Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries
Abstract
:1. Introduction
2. Photovoltaic Model
2.1. Ideal Model
2.2. Single-Diode Model
3. Parameter Boundaries Definition
3.1. Equivalent Thermal Voltage Boundaries
3.2. Series Resistance Boundaries
3.3. Shunt Resistance Boundaries
4. Differential Evolution Algorithm
4.1. Initialization
4.2. Mutation
4.3. Crossover
4.4. Evaluation and Selection
4.5. Adaptive Boundaries
5. Results and Analysis
5.1. Algorithm Parameters Definition
5.1.1. Adaptive Evolution of Limits
5.1.2. Selection of
5.2. Model Validation
5.2.1. Kyocera KC200GT Comparison
5.2.2. Database Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | ID | CellType | Standard Test Condition STC | Normal Operating Cell Temperature NOCT | Thermal Coefficients at STC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | V | A | V | W | A | V | A | V | W | mA/K | V/K | %/K | ||||
1 | RLM6144HP-430-M | Mono | 72 | 10.55 | 51 | 10.1 | 42.6 | 430 | 8.52 | 47.4 | 8.04 | 39.8 | 319.6 | 5.275 | −0.148 | −0.370 |
2 | RLM6144HP-435-M | Mono | 72 | 10.6 | 51.2 | 10.17 | 42.8 | 435 | 8.56 | 47.6 | 8.09 | 40 | 323.4 | 5.300 | −0.148 | −0.370 |
3 | RLM6144HP-445-M | Mono | 72 | 10.72 | 51.6 | 10.31 | 43.2 | 445 | 8.65 | 47.9 | 8.17 | 40.5 | 330.9 | 5.360 | −0.150 | −0.370 |
4 | RLM6144HP-450-M | Mono | 72 | 10.82 | 51.8 | 10.5 | 44.4 | 450 | 8.7 | 48.1 | 8.21 | 40.8 | 336.1 | 5.410 | −0.150 | −0.370 |
5 | RLM6144HP-455-M | Mono | 72 | 10.88 | 52 | 10.57 | 44.6 | 455 | 8.75 | 47.3 | 8.25 | 41.1 | 339.8 | 5.440 | −0.151 | −0.370 |
6 | PMS50W | Mono | 36 | 3 | 22.5 | 2.78 | 18 | 50 | 2.45 | 21.2 | 2.2 | 16.8 | 37 | 1.500 | −0.068 | −0.400 |
7 | AS-5M.185 | Mono | 72 | 5.45 | 44.8 | 5.1 | 36.3 | 185 | 4.41 | 41.2 | 4.13 | 33 | 136 | 3.052 | −0.148 | −0.430 |
8 | AS-5M.190 | Mono | 72 | 5.54 | 45 | 5.21 | 36.5 | 190 | 4.49 | 41.4 | 4.22 | 33.2 | 140 | 3.102 | −0.149 | −0.430 |
9 | AS-5M.195 | Mono | 72 | 5.63 | 45.1 | 5.32 | 36.7 | 195 | 4.56 | 41.5 | 4.32 | 33.4 | 144 | 3.153 | −0.149 | −0.430 |
10 | AS-5M.200 | Mono | 72 | 5.72 | 45.2 | 5.43 | 36.9 | 200 | 4.63 | 41.6 | 4.38 | 33.6 | 147 | 3.203 | −0.149 | −0.430 |
11 | AS-5M.205 | Mono | 72 | 5.81 | 45.4 | 5.53 | 37.1 | 205 | 4.71 | 41.8 | 4.47 | 33.8 | 151 | 3.254 | −0.150 | −0.430 |
12 | AS-5M.210 | Mono | 72 | 5.9 | 45.6 | 5.64 | 37.3 | 210 | 4.78 | 42 | 4.58 | 33.9 | 155 | 3.304 | −0.150 | −0.430 |
13 | ESP-250-6M | Mono | 60 | 8.73 | 37.44 | 8.16 | 30.62 | 250 | 7.08 | 34.36 | 6.56 | 27.73 | 182 | 6.111 | −0.127 | −0.460 |
14 | ESP-255-6M | Mono | 60 | 8.79 | 37.89 | 8.23 | 30.97 | 255 | 7.13 | 34.77 | 6.62 | 28.14 | 186 | 6.153 | −0.129 | −0.460 |
