Aggregated World Energy Demand Projections: Statistical Assessment
Abstract
:1. Introduction
2. Literature Background
3. Methodology
4. Results
5. Discussion
5.1. Assessment of Roadmaps Projections
5.2. Future Demand Uncertainties
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EJ | Exajoules (1 EJ = 277.778 TWh). |
EJ/yr | Exajoules per year. |
GDP | Gross Domestic Product. |
gr. | Growth rate. |
Mtoe | Millions of tonnes of oil equivalent. |
TFEC | Total Final Energy Consumption. |
TPES | Total Primary Energy Supply. |
Pop. | Population. |
s.d. | standard deviation. |
Appendix A. Theory and Methods
Appendix B. Empirical Results
I | II | III | |
---|---|---|---|
0.105 (3.23) | 0.033 (2.17) | 0.023 (2.16) | |
2.185 (3.38) | 1.487 (41.65) | 1.495 (48.85) | |
−0.085 (2.36) | −0.045 (3.18) | −0.049 (2.94) | |
0.058 (2.24) | 0.030 (3.19) | 0.033 (2.96) | |
0.68 | 0.67 | 0.67 | |
0.49 | 0.68 | 0.82 | |
0.496 | 0.999 | 0.999 | |
0.467 | 0.999 | 0.999 | |
S.E. | 0.010 | 0.141 | 0.996 |
S.D. | 0.014 | 34.53 | 340.1 |
DW | 1.91 | 1.93 | 1.78 |
References
- Teske, S. Achieving the Paris Climate Agreements Goals; Springer Open: Cham, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- IEA. Sustainable Recovery. World Energy Outlook Special Report (in Collaboration with the IMF). Available online: https://www.iea.org/reports/sustainable-recovery (accessed on 25 May 2021).
- Irena. Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf (accessed on 25 May 2021).
- Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy forecasting: A review and outlook. IEEE Open Access J. Power Energy 2020, 7, 376–388. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Simon, S.; Naegler, T.; Gils, H.C. Transformation towards a renewable energy system in Brazil and Mexico—Technological and structural options for Latin America. Energies 2018, 11, 907. [Google Scholar] [CrossRef] [Green Version]
- McKibbin, W.J.; Pearce, D.; Stegman, A. Long term projections of carbon emissions. Int. J. Forecast. 2007, 23, 637–653. [Google Scholar] [CrossRef]
- de la Croix, D.; Docquier, F.; Liégeois, P. Income growth in the 21st century: Forecasts with an overlapping generations model. Int. J. Forecast. 2007, 23, 621–635. [Google Scholar] [CrossRef] [Green Version]
- Boßmann, T.; Staffell, I. The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain. Energy 2015, 90, 1317–1333. [Google Scholar] [CrossRef]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sustain. Energy Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Swarts, R. Special Report on Emissions Scenarios. International Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Granger, C.; Jeon, Y. Long-term forecasting and evaluation. Int. J. Forecast. 2007, 23, 539–551. [Google Scholar] [CrossRef]
- Granger, C.W.J. Forecasting in Business and Economics, 2nd ed.; Academic Press Inc.: Cambridge, MA, USA, 1989. [Google Scholar]
- Ahlburg, D.; Lindh, T. Long-run income forecasting. Int. J. Forecast. 2007, 23, 533–538. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A.J. The Year 2000—A Framework for Speculation on the Next Thirty-Three Years; MacMillan: New York, NY, USA, 1967. [Google Scholar]
- Kraay, A.; Monokroussos, G. Growth Forecasts Using Time Series and Growth Models. World Bank Policy ResearchWorking Paper, WPS 2224. 1999. Available online: http://documents1.worldbank.org/curated/en/787111468782349329/pdf/multi-page.pdf (accessed on 25 May 2021).
