expansion | |
SiO2, % | 80 |
Na2O, % | 4 |
K2O, % | 1 |
B2O3, % | 13 |
AL2O3, % | 2 |
0.21 | 0.56 | 1.37 | 6.53 | 1.11 |
Concrete | Flexural Strength after 14 Days, MPa | Standard Deviation, MPa | Variability Index, % | Flexural Strength after 28 Days, MPa | Standard Deviation, MPa | Variability Index, % |
---|---|---|---|---|---|---|
Z.I.0 | 11.9 | 0.2 | 1.65 | 11.9 | 0.6 | 5.31 |
Zk.I.5 | 10.5 | 0.9 | 8.48 | 11.2 | 0.3 | 2.85 |
Zk.I.10 | 11.2 | 1.3 | 11.07 | 11.0 | 1.0 | 9.28 |
Zk.I.15 | 11.8 | 0.8 | 6.72 | 10.7 | 0.5 | 4.58 |
Zc.I.5 | 12.0 | 0.7 | 5.81 | 11.7 | 0.3 | 2.73 |
Zc.I.10 | 11.5 | 0.2 | 1.48 | 11.6 | 0.7 | 6.23 |
Zc.I.15 | 11.1 | 0.5 | 4.42 | 10.7 | 1.3 | 12.06 |
Concrete | Compressive Strength after 14 Days, MPa | Standard Deviation, MPa | Variability Index, % | Compressive Strength after 28 Days, MPa | Standard Deviation, MPa | Variability Index, % |
---|---|---|---|---|---|---|
Z.I.0 | 68.1 | 2.6 | 3.75 | 76.9 | 4.1 | 5.33 |
Zk.I.5 | 64.4 | 2.9 | 4.46 | 74.4 | 5.8 | 7.82 |
Zk.I.10 | 58.6 | 2.6 | 4.47 | 77.2 | 3.5 | 4.59 |
Zk.I.15 | 62.8 | 2.2 | 3.50 | 78.4 | 4.3 | 5.43 |
Zc.I.5 | 63.6 | 3.0 | 4.75 | 85.1 | 3.3 | 3.82 |
Zc.I.10 | 57.1 | 8.4 | 14.67 | 79.8 | 6.3 | 7.92 |
Zc.I.15 | 59.2 | 3.5 | 5.84 | 75.6 | 4.5 | 5.97 |
Concrete | Bending Strength, MPa | Standard Deviation, MPa | Variability Index, % | Compressive Strength, MPa | Standard Deviation, MPa | Variability Index, % |
---|---|---|---|---|---|---|
Z.I.0 | 7.1 | 0.8 | 11.13 | 60.5 | 1.8 | 2.88 |
Zk.I.5 | 7.3 | 0.2 | 2.70 | 61.7 | 2.8 | 4.56 |
Zk.I.10 | 7.7 | 1.3 | 17.33 | 60.0 | 2.6 | 4.30 |
Zk.I.15 | 6.4 | 0.9 | 14.26 | 48.8 | 3.0 | 6.13 |
Zc.I.5 | 7.4 | 0.4 | 5.32 | 51.8 | 2.3 | 4.34 |
Zc.I.10 | 7.3 | 0.8 | 10.51 | 54.8 | 3.1 | 5.61 |
Zc.I.15 | 6.7 | 0.3 | 4.67 | 50.2 | 1.4 | 2.69 |
Concrete | Bending Strength, MPa | Standard Deviation, MPa | Variability Index, % | Compressive strength, MPa | Standard Deviation, MPa | Variability Index, % |
---|---|---|---|---|---|---|
Z.I.0 | 1.4 | 0.2 | 10.04 | 39.8 | 6.5 | 16.25 |
Zk.I.5 | 3.3 | 1.0 | 30.29 | 58.1 | 6.3 | 10.76 |
Zk.I.10 | 2.6 | 0.8 | 30.30 | 46.6 | 4.0 | 8.60 |
Zk.I.15 | 1.7 | 0.2 | 8.94 | 47.2 | 6.6 | 14.03 |
Zc.I.5 | 2.3 | 0.7 | 29.45 | 38.7 | 8.0 | 16.66 |
Zc.I.10 | 2.2 | 0.8 | 35.25 | 38.2 | 5.6 | 14.72 |