15 | ESP-260-6M | Mono | 60 | 8.83 | 38.25 | 8.28 | 31.34 | 260 | 7.16 | 35.18 | 6.67 | 28.57 | 196 | 6.181 | −0.130 | −0.460 |
16 | ESP-265-6M | Mono | 60 | 8.87 | 38.61 | 8.3 | 31.84 | 265 | 7.2 | 35.59 | 6.71 | 28.92 | 194 | 6.209 | −0.131 | −0.460 |
17 | ESP-270-6M | Mono | 60 | 8.93 | 38.76 | 8.39 | 32.23 | 270 | 7.24 | 35.79 | 6.73 | 29.31 | 198 | 6.251 | −0.132 | −0.460 |
18 | ESP-275-6M | Mono | 60 | 8.99 | 39.03 | 8.47 | 32.57 | 275 | 7.3 | 36.09 | 6.79 | 29.63 | 202 | 6.293 | −0.133 | −0.460 |
19 | BMO-280 | Mono | 60 | 9.35 | 39 | 8.8 | 31.8 | 280 | 7.57 | 35.6 | 7.13 | 29 | 207 | 4.500 | −0.132 | −0.350 |
20 | BMO-285 | Mono | 60 | 9.5 | 39.1 | 8.85 | 32.2 | 285 | 7.69 | 35.7 | 7.17 | 29.4 | 211 | 4.500 | −0.132 | −0.350 |
21 | BMO-290 | Mono | 60 | 9.6 | 39.3 | 8.95 | 32.4 | 290 | 7.77 | 35.9 | 7.25 | 29.6 | 214 | 4.500 | −0.132 | −0.350 |
22 | RSM-100M | Mono | 36 | 5.87 | 21.95 | 5.59 | 17.9 | 100 | 4.74 | 20.29 | 4.35 | 17.08 | 74 | 2.935 | −0.070 | - |
23 | RLM6144HP-440-M | Mono | 72 | 10.66 | 51.4 | 10.24 | 43 | 440 | 8.61 | 47.8 | 8.14 | 40.2 | 327.2 | 5.330 | −0.149 | −0.370 |
24 | HIT-N240SE10 | Mono HIT | 72 | 5.85 | 52.4 | 5.51 | 43.7 | 240 | 4.71 | 49.4 | 4.44 | 41.1 | 182 | 1.760 | −0.131 | −0.300 |
25 | HIT-N235SE10 | Mono HIT | 72 | 5.84 | 51.8 | 5.48 | 43 | 235 | 4.7 | 48.9 | 4.41 | 40.5 | 179 | 1.750 | −0.130 | −0.300 |
26 | HIT-N230SE10 | Mono HIT | 72 | 5.83 | 51.2 | 5.45 | 42.3 | 230 | 4.7 | 48.3 | 4.38 | 39.9 | 175 | 1.750 | −0.128 | −0.300 |
27 | VBHN330SJ47 | Mono HIT | 96 | 6.07 | 69.7 | 5.7 | 58 | 330 | 4.91 | 66 | 4.54 | 56.5 | 253.5 | 3.340 | −0.164 | −0.258 |
28 | VBHN325SJ47 | Mono HIT | 96 | 6.03 | 69.6 | 5.65 | 57.6 | 325 | 4.88 | 65.9 | 4.52 | 56.1 | 249.3 | 3.320 | −0.164 | −0.258 |
29 | VBHN320SJ47 | Mono HIT | 96 | 5.98 | 69.4 | 5.59 | 57.3 | 320 | 4.84 | 65.7 | 4.47 | 55.7 | 245.2 | 3.290 | −0.163 | −0.258 |
30 | REC340AA | Mono HJT | 60 | 10.09 | 43.1 | 9.34 | 36.4 | 340 | 8.15 | 40.6 | 7.54 | 34.3 | 259 | 4.036 | −0.103 | −0.260 |
31 | REC345AA | Mono HJT | 60 | 10.12 | 43.4 | 9.39 | 36.7 | 345 | 8.18 | 40.9 | 7.59 | 34.6 | 263 | 4.048 | −0.104 | −0.260 |
32 | REC350AA | Mono HJT | 60 | 10.16 | 43.8 | 9.45 | 37.1 | 350 | 8.21 | 41.3 | 7.63 | 34.9 | 266 | 4.064 | −0.105 | −0.260 |
33 | REC355AA | Mono HJT | 60 | 10.19 | 44 | 9.5 | 37.4 | 355 | 8.23 | 41.4 | 7.67 | 35.2 | 270 | 4.076 | −0.106 | −0.260 |
34 | STU-HJTB-W-310 | Mono HJT | 60 | 9.1 | 43.6 | 8.5 | 36.7 | 310 | 7.3 | 41.5 | 6.8 | 34.7 | 237.3 | 3.185 | −0.103 | −0.264 |
35 | STU-HJTB-W-315 | Mono HJT | 60 | 9.2 | 44 | 8.5 | 37 | 315 | 7.4 | 41.8 | 6.9 | 35 | 241.2 | 3.220 | −0.104 | −0.264 |
36 | STU-HJTB-W-320 | Mono HJT | 60 | 9.2 | 44.3 | 8.6 | 37.3 | 320 | 7.4 | 42.2 | 7 | 35.2 | 245 | 3.220 | −0.105 | −0.264 |
