Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- ➢
- Return on Assets (ROA) captures the effectiveness of employing company assets in the operating activity. The variable is determined as the ratio of earnings after tax to total assets;
- ➢
- Return on Equity (ROE) highlights the efficiency of the capital invested in a company by shareholders. It is determined as the ratio of earnings after tax to shareholders’ equity. When ROE reaches high levels, it sends the signal that the company is financially stable against any fiscal pressure or market competition;
- ➢
- Return on Investment (ROI) reveals the efficiency of investment activities within a company. The indicator is determined as a ratio of earnings after tax to the cost of investment. When ROI registers low values, it sends the signal that the company’s investments are not efficient.
- ➢
- Fiscal Pressure to Expenses (RPE) is determined by dividing the total taxes of a company by its total expenses;
- ➢
- Fiscal Pressure to Equity (RPEQ) highlights the capacity of a company’s equity to cover taxation expenses. It is determined as a ratio of total taxes to shareholders’ equity;
- ➢
- Fiscal Pressure to Gross Margin (RPGM) highlights how much of a company’s own resources are allocated to cover taxation expenses. As the name of the variable suggests, it is determined by dividing total taxes to company gross margin;
- ➢
- Fiscal Pressure to Sales (RPS) highlights the capacity of a company to cover taxation expenses based on its sales. It is determined as a ratio of total taxes to company turnover (i.e., total sales).
4. Results
4.1. Descriptive Statistics
4.2. Correlation Analyses
- w0 denotes the intercept;
- wi denotes the coefficient of the independent variable, with values from 1 to 4;
- Z denotes the independent variables;
- i denotes the company, with values from 1 to 88;
- t denotes the time frame analyzed (2005Q1–2020Q3), with values from 1 to 16;
- denotes the fixed effects that control for time-invariant company-specific factors; such effects are considered to offset the omission of other factors influencing financial performance;
- denotes the error term.
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CEO | Chief executive officer |
CSR | Corporate social responsibility |
EBITDA | Earnings before interest, taxes, depreciation and amortization |
FPE | Fiscal pressure to expenses |
FPEQ | Fiscal pressure to equity |
FPGM | Fiscal pressure to gross margin |
FPS | Fiscal pressure to sales |
IMF | International Monetary Fund |
N/S | Non-significant |
OECD | Organisation for Economic Cooperation and Development |
Q1 | First quarter of the fiscal year |
Q3 | Third quarter of the fiscal year |
ROA | Return on assets |
ROE | Return on equity |
ROI | Return on investment |
UN | United Nations |
VIF | Variance inflation factor |
Appendix A
References
- Batrancea, L.M.; Nichita, R.A.; Batrancea, I.; Moldovan, B.A. Tax compliance models: From economic to behavioral approaches. Transylv. Rev. Adm. Sci. 2012, 8, 13–26. [Google Scholar]
- Batrancea, L.; Nichita, A.; Batrancea, I.; Gaban, L. The strenght of the relationship between shadow economy and corruption: Evidence from a worldwide country-sample. Soc. Indic. Res. 2018, 138, 1119–1143. [Google Scholar] [CrossRef]
- Batrancea, L.; Nichita, A. Which is the best government? Colligating tax compliance and citizens ’insights regarding authorities’ actions. Transylv. Rev. Adm. Sci. 2015, 11, 5–22. [Google Scholar]
- Nichita, A.; Batrancea, L.; Pop, C.M.; Batrancea, I.; Morar, I.D.; Masca, E.; Roux-Cesar, A.M.; Forte, D.; Formigoni, H.; da Silva, A.A. We learn not for school but for life: Empirical evidence of the impact of tax literacy on tax compliance. East. Eur. Econ. 2019, 57, 397–429. [Google Scholar] [CrossRef]
- OECD. Taxing Energy Use 2019: Using Taxes for Climate Action; OECD: Paris, France, 2019. [Google Scholar]
- OECD. Effective Carbon Rates 2018: Pricing Carbon Emissions through Taxes and Emission Trading; OECD: Paris, France, 2018. [Google Scholar]
- Ramseur, J.L.; Parker, L. Carbon Tax and Greenhouse Gas Control: Options and Considerations for Congress; Congressional Research Service: Washington, DC, USA, 2009.
