Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs
Abstract
:1. Introduction
2. Test Procedure for Conical Picks
- The measurement of geometric parameters of the whole pick;
- The measurement of geometric parameters and determining the shape of the pick tip in the form of a WC-Co insert;
- Testing of pick body material parameters;
- Testing of pick tip material parameters;
- Determination of the pick wear rate in laboratory conditions.
- The length of the working part, Ln;
- The total length, Lc;
- The diameter or diameters of the holder part, du, du1;
- The diameter of thrust ring flange, dk;
- The angle of the pick tip, 2βu;
- The height of the pick tip, hw;
- The diameter of the pick tip, dw.
- Cutting an artificial cement–sand sample with almost-isotropic properties;
- Mining by cutting in laboratory conditions;
- Measurement pick’s mass before and after the cutting process;
- Measurement of the volume of rock cut.
3. Price of the Conical Pick and Its Wear Rate versus Cutting Efficiency
4. Research Material
- Commercial picks for roadheaders—five pcs (Figure 11a);
- Hardfaced picks for roadheaders—five pcs (Figure 11b);
- Commercial picks for roadheaders—five pcs (Figure 11c);
- Commercial picks for shaft-boring roadheaders—five pcs (Figure 11d);
- Commercial picks for shaft-boring roadheaders—five pcs (Figure 11e);
- Commercial picks for shaft-boring roadheaders—five pcs (Figure 11f);
- Commercial picks for longwall shearers—five pcs (Figure 11g);
- Commercial picks for longwall shearers—five pcs (Figure 11h).
5. Conical Pick Testing Results and Discussion
5.1. Determination of Design Parameters
5.2. Determination of Material Parameters
5.3. Determination of the Rate (Intensity) of Wear
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilgin, N.; Copur, H.; Balci, C. Mechanical Excavation in Mining and Civil Industries; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Jonak, J. Urabianie Skał Głowicami Wielonarzędziowymi; Śląsk Press: Katowice, Poland, 2002. (In Polish) [Google Scholar]
- Krauze, K. Urabianie Skał Kombajnami Ścianowymi: Podstawy Doboru i Projektowania Elementów Frezujących; Śląsk Press: Katowice, Poland, 2000. (In Polish) [Google Scholar]
- Beer, G. Technology Innovation in Underground Construction; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Cheluszka, P. Optimization of the Cutting Process Parameters to Ensure High Efficiency of Drilling Tunnels and Use the Technical Potential of the Boom-Type Roadheader. Energies 2020, 13, 6597. [Google Scholar] [CrossRef]
- Kotwica, K. Atypical and innovative tool, holder and mining head designed for roadheaders used to tunnel and gallery drilling in hard rock. Tunn. Undergr. Space Technol. 2018, 82, 493–503. [Google Scholar] [CrossRef]
- Kotwica, K.; Krauze, K. Selection and underground tests of the rotary tangential cutting picks used in cutting heads of the longwall and roadway miners. Arch. Min. Sci. 2007, 52, 195–217. [Google Scholar]
- Kotwica, K.; Małkowski, P. Methods of Mechanical Mining of Compact-Rock—A Comparison of Efficiency and Energy Consumption. Energies 2019, 12, 3562. [Google Scholar] [CrossRef] [Green Version]
- Krauze, K. Urabianie Skał Strugami Statycznymi: Podstawy Doboru i Projektowania Kompleksów Strugowych; Śląsk Press: Katowice, Poland, 2012. (In Polish) [Google Scholar]
- Peng, S.S. Longwall Mining; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Tatiya, R.R. Surface and Underground Excavations—Methods, Techniques and Equipment; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yang, D.; Jianping, L.; Zheng, K.; Jiang, H.; Handong, X.; Liu, S. High-hardness alloy substituted by low hardness during drilling and cutting experiments of conical pick. Int. J. Rock Mech. Min. Sci. 2017, 95, 73–78. [Google Scholar] [CrossRef]
- Longwall Systems. Available online: https://mining.komatsu/underground-mining/longwall-systems (accessed on 10 January 2021).
- Roadheaders. Available online: https://famur.com (accessed on 10 January 2021).
- Shaft Boring Roadheader. Available online: https://www.herrenknecht.com/en/products/productdetail/shaft-boring-roadheader-sbr (accessed on 10 January 2021).