37 | JHM3-72BH390 | Mono PERC | 72 | 10.25 | 48.5 | 9.7 | 40.2 | 390 | 8.28 | 45.9 | 7.8 | 37.5 | 292 | 6.150 | −0.146 | −0.380 |
38 | JHM3-72BH395 | Mono PERC | 72 | 10.29 | 48.7 | 9.75 | 40.5 | 395 | 8.32 | 46.1 | 7.85 | 37.7 | 296 | 6.174 | −0.146 | −0.380 |
39 | JHM3-72BH400 | Mono PERC | 72 | 10.33 | 48.9 | 9.8 | 40.8 | 400 | 8.35 | 46.3 | 7.89 | 38 | 300 | 6.198 | −0.147 | −0.380 |
40 | JHM3-72BH405 | Mono PERC | 72 | 10.37 | 49.1 | 9.85 | 41.1 | 405 | 8.38 | 46.5 | 7.93 | 38.3 | 304 | 6.222 | −0.147 | −0.380 |
41 | RSM132-6-360M | Mono PERC | 66 | 10.29 | 44 | 9.69 | 37.2 | 360 | 8.44 | 40.5 | 7.91 | 34.1 | 269.5 | 5.145 | −0.128 | −0.370 |
42 | RSM132-6-365M | Mono PERC | 66 | 10.38 | 44.1 | 9.79 | 37.35 | 365 | 8.52 | 40.6 | 7.99 | 34.2 | 273.2 | 5.190 | −0.128 | −0.370 |
43 | RSM132-6-370M | Mono PERC | 66 | 10.48 | 44.2 | 9.88 | 37.5 | 370 | 8.59 | 40.7 | 8.06 | 34.4 | 276.9 | 5.240 | −0.128 | −0.370 |
44 | RSM132-6-375M | Mono PERC | 66 | 10.58 | 44.3 | 9.97 | 37.65 | 375 | 8.68 | 40.8 | 8.14 | 34.5 | 270.7 | 5.290 | −0.128 | −0.370 |
45 | RSM132-6-380M | Mono PERC | 66 | 10.68 | 44.4 | 10.07 | 37.8 | 380 | 8.76 | 40.85 | 8.21 | 34.62 | 274.4 | 5.340 | −0.129 | −0.370 |
46 | RSM132-6-385M | Mono PERC | 66 | 10.78 | 44.5 | 10.16 | 37.95 | 385 | 8.84 | 40.94 | 8.29 | 34.76 | 288.1 | 5.390 | −0.129 | −0.370 |
47 | RSM40-8-390M | Mono PERC | 72 | 12.21 | 40.69 | 11.52 | 33.88 | 390 | 10.01 | 37.84 | 9.4 | 31.44 | 295.6 | 4.884 | −0.102 | −0.340 |
48 | RSM40-8-395M | Mono PERC | 72 | 12.27 | 41 | 11.58 | 34.14 | 395 | 10.07 | 38.13 | 9.45 | 31.68 | 299.4 | 4.908 | −0.103 | −0.340 |
49 | RSM40-8-400M | Mono PERC | 72 | 12.34 | 41.3 | 11.64 | 34.39 | 400 | 10.12 | 38.41 | 9.5 | 31.91 | 303.1 | 4.936 | −0.103 | −0.340 |
50 | RSM40-8-405M | Mono PERC | 72 | 12.4 | 41.6 | 11.7 | 34.64 | 405 | 10.17 | 38.69 | 9.55 | 32.15 | 306.9 | 4.960 | −0.104 | −0.340 |
51 | RSM40-8-410M | Mono PERC | 72 | 12.47 | 41.9 | 11.76 | 34.89 | 410 | 10.22 | 38.97 | 9.6 | 32.38 | 310.7 | 4.988 | −0.105 | −0.340 |
52 | VSM.72.365.05 | Mono PERC | 72 | 9.73 | 48.3 | 9.17 | 39.8 | 365 | 7.87 | 44.7 | 7.34 | 36.8 | 270.2 | 5.546 | −0.135 | −0.390 |
53 | VSM.72.370.05 | Mono PERC | 72 | 9.84 | 48.5 | 9.26 | 40 | 370 | 7.98 | 44.9 | 7.41 | 36.9 | 273.9 | 5.609 | −0.136 | −0.390 |
54 | VSM.72.375.05 | Mono PERC | 72 | 9.94 | 48.7 | 9.36 | 40.1 | 375 | 8.04 | 45 | 7.49 | 37.1 | 2776 | 5.666 | −0.136 | −0.390 |
55 | VSM.72.380.05 | Mono PERC | 72 | 10.04 | 48.8 | 9.46 | 40.2 | 380 | 8.03 | 44.9 | 7.57 | 37 | 271.2 | 5.723 | −0.137 | −0.390 |
56 | VSM.72.385.05 | Mono PERC | 72 | 10.14 | 48.9 | 9.56 | 40.3 | 385 | 8.11 | 45 | 7.65 | 37.1 | 284.9 | 5.780 | −0.137 | −0.390 |