- La Rosa, N. Analysing Financial Performance Using Integrated Ratio Analysis; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Batrancea, L. An econometric approach regarding the impact of fiscal pressure on equilibrium: Evidence from electricity, gas and oil companies listed on the New York Stock Exchange. Mathematics 2021, 9, 630. [Google Scholar] [CrossRef]
- Wei, Y.; Chung, K.H.K.; Cheong, T.S.; Chui, D.K.H. The evolution of the energy market and energy usage: An application of the distribution dynamics analysis. Front. Energy Res. 2020. [Google Scholar] [CrossRef]
- World Energy Council. The World’s Energy Agenda & Its Evolution: Issues Monitor 2019; World Energy Council: London, UK, 2019. [Google Scholar]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 118025. [Google Scholar] [CrossRef]
- Batrancea, I.; Batrancea, L.; Nichita, A.; Gaban, L.; Masca, E.; Morar, I.-D.; Fatacean, G.; Moscviciov, A. An econometric approach on production, costs and profit in Romanian coal mining enterprises. Econ. Res. Ekon. Istraz. 2019, 32, 1019–1036. [Google Scholar] [CrossRef] [Green Version]
- Capon, N.; Farley, J.U.; Hoenig, S. What determines corporate financial performance? In Toward an Integrative Explanation of Corporate Financial Performance; Capon, N., Farley, J.U., Hoenig, S., Eds.; Springer: Dordrecht, Germany, 1996; pp. 1–25. [Google Scholar]
- REN21. Renewables 2020 Global Status Report; REN21 Secretariat: Paris, France, 2020. [Google Scholar]
- Fight, A. Factors impacting financial performance. In Cash Flow Forecasting: A Volume in Essential Capital Markets; Fight, A., Ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 41–75. [Google Scholar]
- Edwards, D. The Link between Company Environmental and Financial Performance; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Shieh, H.-S.; Hu, J.-L.; Chang, Y.-C. An investigation of factors affecting financial performance of Taiwanese international tourist hotels. J. Hosp. Financ. Manag. 2018, 26, 25–35. [Google Scholar] [CrossRef]
- Batchimeg, B. Financial performance determinants of organizations: The case of Mongolian companies. J. Compet. 2017, 9, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Michelon, M.; Boesso, G.; Kumar, K. Examining the link between strategic corporate social responsibility and company performance: An analysis of the best corporate citizens. Corp. Soc. Responsib. Environ. Manag. 2013, 20, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Bazrafshan, E.; Kandelousi, A.S.; Hooy, C.-W. The impact of earnings management on the extent of disclosure and true financial performance: Evidence from listed firms in Hong Kong. Br. Acc. Rev. 2016, 48, 206–219. [Google Scholar] [CrossRef]