Zc.I.15 | 2.7 | 0.4 | 15.84 | 48.4 | 3.7 | 7.55 |
Concrete | Bending Strength, MPa | Standard Deviation, MPa | Variability Index, % | Compressive Strength, MPa | Standard Deviation, MPa | Variability Index, % |
---|---|---|---|---|---|---|
Z.I.0 | 1.0 | 0.2 | 21.23 | 35.3 | 5.2 | 14.80 |
Zk.I.5 | 0.8 | 0.1 | 14.83 | 38.4 | 3.7 | 9.66 |
Zk.I.10 | 1.1 | 0.4 | 41.27 | 35.2 | 2.3 | 6.39 |
Zk.I.15 | 1.4 | 0.2 | 14.53 | 32.0 | 3.6 | 11.32 |
Zc.I.5 | 1.6 | 0.2 | 14.13 | 37.7 | 2.9 | 7.59 |
Zc.I.10 | 0.8 | 0.2 | 29.43 | 23.8 | 3.6 | 15.29 |
Zc.I.15 | 0.8 | 0.2 | 22.57 | 26.4 | 3.2 | 12.09 |
Oxide Composition | Wt, % | Mol, % | K-Ratio | Excitation Efficiency Z | Likelihood of Absorption A | Secondary Fluorescence F |
---|---|---|---|---|---|---|
C2O | 30.11 | 39.95 | 0.0301 | 1.0285 | 0.1617 | 1.0005 |
Na2O | 2.00 | 1.71 | 0.0058 | 0.9466 | 0.4092 | 1.0036 |
Al2O5 | 3.09 | 1.23 | 0.0084 | 0.9420 | 0.7053 | 1.0139 |
SiO2 | 64.34 | 56.85 | 0.2356 | 0.9696 | 0.8080 | 1.0001 |
K2O | 0.46 | 0.26 | 0.0032 | 0.9181 | 0.9164 | 1.0000 |
Total | 100.00 | 100.00 |
Chemical Compound | Net Intensities | Background Intensity | Intensity Error | Peak to Background Ratio P/B |
---|---|---|---|---|
CK | 67.40 | 1.21 | 1.87 | 55.91 |
NaK | 36.51 | 8.76 | 3.04 | 4.17 |
AlK | 51.98 | 11.33 | 2.51 | 4.59 |
SiK | 1318.39 | 11.26 | 0.42 | 117.09 |
KK | 12.49 | 8.33 | 6.52 | 1.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powęzka, A.; Ogrodnik, P.; Szulej, J.; Pecio, M. Glass Cullet as Additive to New Sustainable Composites Based on Alumina Binder. Energies 2021, 14, 3423. https://doi.org/10.3390/en14123423
Powęzka A, Ogrodnik P, Szulej J, Pecio M. Glass Cullet as Additive to New Sustainable Composites Based on Alumina Binder. Energies. 2021; 14(12):3423. https://doi.org/10.3390/en14123423
Chicago/Turabian StylePowęzka, Aleksandra, Paweł Ogrodnik, Jacek Szulej, and Mariusz Pecio. 2021. "Glass Cullet as Additive to New Sustainable Composites Based on Alumina Binder" Energies 14, no. 12: 3423. https://doi.org/10.3390/en14123423
APA StylePowęzka, A., Ogrodnik, P., Szulej, J., & Pecio, M. (2021). Glass Cullet as Additive to New Sustainable Composites Based on Alumina Binder. Energies, 14(12), 3423. https://doi.org/10.3390/en14123423