57 | JP-345M | Mono PERC | 72 | 9.65 | 47.88 | 9.08 | 40.17 | 345 | 7.82 | 44.49 | 7.35 | 34.77 | 255.7 | 4.632 | −0.139 | −0.390 |
58 | JP-350M | Mono PERC | 72 | 9.66 | 47.95 | 9.11 | 40.36 | 350 | 7.83 | 44.55 | 7.38 | 35.19 | 259.7 | 4.637 | −0.139 | −0.390 |
59 | JP-355M | Mono PERC | 72 | 9.7 | 48.17 | 9.18 | 40.68 | 355 | 7.86 | 44.75 | 7.44 | 35.45 | 263.6 | 4.656 | −0.140 | −0.390 |
60 | JP-360M | Mono PERC | 72 | 9.73 | 48.31 | 9.24 | 40.82 | 360 | 7.88 | 44.88 | 7.48 | 35.9 | 268.7 | 4.670 | −0.140 | −0.390 |
61 | JP-365M | Mono PERC | 72 | 9.75 | 48.46 | 9.26 | 41.11 | 365 | 7.9 | 45.05 | 7.5 | 36.36 | 272.7 | 4.680 | −0.141 | −0.390 |
62 | JP-370M | Mono PERC | 72 | 9.8 | 48.6 | 9.29 | 41.33 | 370 | 7.94 | 45.15 | 7.52 | 36.77 | 276.7 | 4.704 | −0.141 | −0.390 |
63 | JP-380M | Mono PERC | 72 | 9.81 | 48.74 | 9.31 | 41.47 | 380 | 7.95 | 45.28 | 7.54 | 37.26 | 281 | 4.709 | −0.141 | −0.390 |
64 | VSM.72.315.05 | Poly | 72 | 8.92 | 45.8 | 8.4 | 37.5 | 315 | 7.22 | 42.4 | 6.74 | 34.6 | 233.2 | 5.084 | −0.133 | −0.380 |
65 | VSM.72.320.05 | Poly | 72 | 9.03 | 46 | 8.5 | 37.7 | 320 | 7.31 | 42.6 | 6.82 | 34.8 | 237.2 | 5.147 | −0.133 | −0.380 |
66 | VSM.72.325.05 | Poly | 72 | 9.13 | 46.2 | 8.6 | 37.8 | 325 | 7.39 | 42.8 | 6.9 | 34.9 | 240.6 | 5.204 | −0.134 | −0.380 |
67 | VSM.72.330.05 | Poly | 72 | 9.24 | 46.3 | 8.7 | 38 | 330 | 7.47 | 42.9 | 6.99 | 35 | 244.7 | 5.267 | −0.134 | −0.380 |
68 | VSM.72.335.05 | Poly | 72 | 9.35 | 46.5 | 8.8 | 38.1 | 335 | 7.56 | 43.1 | 7.06 | 35.1 | 248.2 | 5.330 | −0.135 | −0.380 |
69 | VSM.72.340.05 | Poly | 72 | 9.46 | 46.7 | 8.91 | 38.2 | 340 | 7.64 | 43.3 | 7.13 | 35.2 | 251.6 | 5.392 | −0.135 | −0.380 |
70 | TP672P-320 | Poly | 72 | 9.16 | 45.5 | 8.63 | 37.1 | 320 | 7.42 | 42 | 6.92 | 34.1 | 236 | 5.496 | −0.141 | −0.400 |
71 | TP672P-325 | Poly | 72 | 9.22 | 45.7 | 8.7 | 37.4 | 325 | 7.46 | 42.2 | 6.98 | 34.4 | 240 | 5.532 | −0.142 | −0.400 |
72 | TP672P-330 | Poly | 72 | 9.27 | 45.9 | 8.76 | 37.7 | 330 | 7.51 | 42.3 | 7.04 | 34.6 | 243 | 5.562 | −0.142 | −0.400 |
73 | CHSM6610P-220 | Poly | 72 | 8.46 | 36.95 | 7.89 | 28.02 | 220 | 7.12 | 33.73 | 6.51 | 25.36 | 165 | 4.399 | −0.127 | −0.469 |
74 | CHSM6610P-225 | Poly | 72 | 8.49 | 37.14 | 7.92 | 28.4 | 225 | 7.15 | 33.93 | 6.56 | 25.74 | 168.8 | 4.415 | −0.128 | −0.469 |
75 | CHSM6610P-230 | Poly | 72 | 8.53 | 37.35 | 7.99 | 28.78 | 230 | 7.18 | 34.12 | 6.61 | 26.08 | 172.5 | 4.436 | −0.128 | −0.469 |
76 | CHSM6610P-235 | Poly | 72 | 8.56 | 37.56 | 8.06 | 29.16 | 235 | 7.21 | 34.31 | 6.67 | 26.42 | 176.3 | 4.451 | −0.129 | −0.469 |
77 | CHSM6610P-240 | Poly | 72 | 8.59 | 37.77 | 8.13 | 29.54 | 240 | 7.23 | 34.5 | 6.73 | 26.75 | 180 | 4.467 | −0.130 | −0.469 |