- Dierker, M.J.; Kim, T.; Park, S.H. The choice of fiscal year and the earnings-return relationship. Asia Pac. J. Financ. Stud. 2019, 48, 503–530. [Google Scholar] [CrossRef]
- Capece, D.; Di Pillo, F.; Levialdi, N. The performance assessment of energy companies. APCBEE Procedia 2013, 5, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Schabek, T. The financial performance of sustainable power producers in emerging markets. Renew. Energ. 2020, 160, 1408–1419. [Google Scholar] [CrossRef]
- Parry, I. Putting a price on pollution. Financ. Develop. 2019, 56, 16–19. [Google Scholar]
- Khan, U.; Nallareddy, S.; Rouen, E. The role of taxes in the disconnect between corporate performance and economic growth. Manag. Sci. 2019, 66, 5427–5447. [Google Scholar] [CrossRef] [Green Version]
- Leibfritz, W.; Thornton, J.; Bibbee, A. Taxation and economic performance. In OECD Economics Department Working Papers No. 176; OECD Publishing: Paris, France, 1997. [Google Scholar] [CrossRef]
- Batrancea, I.; Batrancea, L.; Rathnaswamy, M.M.; Tulai, H.; Fatacean, G.; Rus, M.-I. Greening the financial system in USA, Canada and Brazil: A panel data analysis. Mathematics 2020, 8, 2217. [Google Scholar] [CrossRef]
- Batrancea, L. The nexus between financial performance and equilibrium: Empirical evidence on publicly traded companies from the global financial crisis up to the COVID-19 pandemic. J. Risk Financ. Manag. 2021, 14, 218. [Google Scholar] [CrossRef]
- Goulder, L.H. Energy taxes: Traditional efficiency effects and environmental implications. In Tax Policy and the Economy; Poterba, J.M., Ed.; MIT Press: Cambridge, MA, USA, 1993; Volume 8, pp. 105–158. [Google Scholar]
- Bacon, R. Taxes and the government budget. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 1, pp. 13–25. [Google Scholar] [CrossRef]
- Brożyna, J.; Strielkowski, W.; Fomina, A.; Nikitina, N. Renewable energy and EU 2020 target for energy efficiency in the Czech Republic and Slovakia. Energies 2020, 13, 965. [Google Scholar] [CrossRef] [Green Version]
- Cramton, P. Electricity market design. Oxford Rev. Econ. Policy 2017, 33, 589–612. [Google Scholar] [CrossRef] [Green Version]
- Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T. Evolution of wholesale electricity market design with increasing levels of renewable generation. Natl. Renew. Energ. Lab. 2014. [Google Scholar] [CrossRef] [Green Version]
- OECD. International Energy Agency. In OECD Green Growth Studies: Energy; OECD: Paris, France, 2011. [Google Scholar]
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
Mean | 0.0349 | 0.0898 | 0.1303 | 0.3688 | 0.9196 | 1.2542 | 0.2943 |
Median | 0.0411 | 0.1052 | 0.1064 | 0.2754 | 0.2868 | 0.4376 | 0.2324 |
Maximum | 1.1781 | 4.9276 | 1.6635 | 7.2552 | 35.6649 | 24.1177 | 4.1195 |
