Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources
Abstract
:1. Introduction
2. Methodology
2.1. Block 1: Data Analysis
2.2. Block 2: Two-Step Clustering
2.3. Block 3: Distance to Wind
2.4. Block 4: Customer Features and DR Applications
- Daily mean of hourly energy use (in kWh): a large hourly energy use may be interpreted as larger potential impact in DR applications:
- Energy–temperature correlation (Pearson correlation factor between daily mean energy and mean temperature): a strong negative correlation may indicate a larger capability to control temperature-sensitive equipment and therefore have short-term impact on DR applications:
- Load shape entropy: larger entropy means more variability, positive for DR potential.
- Distance to wind: being closer to wind generation patterns means easier impact in accommodating load shape to renewable energy source (RES) generation.
3. Results
3.1. Block 1: Data Analysis
3.2. Block 2: Two-Stage Clustering
3.3. Block 3: Computation of Distance to Wind
3.4. Block 4: Customer Features and DR Applications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AI | Artificial Intelligence |
AMI | Advanced Metering Infrastructure |
DMS | Demand Side Management |
DR | Demand Response |
DTW | Dynamic Time Warping |
HC | Hierarchical Clustering |
LSD | Load Shape Dictionary |
ML | Machine Learning |
PAA | Piecewise Aggregate Approximation |
PAM | Partition Around Medoids |
PCA | Principal Component Analysis |
SAX | Symbolic Aggregate Approximation |
SOM | Self-Organized Maps |
TOU | Time Of Use |
Appendix A
Mathematical Notation for the Two-Step k-Medoids Clustering Approach
Algorithm A1 Time Series Transformation and Distance Matrix Computation |
Require: Normalized load-shape time series for customer s, Set clock Perform time series representation transformation , Min-max normalize of time series representation features Compute distance matrix for customer-days normalized representation Stop clock Compute time_to_distance Return time_to_distance, distance_matrix |
Algorithm A2 k-Medoid Clustering with Automatic Stop Criterion for Single Customer |
Require: Distance matrix for customer-day items for customer s, Max number of clusters (max.k) Set clock Compute k-medoids clustering with 1 cluster Set average.silhouette[1 cluster] equal to 0 For k in 2 to max.k do Compute k-medoids clustering with k clusters If average.silhouette[k clusters] < average.silhouette[k − 1 clusters] then stop Stop clock Compute time_to_cluster If k = k.max then number_of_clusters C = k else number_of_clusters C = k − 1 Return time_to_cluster, number_of_clusters, average_silhouette[C clusters], percentage_negative_silhouette[C clusters], medoids_index[C clusters], cluster_vector[C clusters] |
References
- Parrish, B.; Heptonstall, P.; Gross, R.; Sovacool, B.K. A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy 2020, 138, 111221. [Google Scholar] [CrossRef]
- Bañales, S. The enabling impact of digital technologies on distributed energy resources integration. J. Renew. Sustain. Energy 2020, 12, 045301. [Google Scholar] [CrossRef]
- International Energy Agency. Global Energy Review 2020; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 10 June 2021).
- International Energy Agency. World Energy Outlook 2020–Event–IEA. 2020. Available online: https://www.iea.org/events/world-energy-outlook-2020 (accessed on 10 June 2021).