- Kotwica, K. Effect of selected working conditions of cutting picks on their wear during the mining of hard rocks. Q. Mech. Control 2010, 29, 110–119. [Google Scholar]
- Liu, S.; Ji, H.; Liu, X.; Jiang, H. Experimental research on wear of conical pick interacting with coal-rock. Eng. Fail. Anal. 2017, 74, 172–187. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Yao, J.; Gong, F.; Li, X.; Du, K.; Tao, M.; Huang, L.; Du, S. Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock. Int. J. Rock Mech. Min. Sci. 2019, 122, 104063. [Google Scholar] [CrossRef]
- Wang, X.; Su, O. Specific energy analysis of rock cutting based on fracture mechanics: A case study using a conical pick on sandstone. Eng. Fract. Mech. 2019, 213, 197–205. [Google Scholar] [CrossRef]
- Cold Milling Machines. Available online: https://www.wirtgen-group.com (accessed on 10 January 2021).
- Bołoz, Ł. Results of a study on the quality of conical picks for public procurement purposes. New Trends Prod. Eng. 2018, 1, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Bołoz, Ł. Directions for increasing conical picks’ durability. New Trends Prod. Eng. 2019, 2, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Bołoz, Ł.; Kalukieiwcz, A.; Galecki, G.; Romanyshyn, L.; Romanyshyn, T.; Giménez, R.B. Conical Pick Production Process. New Trends Prod. Eng. 2020, 3, 231–240. [Google Scholar] [CrossRef]
- Ścieszka, S.; Filipowicz, K. Materiały na Narzędzia Górnicze; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2001. (In Polish) [Google Scholar]
- Garbiec, D.; Siwak, P. Microstructural evolution and development of mechanical properties of spark plasma sintered WC–Co cemented carbides for machine parts and engineering tools. Arch. Civ. Mech. Eng. 2019, 19, 215–223. [Google Scholar] [CrossRef]
- Nahak, S.; Dewangan, S.; Chattopadhyaya, S.; Krolczyk, G.; Hloch, S. Discussion on importance of tungsten carbide—Cobalt (WC-Co) cemented carbide and its critical characterization for wear mechanisms based on mining applications. Arch. Min. Sci. 2018, 63, 229–246. [Google Scholar]
- Dewangan, S.; Chattopadhyaya, S. Performance Analysis of Two Different Conical Picks Used in Linear Cutting Operation of Coal. Arab. J. Sci. Eng. 2016, 41, 249–256. [Google Scholar] [CrossRef]
- Krauze, K.; Bołoz, Ł.; Wydro, T. Parametric factors for the tangential-rotary picks quality assessment. Arch. Min. Sci. 2015, 60, 265–281. [Google Scholar]
- Krauze, K.; Mucha, K.; Wydro, T. Evaluation of the Quality of Conical Picks and the Possibility of Predicting the Costs of Their Use. Multidiscip. Asp. Prod. Eng. MAPE 2020, 3, 491–504. [Google Scholar]
- Li, H.S.; Liu, S.Y.; Xu, P.P. Numerical simulation on interaction stress analysis of rock with conical picks. Tunn. Undergr. Space Technol. 2019, 85, 231–242. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Ge, S.; Malekian, R.; Li, Z. A Theoretical Model for Estimating the Peak Cutting Force of Conical Picks. Exp. Mech. 2018, 58, 709–720. [Google Scholar] [CrossRef]
- Yasar, S. A General Semi-Theoretical Model for Conical Picks. Rock Mech. Rock Eng. 2020, 53, 2557–2579. [Google Scholar] [CrossRef]
- Mucha, K. The new method for assessing rock abrasivity in terms of wear of conical picks. New Trends Prod. Eng. 2019, 2, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Sikora, W. (Ed.) Determination of Forces and Energy Consumption of Excavation with Conical Picks; The Silesian University of Technology Press: Gliwice, Poland, 2000. [Google Scholar]
- Yasar, S. Predictive plots for conical pick performance using mechanical and elastoplastic properties of rocks. J. Rock Mech. Geotech. Eng. 2020, 12, 1027–1035. [Google Scholar] [CrossRef]
- Krauze, K.; Skowronek, T.; Mucha, K. Influence of the hard—Faced layer welded on tangential—Rotary pick operational part on to its wear rate. Arch. Min. Sci. 2016, 61, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Krauze, K.; Bołoz, Ł.; Wydro, T.; Mucha, K. Durability testing of tangential—Rotary picks made of different materials. Min. Inform. Autom. Electr. Eng. 2017, 1, 26–34. [Google Scholar] [CrossRef]
- ISO 6508-1: Metallic Materials—Rockwell Hardness Test. Part 1: Test Method; Organization for Standardization: Geneva, Switzerland, 2016; Available online: https://www.iso.org/standard/70460.html (accessed on 12 March 2021).