Minimum | −0.6878 | −2.9258 | −0.9120 | −2.1492 | −1.3598 | −1.4106 | −1.3769 |
Std. dev. | 0.1145 | 0.4015 | 0.2457 | 0.4819 | 2.7809 | 2.5141 | 0.3339 |
Skewness | 0.4432 | 2.1703 | 0.9730 | 7.8821 | 7.6966 | 5.5094 | 4.6981 |
Kurtosis | 31.1007 | 59.6695 | 13.0057 | 107.2933 | 75.8318 | 40.4130 | 56.7642 |
Jarque–Bera test | 15,215.84 *** | 62,182.68 *** | 1991.444 *** | 215,094.9 *** | 106,903.1 *** | 29,408.87 *** | 57,591.56 *** |
Observations | 462 | 462 | 460 | 464 | 463 | 464 | 464 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
Mean | 0.0360 | 0.0709 | 0.1256 | 0.0966 | 0.1291 | 0.2628 | 0.0759 |
Median | 0.0353 | 0.0951 | 0.1046 | 0.0829 | 0.1072 | 0.2362 | 0.0707 |
Maximum | 0.3256 | 0.8398 | 2.5483 | 0.5232 | 1.0408 | 2.6704 | 0.3020 |
Minimum | −1.0329 | −3.3793 | −1.4292 | −0.2343 | −0.1319 | −1.4322 | −0.2073 |
Std. dev. | 0.1000 | 0.2671 | 0.2539 | 0.0891 | 0.1556 | 0.2918 | 0.0595 |
Skewness | −2.9151 | −5.6992 | 3.0739 | 1.7508 | 3.6054 | 2.0833 | 0.5249 |
Kurtosis | 31.4272 | 66.3128 | 33.9811 | 8.4817 | 19.5711 | 19.2487 | 7.0256 |
Jarque–Bera test | 16,210.40 *** | 79,837.36 *** | 19,079.47 *** | 817.9810 *** | 6314.202 *** | 5440.004 *** | 334.6165 *** |
Observations | 462 | 463 | 459 | 464 | 464 | 464 | 464 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
Mean | 0.1145 | 0.2543 | 0.4305 | 0.2682 | 0.2497 | 0.4474 | 0.1479 |
Median | 0.0283 | 0.0972 | 0.0891 | 0.1110 | 0.0891 | 0.1579 | 0.0865 |
Maximum | 17.0400 | 32.4100 | 59.1300 | 7.2488 | 11.0196 | 11.8650 | 0.5704 |
Minimum | −2.9091 | −3.2941 | −4.3636 | −0.1005 | −0.5079 | −0.2565 | −0.1598 |
Std. dev. | 1.1184 | 2.1317 | 3.7100 | 0.6450 | 0.6172 | 0.8437 | 0.1389 |
Skewness | 14.4741 | 14.4348 | 12.1932 | 7.6216 | 11.6726 | 6.9473 | 1.2118 |
Kurtosis | 220.0705 | 217.0302 | 165.1639 | 70.0098 | 195.3905 | 78.3583 | 3.3238 |
Jarque–Bera test | 957,153.7 *** | 932,847.4 *** | 527,752.1 *** | 94,453.34 *** | 75,1182.5 *** | 117,438.6 *** | 119.5688 *** |
Observations | 479 | 480 | 471 | 480 | 480 | 480 | 480 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
Mean | 0.0624 | 0.1398 | 0.2305 | 0.2448 | 0.4304 | 0.6526 | 0.1724 |
Median | 0.0316 | 0.0976 | 0.0948 | 0.1216 | 0.1203 | 0.2655 | 0.1013 |
Maximum | 17.0400 | 32.4100 | 59.1300 | 7.2552 | 35.6649 | 24.1177 | 4.1195 |
Minimum | −2.9091 | −3.3793 | −4.3636 | −2.1492 | −1.3598 | −1.4322 | −1.3769 |
Std. dev. | 0.6599 | 1.2781 | 2.1724 | 0.4829 | 1.6730 | 1.5919 | 0.2293 |
Skewness | 24.2341 | 23.0859 | 20.8107 | 9.0865 | 12.5941 | 8.3908 | 5.9315 |
Kurtosis | 625.8288 | 580.6014 | 482.3778 | 114.7421 | 205.1669 | 96.0584 | 95.3250 |
Jarque–Bera test | 22,814,232 *** | 19,655,668 *** | 13,409,762 *** | 751,903.8 *** | 2,433,282.0 *** | 524,567.1 *** | 508,324.9 *** |
Observations | 1403 | 1405 | 1390 | 1408 | 1407 | 1408 | 1408 |