- Hussain, M.; Gao, Y. A review of demand response in an efficient smart grid environment. Electr. J. 2018, 31, 55–63. [Google Scholar] [CrossRef]
- Haider, H.T.; See, O.H.; Elmenreich, W. A review of residential demand response of smart grid. Renew. Sustain. Energy Rev. 2016, 59, 166–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 8. [Google Scholar] [CrossRef]
- Akhavan-Hejazi, H.; Mohsenian-Rad, H. Power systems big data analytics: An assessment of paradigm shift barriers and prospects. Energy Rep. 2018, 4, 91–100. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Trans. Ind. Inform. 2016, 12, 425–436. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Tureczek, A.M.; Nielsen, P.S. Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data. Energies 2017, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, A.; Eskandari, M.; Ghadi, M.J.; Li, L.; Zhang, J.; Siano, P. A comparative study of clustering techniques for electrical load pattern segmentation. Renew. Sustain. Energy Rev. 2020, 120, 109628. [Google Scholar] [CrossRef]
- Liao, T.W. Clustering of time series data—A survey. Pattern Recognit. 2005, 38, 1857–1874. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Kang, C.; Zhang, M.; Wang, K.; Zhao, Y. Load profiling and its application to demand response: A review. Tsinghua Sci. Technol. 2015, 20, 117–129. [Google Scholar] [CrossRef]
- Cao, H.-A.; Beckel, C.; Staake, T. Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns. In Proceedings of the IEEE IECON 2013–39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 4733–4738. [Google Scholar]
- Sandels, C.; Kempe, M.; Brolin, M.; Mannikoff, A. Clustering Residential Customers with Smart Meter data using a Data Analytic Approach—External Validation and Robustness Analysis. In Proceedings of the IEEE 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar]
- McDonald, B.; Pudney, P.; Rong, J. Pattern recognition and segmentation of smart meter data. ANZIAM J. 2014, 54, 105–150. [Google Scholar] [CrossRef] [Green Version]
- Grigoras, G.; Ivanov, O.; Gavrilas, M. Customer classification and load profiling using data from Smart Meters. In Proceedings of the IEEE 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Belgrade, Serbia, 25–27 November 2014; pp. 73–78. [Google Scholar]
- Kwac, J.; Tan, C.-W.; Sintov, N.; Flora, J.; Rajagopal, R. Utility customer segmentation based on smart meter data: Empirical study. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 720–725. [Google Scholar]
- Motlagh, O.; Foliente, G.; Grozev, G. Knowledge-Mining the Australian Smart Grid Smart City Data: A Statistical-Neural Approach to Demand-Response Analysis. In Lecture Notes in Geoinformation and Cartography; Springer Science and Business Media LLC: Cham, Switzerland, 2015; Volume 213, pp. 189–207. [Google Scholar]
- Verma, A.; Asadi, A.; Yang, K.; Maitra, A.; Asgeirsson, H. Analyzing household charging patterns of Plug-in electric vehicles (PEVs): A data mining approach. Comput. Ind. Eng. 2019, 128, 964–973. [Google Scholar] [CrossRef]
- Tureczek, A.; Nielsen, P.S.; Madsen, H. Electricity Consumption Clustering Using Smart Meter Data. Energies 2018, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Choi, H.; Lee, H.; Kim, H.; Wong, V.W.S. Residential Load Profile Clustering via Deep Convolutional Autoencoder. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; pp. 1–6. [Google Scholar]
- Laurinec, P.; Lucká, M. Comparison of representations of time series for clustering smart meter data. In Proceedings of the World Congress on Engineering and Computer Science 2016, San Francisco, CA, USA, 19–21 October 2016; Volume 1, pp. 458–463. [Google Scholar]
- Lin, S.; Li, F.; Tian, E.; Fu, Y.; Li, D. Clustering Load Profiles for Demand Response Applications. IEEE Trans. Smart Grid 2019, 10, 1599–1607. [Google Scholar] [CrossRef]
- Yuan, Y.; Dehghanpour, K.; Bu, F.; Wang, Z. A Data-Driven Customer Segmentation Strategy Based on Contribution to System Peak Demand. IEEE Trans. Power Syst. 2020, 35, 4026–4035. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, X.; Huang, Y.; Liu, Y.; Li, R.; Li, Y.; Liu, J. A Moving Shape-based Robust Fuzzy K-modes Clustering Algorithm for Electricity Profiles. Electr. Power Syst. Res. 2020, 187, 106425. [Google Scholar] [CrossRef]
- Charwand, M.; Gitizadeh, M.; Siano, P.; Chicco, G.; Moshavash, Z. Clustering of electrical load patterns and time periods using uncertainty-based multi-level amplitude thresholding. Int. J. Electr. Power Energy Syst. 2020, 117, 105624. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.; Jang, D. Load Profile Segmentation for Effective Residential Demand Response Program: Method and Evidence from Korean Pilot Study. Energies 2020, 13, 1348. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Ma, J.; Sun, R.; Du, Y. A Data-Driven Approach for Targeting Residential Customers for Energy Efficiency Programs. IEEE Trans. Smart Grid 2020, 11, 1229–1238. [Google Scholar] [CrossRef]
- Kwac, J.; Flora, J.; Rajagopal, R. Household Energy Consumption Segmentation Using Hourly Data. IEEE Trans. Smart Grid 2014, 5, 420–430. [Google Scholar] [CrossRef]
- Keogh, E.J.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowl. Inf. Syst. 2001, 3, 263–286. [Google Scholar] [CrossRef]
- Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD ’03, San Diego, CA, USA, 13 June 2003; pp. 2–11. [Google Scholar]
- Laurinec, P.; Lucká, M. Interpretable multiple data streams clustering with clipped streams representation for the improvement of electricity consumption forecasting. Data Min. Knowl. Discov. 2019, 33, 413–445. [Google Scholar] [CrossRef]
- Laurinec, P. TSrepr R package: Time Series Representations. J. Open Source Softw. 2018, 3, 577. [Google Scholar] [CrossRef]
- Gower, J.C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971, 27, 857. [Google Scholar] [CrossRef]
- Xu, D.; Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data Sci. 2015, 2, 165–193. [Google Scholar] [CrossRef] [Green Version]
- Giorgino, T. Computing and visualizing dynamic time warping alignments in R: The dtw package. J. Stat. Softw. 2009, 31, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [Google Scholar] [CrossRef]
- Commission for Energy Regulation (CER). CER Smart Metering Project–Electricity Customer Behaviour Trial, 2009–2010, 1st ed.; Irish Social Science Data Archive: Dublin, Ireland, 2012; SN: 0012-00. [Google Scholar]
- Irish Meteorological Service. Historical Weather Data. Available online: https://www.met.ie/climate/available-data/historical-data (accessed on 10 June 2021).