78 | CHSM6610P-245 | Poly | 72 | 8.62 | 37.98 | 8.2 | 29.92 | 245 | 7.26 | 34.7 | 6.79 | 27.06 | 183.8 | 4.482 | −0.131 | −0.469 |
79 | CHSM6610P-250 | Poly | 72 | 8.65 | 38.19 | 8.27 | 30.3 | 250 | 7.28 | 34.89 | 6.85 | 27.37 | 187.5 | 4.498 | −0.131 | −0.469 |
80 | ASM6612P-305 | Poly | 72 | 8.95 | 45.29 | 8.53 | 35.77 | 305 | 6.92 | 41.56 | 6.52 | 32.67 | 213 | 4.475 | −0.141 | −0.408 |
81 | ASM6612P-310 | Poly | 72 | 8.99 | 45.42 | 8.68 | 35.8 | 310 | 6.95 | 41.68 | 6.62 | 32.7 | 216.5 | 4.495 | −0.141 | −0.408 |
82 | ASM6612P-315 | Poly | 72 | 9.02 | 45.55 | 8.8 | 35.83 | 315 | 6.98 | 41.8 | 6.73 | 32.71 | 220 | 4.510 | −0.142 | −0.408 |
83 | ASM6612P-320 | Poly | 72 | 9.06 | 45.68 | 8.92 | 35.86 | 320 | 7.01 | 41.92 | 6.83 | 32.72 | 223.5 | 4.530 | −0.142 | −0.408 |
84 | ASM6612P-325 | Poly | 72 | 9.1 | 45.82 | 8.95 | 36.31 | 325 | 7.04 | 42.04 | 6.84 | 33.18 | 226.9 | 4.550 | −0.143 | −0.408 |
85 | KC200GT | Poly | 54 | 8.21 | 32.9 | 7.61 | 26.3 | 200 | 6.62 | 29.9 | 6.13 | 23.2 | 142 | 3.180 | −0.123 | - |
86 | FS-6420 | Thin Film CdTe | 264 | 2.54 | 218.5 | 2.33 | 180.4 | 420 | 2.04 | 206.3 | 1.88 | 168.7 | 317.2 | 1.016 | −0.612 | −0.320 |
87 | FS-6425 | Thin Film CdTe | 264 | 2.54 | 218.9 | 2.34 | 181.5 | 425 | 2.05 | 206.6 | 1.89 | 169.8 | 320.9 | 1.016 | −0.613 | −0.320 |
88 | FS-6430 | Thin Film CdTe | 264 | 2.54 | 219.2 | 2.36 | 182.6 | 430 | 2.05 | 207 | 1.9 | 170.9 | 324.7 | 1.016 | −0.614 | −0.320 |
89 | FS-6435 | Thin Film CdTe | 264 | 2.55 | 219.6 | 2.37 | 183.6 | 435 | 2.06 | 207.3 | 1.91 | 172 | 328.5 | 1.020 | −0.615 | −0.320 |
90 | FS-6440 | Thin Film CdTe | 264 | 2.55 | 220 | 2.38 | 184.7 | 440 | 2.06 | 207.7 | 1.92 | 173.1 | 332.4 | 1.020 | −0.616 | −0.320 |
91 | FS-6445 | Thin Film CdTe | 264 | 2.56 | 220.4 | 2.4 | 185.7 | 445 | 2.06 | 208 | 1.93 | 174.1 | 336 | 1.024 | −0.617 | −0.320 |
92 | FS-6450 | Thin Film CdTe | 264 | 2.57 | 221.1 | 2.42 | 186.8 | 450 | 2.07 | 208.8 | 1.94 | 175.2 | 339.9 | 1.028 | −0.619 | −0.320 |
93 | ShellST36 | Thin film CIS | 40 | 2.68 | 22.9 | 2.28 | 15.8 | 36 | 2.2 | 20.2 | 1.78 | 13.8 | 24.6 | 0.320 | −0.100 | −0.600 |
94 | ShellST40 | Thin film CIS | 40 | 2.68 | 23.3 | 2.41 | 16.6 | 40 | 2.2 | 20.7 | 1.88 | 14.7 | 27.7 | 0.350 | −0.100 | −0.600 |
95 | SF145-S | Thin Film CIS | 100 | 2.2 | 107 | 1.8 | 81 | 145 | 1.76 | 97.4 | 1.43 | 76 | 108 | 0.220 | −0.321 | −0.310 |
96 | SF150-S | Thin Film CIS | 100 | 2.2 | 108 | 1.85 | 81.5 | 150 | 1.76 | 98.3 | 1.47 | 76.4 | 111 | 0.220 | −0.324 | −0.310 |
97 | SF155-S | Thin Film CIS | 100 | 2.2 | 109 | 1.88 | 82.5 | 155 | 1.76 | 99.2 | 1.49 | 77.4 | 115 | 0.220 | −0.327 | −0.310 |