Indicators | Oil Companies | Gas Companies | Electricity Companies | Overall Sample |
---|---|---|---|---|
ROA | 3.49% | 3.59% | 11.45% | 6.24% |
ROE | 8.98% | 7.09% | 25.42% | 13.97% |
ROI | 13.02% | 12.56% | 43.05% | 23.04% |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
ROA | 1 | ||||||
ROE | 0.640 | 1 | |||||
ROI | 0.828 | 0.509 | 1 | ||||
FPE | 0.279 | 0.177 | 0.237 | 1 | |||
FPEQ | 0.091 | 0.128 | 0.072 | 0.465 | 1 | ||
FPGM | 0.065 | 0.077 | 0.053 | 0.252 | 0.829 | 1 | |
FPS | 0.349 | 0.248 | 0.320 | 0.847 | 0.530 | 0.339 | 1 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
ROA | 1 | ||||||
ROE | 0.804 | 1 | |||||
ROI | 0.667 | 0.496 | 1 | ||||
FPE | 0.403 | 0.303 | 0.289 | 1 | |||
FPEQ | 0.270 | 0.245 | 0.179 | 0.244 | 1 | ||
FPGM | 0.174 | 0.140 | 0.096 | 0.235 | 0.764 | 1 | |
FPS | 0.398 | 0.299 | 0.299 | 0.924 | 0.337 | 0.353 | 1 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
ROA | 1 | ||||||
ROE | 0.998 | 1 | |||||
ROI | 0.538 | 0.539 | 1 | ||||
FPE | 0.107 | 0.072 | 0.018 | 1 | |||
FPEQ | 0.003 | −0.015 | −0.016 | 0.187 | 1 | ||
FPGM | −0.010 | −0.019 | −0.009 | 0.095 | 0.510 | 1 | |
FPS | 0.052 | 0.036 | −0.009 | 0.430 | 0.532 | 0.508 | 1 |
ROA | ROE | ROI | FPE | FPEQ | FPGM | FPS | |
---|---|---|---|---|---|---|---|
ROA | 1 | ||||||
ROE | 0.985 | 1 | |||||
ROI | 0.545 | 0.536 | 1 | ||||
FPE | 0.110 | 0.083 | 0.027 | 1 | |||
FPEQ | 0.006 | 0.017 | −0.003 | 0.282 | 1 | ||
FPGM | −0.001 | 0.005 | −0.005 | 0.188 | 0.809 | 1 | |
FPS | 0.048 | 0.054 | 0.012 | 0.563 | 0.541 | 0.423 | 1 |
Companies | Independent Variables | ROA | ROE | ROI |
---|---|---|---|---|
Oil | ||||
FPE | + | + | + | |
FPEQ | + | + | + | |
FPGM | + | + | + | |
FPS | + | + | + | |
Gas | ||||
FPE | + | + | + | |
FPEQ | + | + | + | |
FPGM | + | + | + | |
FPS | + | + | + | |
Electricity | ||||
FPE | + | + | + | |
FPEQ | + | − | − | |
FPGM | − | − | − | |
FPS | + | + | − | |
All companies | ||||
FPE | + | + | + | |
FPEQ | + | + | − | |
FPGM | − | + | − | |
FPS | + | + | + |
Model 11: | Model 12: | Model 13: | ||||
---|---|---|---|---|---|---|
Constant | −0.0289 (−1.0904) | −0.0048 (−0.3311) | −0.0612 (−0.8927) | −0.0056 (−0.1364) | 0.0003 (0.0063) | 0.0572 *** (2.3538) |
−0.0018 (−0.0365) | −0.0275 (−0.8253) | −0.0410 (−0.3314) | −0.1185 (−1.4060) | −0.0198 (−0.1597) | −0.0890 (−1.1206) | |
−0.0194 *** (−2.6878) | −0.0149 *** (−2.7757) | −0.0328 (−1.5412) | −0.0214 (−1.1486) | −0.0409 *** (−2.5026) | −0.0310 *** (−2.9540) | |
0.0119 *** (2.3856) | 0.0046 (1.0352) | 0.0203 (1.2172) | 0.0034 (0.2407) | 0.0236 ** (1.9899) | 0.0057 (0.5883) | |
0.2334 *** (4.0472) | 0.1985 *** (4.5117) | 0.5903 *** (5.7698) | 0.5289 *** (5.5293) | 0.5039 *** (3.5144) | 0.4368 *** (4.4840) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes | Yes | Yes | Yes |