- ISO 3369: Impermeable Sintered Metal Materials and Hardmetals—Determination of Density; Organization for Standardization: Geneva, Switzerland, 2006; Available online: https://www.iso.org/standard/44435.html (accessed on 12 March 2021).
- PN EN 23878. Węgliki Spiekane—Pomiar Twardości Sposobem Vickersa; Polish Committee for Standardization: Warszawa, Poland, 1996. (In Polish) [Google Scholar]
- Szala, J. Zastosowanie Metod Komputerowej Analizy Obrazu do Ilościowej Oceny Struktury Materiałów; Politechnika Śląska: Gliwice, Poland, 2001. (In Polish) [Google Scholar]
- ISO 683-2: Heat-Treatable Steels, Alloy Steels and Free-Cutting Steels—Part 2: Alloy Steels for Quenching and Tempering; Organization for Standardization: Geneva, Switzerland, 2016; Available online: https://www.iso.org/standard/70643.html (accessed on 25 March 2021).
- PN-88/H-89500 Węgliki Spiekane—Gatunki; Polish Committee for Standardization: Warszawa, Poland, 1988. (In Polish)
- Brox, D. Practical Guide to Rock Tunneling; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- ISO 4499-1: Hardmetals-Metallographic Determination of Microstructure. Part 1: Photomicrographs and Description; Organization for Standardization: Geneva, Switzerland, 2006; Available online: https://www.iso.org/standard/43500.html (accessed on 9 February 2021).
No. | Pick | Geometrical Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lc (mm) | Ln (mm) | Lu (mm) | hk (mm) | 2βu (°) | dk (mm) | du (mm) | du1 (mm) | dw (mm) | hw (mm) | ||
1 | Figure 11a | 146.30 | 70.80 | 75.50 | 16.77 | 93.00 | 58.10 | 37.88 | -- | 22.00 | 34.89 |
2 | Figure 11b | 146.37 | 70.82 | 75.55 | 16.82 | 93.00 | 58.17 | 37.98 | -- | 22.04 | 34.87 |
3 | Figure 11c | 147.20 | 71.00 | 76.20 | 15.15 | -- | 57.70 | 37.98 | -- | 25.28 | 35.46 |
4 | Figure 11d | 155.13 | 77.53 | 77.60 | 15.13 | 94.45 | 80.08 | 41.99 | -- | 22.11/ 17.85 | 29.11 |
5 | Figure 11e | 167.64 | 90.67 | 76.97 | -- | -- | 80.00 | 41.88 | -- | 22.04 | 33.84 |
6 | Figure 11f | 156.63 | 76.69 | 79.94 | 14.10 | 93.30 | 80.00 | 41.82 | -- | 22.04/ 15.06 | 29.92 |
7 | Figure 11g | 165.22 | 90.25 | 74.97 | 12.22 | 92.97 | 58.00 | 37.80 | 29.89 | 22.05 | 35.20 |
8 | Figure 11h | 165.44 | 90.30 | 75.14 | 16.32 | 93.00 | 64.88 | 37.89 | -- | 22.12 | 34.86 |
No. | Measurement Site Number | Average | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
1 | 40 | 40 | 41 | 41 | 42 | 42 | 41 | 41 | 40 | 40 | 41 |
No. | Distance from the Surface, mm | Measurement Site Number | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1 | 1 | 35 | 35 | 35 | 35 |
2 | 3 | 36 | 34 | 36 | 35 |
3 | 10 | 35 | 30 | 37 | 36 |
Chemical Element, wt.% | Steel Grade | ||||||||
C | Mn | Si | S | P | Cr | Ni | Mo | V | |
0.336↓ | 0.860↓ | 1.19↑ | 0.0092 | 0.0154 | 1.14↓ | 0.0766 | 0.0262 | 0.002 | |
Al | Cu | Ti | W | Pb | As | Co | Fe | -- | 100CrMn6 |
0.0196 | 0.173 | 0.002 | 0.015 | 0.025 | 0.01 | 0.0092 | 96.1 | -- |
No. | Measurement Site Number | Average | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
1 | 1076 | 1034 | 1041 | 1075 | 1111 | 1071 | 1057 | 1081 | 1125 | 1135 | 1081 |