98 | SF160-S | Thin Film CIS | 100 | 2.2 | 110 | 1.91 | 84 | 160 | 1.76 | 100 | 1.51 | 78.8 | 119 | 0.220 | −0.330 | −0.310 |
99 | SF165-S | Thin Film CIS | 100 | 2.2 | 110 | 1.93 | 85.5 | 165 | 1.76 | 100 | 1.53 | 80.2 | 123 | 0.220 | −0.330 | −0.310 |
100 | SF170-S | Thin Film CIS | 100 | 2.2 | 112 | 1.95 | 87.5 | 170 | 1.76 | 102 | 1.55 | 82.1 | 126 | 0.220 | −0.336 | −0.310 |
References
- Guerrero-Lemus, R.; Vega, R.; Kim, T.; Kimm, A.; Shephard, L.E. Bifacial solar photovoltaics—A technology review. Renew. Sustain. Energy Rev. 2016, 60, 1533–1549. [Google Scholar] [CrossRef]
- Singh, J.P.; Aberle, A.G.; Walsh, T.M. Electrical characterization method for bifacial photovoltaic modules. Sol. Energy Mater. Sol. Cells 2014, 127, 136–142. [Google Scholar] [CrossRef]
- Liang, T.S.; Pravettoni, M.; Deline, C.; Stein, J.S.; Kopecek, R.; Singh, J.P.; Luo, W.; Wang, Y.; Aberle, A.G.; Khoo, Y.S. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 2019, 12, 116–148. [Google Scholar] [CrossRef]
- Al-Dhaifallah, M.; Nassef, A.M.; Rezk, H.; Nisar, K.S. Optimal parameter design of fractional order control based INC-MPPT for PV system. Sol. Energy 2018, 159, 650–664. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Appl. Energy 2015, 154, 500–519. [Google Scholar] [CrossRef]
- Jena, D.; Ramana, V.V. Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review. Renew. Sustain. Energy Rev. 2015, 52, 400–417. [Google Scholar] [CrossRef]
- Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. Photovoltaic Sources Modeling; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Baig, M.Q.; Khan, H.A.; Ahsan, S.M. Evaluation of solar module equivalent models under real operating conditions—A review. J. Renew. Sustain. Energy 2020, 12, 012701. [Google Scholar] [CrossRef]
- De Soto, W.; Klein, S.A.; Beckman, W.A. Improvement and validation of a model for photovoltaic array performance. Sol. Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Dobos, A.P. An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model. J. Sol. Energy Eng. 2012, 134. [Google Scholar] [CrossRef]
- Boyd, M.T.; Klein, S.A.; Reindl, D.T.; Dougherty, B.P. Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models. J. Sol. Energy Eng.-Trans. ASME 2011, 133, 021005. [Google Scholar] [CrossRef]
- Jain, A.; Kapoor, A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells 2004, 81, 269–277. [Google Scholar] [CrossRef]
- Elazab, O.S.; Hasanien, H.M.; Elgendy, M.A.; Abdeen, A.M. Parameters estimation of single- and multiple-diode photovoltaic model using whale optimisation algorithm. IET Renew. Power Gener. 2018, 12, 1755–1761. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy 2019, 179, 358–372. [Google Scholar] [CrossRef]