Prob. > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cross-section effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | No | Yes | No | Yes | No | Yes |
R2 | 0.2572 | 0.4664 | 0.1612 | 0.2412 | 0.3069 | 0.5242 |
Adjusted R2 | 0.2018 | 0.4058 | 0.0986 | 0.1551 | 0.2549 | 0.4699 |
F-statistic | 4.6417 | 7.6988 | 2.5767 | 2.8006 | 5.9078 | 9.6593 |
Observations | 462 | 462 | 462 | 462 | 462 | 462 |
Model 21: | Model 22: | Model 23: | ||||
---|---|---|---|---|---|---|
Constant | −0.0389 *** (−2.3851) | −0.0136 (−1.4206) | −0.0892 ** (−2.1221) | −0.0419 (−1.2983) | −0.0281 (−0.8823) | 0.0280* (1.7196) |
0.2602 (1.4963) | 0.1874 (1.1028) | 0.4760 (1.2110) | 0.3126 (0.7990) | 0.5114 (1.2299) | 0.3294 (0.8099) | |
0.2733 *** (4.7280) | 0.1369 *** (2.5175) | 0.6890 *** (4.7390) | 0.3870 ** (2.0916) | 0.5304 *** (4.7993) | 0.2424 ** (2.0666) | |
−0.0781 (−1.5871) | −0.0724 (−1.5104) | −0.1821 * (−1.6108) | −0.1612 (−1.4096) | −0.1209 * (−1.7255) | −0.1092 * (−1.7696) | |
0.4620 (1.3826) | 0.4325 (1.4589) | 0.9652 (1.2468) | 0.9906 (1.3498) | 0.8880 (1.1793) | 0.8311 (1.2459) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes | Yes | Yes | Yes |
Prob. > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cross-section effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | No | Yes | No | Yes | No | Yes |
R2 | 0.3501 | 0.4395 | 0.2884 | 0.3623 | 0.2588 | 0.3367 |
Adjusted R2 | 0.3016 | 0.3759 | 0.2355 | 0.2901 | 0.2031 | 0.2608 |
F-statistic | 7.2205 | 6.9080 | 5.4464 | 5.0165 | 4.6479 | 4.4388 |
Observations | 462 | 462 | 463 | 463 | 459 | 459 |
Model 31: | Model 32: | Model 33: | ||||
---|---|---|---|---|---|---|
Constant | 0.4831 * (1.7246) | 0.5077 ** (2.0201) | 0.8788 (1.5863) | 0.9018 ** (1.9512) | 0.7493 (1.4582) | 0.8496 ** (1.9520) |
0.1549 *** (3.1560) | 0.1849 ** (2.8330) | 0.2155 *** (2.8099) | 0.2797 *** (2.4923) | 0.1041 (1.4866) | 0.2658 *** (2.6332) | |
0.0139 (0.7233) | 0.0042 (0.5594) | −0.0516 (−1.2424) | −0.0749 *** (−4.2971) | 0.1565 * (1.7235) | 0.0881 (1.2355) | |
−0.0354 ** (−1.8999) | −0.0215 *** (−2.7837) | −0.0894 * (−1.6774) | −0.0540 *** (−2.4090) | −0.6764 (−1.5833) | −0.6390 (−1.5205) | |
−2.6882 * (−1.6129) | −2.9342 * (−1.6363) | −4.2563 (−1.3545) | −4.5957 (−1.3969) | −0.6075 (−0.2129) | −1.5910 (−0.5217) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes | Yes | Yes | Yes |
Prob. > F | 0.0000 | 0.0008 | 0.0004 | 0.0009 | 0.0005 | 0.0007 |
Cross-section effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | No | Yes | No | Yes | No | Yes |
R2 | 0.1497 | 0.1715 | 0.1349 | 0.1696 | 0.1371 | 0.1754 |
Adjusted R2 | 0.0866 | 0.0790 | 0.0709 | 0.0771 | 0.0719 | 0.0816 |
F-statistic | 2.3742 | 1.8538 | 2.1082 | 1.8336 | 2.1034 | 1.8696 |