No. | Temperature of Water Used for Weighing, °C | Water Density, g/cm3 | Carbide Mass in Air, g | Carbide Mass in Water, g | Insert Density, g/cm3 |
---|---|---|---|---|---|
1 | 21 | 0.9975 | 149.1258 | 138.9177 | 14.572 |
List of Picks | ||||||||
---|---|---|---|---|---|---|---|---|
No. | Pick | HRC of the Gripping Part | HRC of the Working Part | Steel Grade | HV30 of the Carbide | Carbide Density | Type of Carbide | HRC of the Padding Weld |
1 | Figure 11a | 41 | 35 | 100CrMn6 | 1081 | 14,572 | B45 | -- |
2 | Figure 11b | 45 | 35 | 100CrMn6 | 1127 | 14,408 | B45 | 62 |
3 | Figure 11c | 40 | 43 | 100CrMn6 | 1143 | 14,378 | B40 | -- |
4 | Figure 11d | 46 | 46 | 36Mn5 | 1326 | 13,959 | G15 | 56 |
5 | Figure 11e | 44 | 47 | 36Mn5 | 1168 | 14,629 | B23 | 65 * 59 ** |
6 | Figure 11f | 47 | 43 | 100CrMn6 | 1158 | 14,197 | G30 | 51 |
7 | Figure 11g | 38 | 38 | 100CrMn6 | 1155 | 14,821 | B23 | -- |
8 | Figure 11h | 41 | 44 | 100CrMn6 | 1124 | 14,483 | B40 | -- |
No. | Pick | Location of the Pick on the Test Drum | |||
---|---|---|---|---|---|
4 | 1 | 2 | 3 | ||
1 | Figure 11a | 41.958 | 112.020 | 78.657 | 9.486 |
2 | Figure 11b | 32.150 | 84.470 | 72.652 | 12.317 |
3 | Figure 11c | 3.148 | 22.155 | 17.946 | 0.965 |
4 | Figure 11d | 55.756 | 89.902 | 103.275 | 13.029 |
5 | Figure 11e | 0.055 | 0.254 | 0.038 | 33.744 |
6 | Figure 11f | 2.241 | 18.187 | 42.907 | 3.832 |
7 | Figure 11g | 29.350 | 74.907 | 38.679 | 3.831 |
8 | Figure 11h | 17.050 | 56.395 | 53.592 | 1.082 |
Average value | 18.515 | 46.881 | 41623 | 8.165 |
List of Picks | |||||
---|---|---|---|---|---|
No. | Pick | C2 Index | Padding Weld | Type of Carbide | HRC of the Working Part |
5 | Pick for shaft-boring roadheaders (Figure 11e) | 8.513 | padding weld | B23 | 44 |
3 | Pick for roadheaders (Figure 11c) | 11.054 | missing | B40 | 40 |
6 | Pick for shaft-boring roadheaders (Figure 11f) | 16.792 | padding weld | G30 | 47 |
8 | Pick for longwall shearers (Figure 11h) | 32.030 | missing | B40 | 41 |
7 | Pick for longwall shearers (Figure 11g) | 36.692 | missing | B23 | 38 |
2 | Pick for roadheaders (Figure 11b) | 50.397 | padding weld | B45 | 41 |
1 | Pick for roadheaders (Figure 11a) | 60.530 | missing | B45 | 45 |
4 | Pick for shaft-boring roadheaders (Figure 11d) | 65.490 | padding weld | G15 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krauze, K.; Mucha, K.; Wydro, T.; Pieczora, E. Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs. Energies 2021, 14, 3696. https://doi.org/10.3390/en14123696
Krauze K, Mucha K, Wydro T, Pieczora E. Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs. Energies. 2021; 14(12):3696. https://doi.org/10.3390/en14123696
Chicago/Turabian StyleKrauze, Krzysztof, Kamil Mucha, Tomasz Wydro, and Edward Pieczora. 2021. "Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs" Energies 14, no. 12: 3696. https://doi.org/10.3390/en14123696
APA StyleKrauze, K., Mucha, K., Wydro, T., & Pieczora, E. (2021). Functional and Operational Requirements to Be Fulfilled by Conical Picks Regarding Their Wear Rate and Investment Costs. Energies, 14(12), 3696. https://doi.org/10.3390/en14123696