- Sibalija, T.V.; Kumar, S.; Patel, G.C.M.; Jagadish. A soft computing-based study on WEDM optimization in processing Inconel 625. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [Google Scholar] [CrossRef]
- Mahor, A.; Prasad, V.; Rangnekar, S. Economic dispatch using particle swarm optimization: A review. Renew. Sustain. Energy Rev. 2009, 13, 2134–2141. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Keles, S. Spatial forest planning: A review. Ecol. Model. 2005, 188, 145–173. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy 2011, 85, 2349–2359. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.N.; Wu, G.; Amaratunga, G.A.J. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renew. Energy 2019, 132, 425–438. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Toledo, F.J.; Blanes, J.M.; Galiano, V.; Laudani, A. In-depth analysis of single-diode model parameters from manufacturer’s datasheet. Renew. Energy 2021, 163, 1370–1384. [Google Scholar] [CrossRef]
- Abido, M.A.; Khalid, M.S. Seven-parameter PV model estimation using Differential Evolution. Electr. Eng. 2018, 100, 971–981. [Google Scholar] [CrossRef]
- Yan, Z.; Li, C.; Song, Z.; Xiong, L.; Luo, C. An Improved Brain Storming Optimization Algorithm for Estimating Parameters of Photovoltaic Models. IEEE Access 2019, 7, 77629–77641. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2004. [Google Scholar]
- Di Piazza, M.C.; Vitale, G. Photovoltaic Sources—Modeling and Emulation; Springer: New York, NY, USA, 2013. [Google Scholar]
- Smets, A.; Jager, K.; Isabella, O.; Van Swaaij, R.; Zeman, M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems; UIT Cambridge: Cambridge, UK, 2016. [Google Scholar]
- Jadli, U.; Thakur, P.; Shukla, R.D. A New Parameter Estimation Method of Solar Photovoltaic. IEEE J. Photovol. 2018, 8, 239–247. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Chen, X. Temperature dependende of semiconductor band gaps. Am. Inst. Phys. 1991, 58, 2924–2926. [Google Scholar]
- Van Zeghbroeck, B. Principles of Semiconductor Devices; Colorado University: Boulder, CO, USA, 2011. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Accarino, J.; Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. Symbolic algebra for the calculation of the series and parallel resistances in PV module model. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013; pp. 62–66. [Google Scholar] [CrossRef]
- Nassar-eddine, I.; Obbadi, A.; Errami, Y.; El Fajri, A.; Agunaou, M. Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study. Energy Convers. Manag. 2016, 119, 37–48. [Google Scholar] [CrossRef]
Bounds | a V | ||
---|---|---|---|
1.3874 | 0.8673 | 43.833 | |