Observations | 479 | 479 | 480 | 480 | 471 | 471 |
Model 41: | Model 42: | Model 43: | ||||
---|---|---|---|---|---|---|
Constant | 0.0319 (0.9638) | 0.0446 *** (2.7098) | 0.0612 (0.8017) | 0.0880 *** (2.4909) | 0.2355 ** (2.2703) | 0.2924 *** (2.7750) |
0.0727 *** (3.1598) | 0.0781 *** (3.9252) | 0.0760 ** (2.1292) | 0.0881 *** (2.9931) | 0.0541 (0.2409) | 0.0712 (0.3170) | |
−0.0083 (−0.8288) | −0.0067 (−0.7479) | −0.0202 (−0.7523) | −0.0166 (−0.7199) | 0.0641 (0.7964) | 0.0638 (0.7875) | |
0.0003 (0.0425) | −0.0042 (−0.6765) | −0.0011 (−0.0559) | −0.0104 (−0.6129) | −0.1399 * (−1.6357) | −0.1543 * (−1.7932) | |
0.0962 (0.2876) | 0.0271 (0.2964) | 0.4090 ** (2.2272) | 0.2604 (1.4038) | 0.2651 (0.4763) | −0.0393 (−0.0694) | |
White cross-section standard errors and covariance (d.f. corrected) | Yes | Yes | Yes | Yes | Yes | Yes |
Prob. > F | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cross-section effects | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | No | Yes | No | Yes | No | Yes |
R2 | 0.1467 | 0.1608 | 0.1343 | 0.1546 | 0.1336 | 0.1518 |
Adjusted R2 | 0.0875 | 0.0922 | 0.0743 | 0.0856 | 0.0729 | 0.0817 |
F-statistic | 2.4773 | 2.3431 | 2.2381 | 2.2395 | 2.1998 | 2.1662 |
Observations | 1403 | 1403 | 1405 | 1405 | 1390 | 1390 |
Dependent Variable | Companies | FPE | FPEQ | FPGM | FPS | ||||
---|---|---|---|---|---|---|---|---|---|
ROA | Oil | N/S | N/S | − *** | − *** | + *** | N/S | + *** | + *** |
Gas | N/S | N/S | + *** | + *** | N/S | N/S | N/S | N/S | |
Electricity | + *** | + ** | N/S | N/S | − ** | − *** | − * | − * | |
All companies | + *** | + *** | N/S | N/S | N/S | N/S | N/S | N/S | |
ROE | Oil | N/S | N/S | N/S | N/S | N/S | N/S | + *** | + *** |
Gas | N/S | N/S | + *** | + ** | − * | N/S | N/S | N/S | |
Electricity | + *** | + *** | N/S | − *** | − * | − *** | N/S | N/S | |
All companies | + ** | +*** | N/S | N/S | N/S | N/S | +** | N/S | |
ROI | Oil | N/S | N/S | − *** | − *** | + ** | N/S | + *** | + *** |
Gas | N/S | N/S | + *** | + ** | − * | − * | N/S | N/S | |
Electricity | N/S | + *** | + * | N/S | N/S | N/S | N/S | N/S | |
All companies | N/S | N/S | N/S | N/S | − * | − * | N/S | N/S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batrancea, L.; Rus, M.I.; Masca, E.S.; Morar, I.D. Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period. Energies 2021, 14, 3769. https://doi.org/10.3390/en14133769
Batrancea L, Rus MI, Masca ES, Morar ID. Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period. Energies. 2021; 14(13):3769. https://doi.org/10.3390/en14133769
Chicago/Turabian StyleBatrancea, Larissa, Mircea Iosif Rus, Ema Speranta Masca, and Ioan Dan Morar. 2021. "Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period" Energies 14, no. 13: 3769. https://doi.org/10.3390/en14133769