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, S.; Chambers, J.; Patel, M. Comparison of clustering approaches for domestic electricity load profile characterisation—Implications for demand side management. Energy 2019, 180, 665–677. [Google Scholar] [CrossRef]
- Hajiaghapour-Moghimi, M.; Azimi-Hosseini, K.; Hajipour, E.; Vakilian, M. Residential Load Clustering Contribution to Accurate Distribution Transformer Sizing. In Proceedings of the IEEE 2019 International Power System Conference (PSC), Tehran, Iran, 9–11 December 2019; pp. 313–319. [Google Scholar]
- Azaza, M.; Wallin, F. Smart meter data clustering using consumption indicators: Responsibility factor and consumption variability. Energy Procedia 2017, 142, 2236–2242. [Google Scholar] [CrossRef]
- Grigoras, G.; Scarlatache, F. Processing of smart meters data for peak load estimation of consumers. In Proceedings of the 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 7–9 May 2015; pp. 864–867. [Google Scholar]
- Schubert, E.; Rousseeuw, P.J. Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms. In Transactions on Petri Nets and Other Models of Concurrency XV; Springer Science and Business Media LLC: Cham, Switzerland, 2019; Volume 11807, pp. 171–187. [Google Scholar]
- Zainab, A.; Syed, D.; Ghrayeb, A.; Abu-Rub, H.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Lopez, S.B. A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load Forecasting of Electric Power Distribution System. IEEE Access 2021, 9, 31684–31694. [Google Scholar] [CrossRef]
- Villar, J.; Bessa, R.; Matos, M. Flexibility products and markets: Literature review. Electr. Power Syst. Res. 2018, 154, 329–340. [Google Scholar] [CrossRef]
Technique | Time to Reduce and Cluster (s) | Mean of Average Silhouette | Mean of % of Negative Silhouette | Mean of Number of Clusters | Standard Dev. Number of Clusters |
---|---|---|---|---|---|
PAA | 536 | 0.29 | 5.91 | 2.49 | 0.98 |
SAX | 629 | 0.18 | 9.98 | 2.63 | 1.08 |
Clipping | 240 | 0.35 | 3.42 | 2.46 | 0.76 |
Equipment | PAA | SAX | Clipping |
---|---|---|---|
HeatingE_central | - | - | - |
HeatingE_plugin | |||
Water_HeatingE_inmersion | - | - | |
Water_HeatingE_instant | - | - | - |
Cooker_type |
Equipment | Hourly_Energy_Mean | Temp_Cor | Cluster_Pro1 | Cluster_Pro2 | Cluster_Pro3 | Cluster_Pro4 |
---|---|---|---|---|---|---|
HeatingE_plugin | - | −3.06 | - | - | 1.95 | - |
Cooker_type | 1.28 | - | −1.48 | 0.75 | - | −0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bañales, S.; Dormido, R.; Duro, N. Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources. Energies 2021, 14, 3458. https://doi.org/10.3390/en14123458
Bañales S, Dormido R, Duro N. Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources. Energies. 2021; 14(12):3458. https://doi.org/10.3390/en14123458
Chicago/Turabian StyleBañales, Santiago, Raquel Dormido, and Natividad Duro. 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources" Energies 14, no. 12: 3458. https://doi.org/10.3390/en14123458
APA StyleBañales, S., Dormido, R., & Duro, N. (2021). Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources. Energies, 14(12), 3458. https://doi.org/10.3390/en14123458