2.7748 | 867.20 | 341.42 |
Parameter | Classic | Proposed |
---|---|---|
A | 8.2235 | 8.2236 |
nA | 1.5173 | 1.6605 |
a V | 1.4693 | 1.4752 |
315.58 | 313.11 | |
192.57 | 188.63 | |
% | 0.3652 |
Datasheet | Acarino et al. [34] | N. Eddine et al. [35] | Jadli et al. [28] | Elazab et al. [13] | Ebrahimi et al. [14] | Biswas et al. [20] | Proposed Method | |
---|---|---|---|---|---|---|---|---|
Solution type | - | Explicit | Explicit | Iterative | Heuristic | Heuristic | Heuristic | Heuristic |
A | - | 8.2100 | 8.2233 | 8.2119 | 8.2800 | 8.2186 | 8.2197 | 8.2236 |
nA | - | 2.1546 | 2.1524 | 196.06 | 85.580 | 1.4360 | 68.000 | 1.6784 |
V | - | 1.4921 | 1.4926 | 1.87656 | 1.7897 | 1.4641 | 1.7702 | 1.4759 |
m | - | 284.40 | 308.00 | 210.89 | 281.5 | 240.94 | 191.10 | 313.06 |
- | 157.54 | 193.05 | 895.80 | 424.22 | 130.28 | 161.74 | 189.38 | |
A | 8.21 | 8.1952 | 8.2102 | 8.2100 | 8.2745 | 8.2034 | 8.2100 | 8.2100 |
V | 32.9 | 32.879 | 32.901 | 32.926 | 32.892 | 32.849 | 32.900 | 32.900 |
A | 7.61 | 7.5728 | 7.6087 | 7.6058 | 7.6436 | 7.5662 | 7.5279 | 7.6103 |
V | 26.3 | 26.449 | 26.305 | 26.340 | 25.968 | 26.762 | 26.613 | 26.299 |
W | 200.14 | 200.29 | 200.15 | 200.34 | 198.49 | 202.49 | 200.34 | 200.14 |
A | 6.62 | 6.6144 | 6.6262 | 6.6242 | 6.6764 | 6.6211 | 6.6255 | 6.6261 |
V | 29.9 | 29.436 | 29.457 | 27.970 | 28.276 | 29.516 | 28.366 | 29.557 |
A | 6.13 | 6.0569 | 6.0819 | 6.0169 | 6.0614 | 6.0584 | 5.9899 | 6.0857 |
V | 23.2 | 23.404 | 23.295 | 21.828 | 21.869 | 23.753 | 22.442 | 23.390 |
W | 142.22 | 141.75 | 141.68 | 131.34 | 132.56 | 143.90 | 134.42 | 142.34 |
% | - | 0.6501 | 0.3815 | 2.6112 | 2.6796 | 1.2281 | 2.2014 | 0.3563 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Bravo, C.; Barraza, R.; Sánchez-Squella, A.; Valdivia-Lefort, P.; Castillo-Burns, F. Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries. Energies 2021, 14, 3925. https://doi.org/10.3390/en14133925
Cárdenas-Bravo C, Barraza R, Sánchez-Squella A, Valdivia-Lefort P, Castillo-Burns F. Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries. Energies. 2021; 14(13):3925. https://doi.org/10.3390/en14133925
Chicago/Turabian StyleCárdenas-Bravo, Carlos, Rodrigo Barraza, Antonio Sánchez-Squella, Patricio Valdivia-Lefort, and Federico Castillo-Burns. 2021. "Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries" Energies 14, no. 13: 3925. https://doi.org/10.3390/en14133925
APA StyleCárdenas-Bravo, C., Barraza, R., Sánchez-Squella, A., Valdivia-Lefort, P., & Castillo-Burns, F. (2021). Estimation of Single-Diode Photovoltaic Model Using the Differential Evolution Algorithm with Adaptive Boundaries. Energies, 14(13), 3925. https://doi.org/10.3390/en14133925