- Gilbert, P.D. Combining VAR estimation and state-space model reduction for simple good predictions. J. Forecast. 1995, 14, 229–250. [Google Scholar] [CrossRef]
- Prskawetz, A.; Kögel, T.; Sanderson, W.C.; Scherbov, S. The effects of age structure on economic growth: An application of probabilistic forecasting to India. Int. J. Forecast. 2007, 23, 587–602. [Google Scholar] [CrossRef] [Green Version]
- Lutz, W.; Scherbov, S. Probabilistic population projections for India with explicit consideration of the education-fertility link. Int. Stat. Rev. 2004, 74, 81−92. [Google Scholar] [CrossRef]
- Lindh, T.; Malmberg, B. Demographically based global income forecasts up to the year 2050. Int. J. Forecast. 2007, 23, 553–567. [Google Scholar] [CrossRef]
- Ghalehkhondabi, I.; Ardjmand, E.; Weckman, G.R.; Young, W.A. An overview of energy demand forecasting methods published in 2005–2015. Energy Syst. 2017, 8, 411–447. [Google Scholar] [CrossRef]
- Lindberg, K.B.; Seljom, P.; Madsen, H.; Fischer, D.; Korpas, M. Long-term electricity load forecasting: Current and future trends. Util. Policy 2019, 58, 102–119. [Google Scholar] [CrossRef]
- Smil, V. Energy Transitions: Global and National Perspectives, 2nd ed.; Praeger: Santa Barbara, CA, USA, 2017. [Google Scholar]
- World Bank. World Bank Open Data; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Maddison, A. World-Gdp-Over-The-last-Two-Millennia, (1000–2008). Available online: https://www.rug.nl/ggdc/historicaldevelopment/maddison/ (accessed on 25 May 2021).
- United Nations. Department of Economic and Social Affairs. World Population Prospects 2019. Highlights, Methodology, Key Findings; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations Development Programme (UNPD). World Population Prospects: The 2015 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Mauleón, I. Photovoltaic and wind cost decrease estimation: Implications for investment analysis. Energy 2017, 137, 1054–1065. [Google Scholar] [CrossRef]
- Mauleón, I. Assessing PV and wind roadmaps: Learning rates, risk, and social discounting. Renew. Sustain. Energy Rev. 2019, 100, 71–89. [Google Scholar] [CrossRef]
- Mauleón, I. Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets. Appl. Energy 2019, 253, 113556. [Google Scholar] [CrossRef]
- IEA. World Energy Balances 2019. Available online: https://webstore.iea.org/world-energy-balances-2019 (accessed on 25 May 2021).
- OECD/IEA. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 2. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 25 May 2021).
- Irena. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 4. Available online: http://www.irena.org/DocumentDownloads/Publications/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 25 May 2021).
- Teske, S.; Zervos, A.; Lins, C.; Muth, J.; Krewitt, W.; Pregger, T.; Simon, S.; Naegler, T.; Schmid, S.; Graus, W.; et al. Energy [R]evolution—A Sustainable World Energy Outlook; Greenpeace International, European Renewable Energy Council (EREC), Deutsches Zentrumfür Luft- und Raumfahrt (DLR); Ecofys: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Krewitt, W.; Simon, S.; Graus, W.; Teske, S.; Zervos, A.; Schäfer, O. The 2 °C scenario—A sustainable world energy perspective. Energy Policy 2007, 35, 4969–4980. [Google Scholar] [CrossRef]
- Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Energy consumption of cryptocurrencies beyond bitcoin. Joule 2020, 4, 1839–1851. [Google Scholar] [CrossRef]
- de Vries, A. Renewable energy will not solve bitcoin’s sustainability problem. Joule 2019, 3, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Koutitas, G.; Demestichas, P. A review of energy efficiency in telecommunication networks. Telfor J. 2010, 2, 2–7. [Google Scholar]
- Przystupa, K.; Beshley, M.; Kaidan, M.; Andrushchak, V.; Demydov, I.; Kochan, O.; Pieniak, D. Methodology and software tool for energy consumption evaluation and optimization in multilayer transport optical networks. Energies 2020, 13, 6370. [Google Scholar] [CrossRef]
- Hook, A.; Court, V.; Sovacool, B.; Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 2020, 15, 093003. [Google Scholar] [CrossRef] [Green Version]
- Brockway, P.E.; Sorrell, S.; Semieniuk, G.; Heun, M.K.; Court, V. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renew. Sustain. Energy Rev. 2021, 141, 110781. [Google Scholar] [CrossRef]
- Vivanco, D.F.; Sala, S.; McDowall, W. Roadmap to rebound: How to address rebound effects from resource efficiency policy. Sustainability 2018, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.R.; Brown, J.H.; Day, J.W.; Flanagan, T.P.; Roy, E.D. The central role of energy in the urban transition: Global challenges for sustainability. Biophys. Econ. Resour. Qual. 2019, 4, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Semieniuk, G.; Taylor, L.; Rezai, A.; Foley, D. Plausible energy demand patterns in a growing global economy with climate policy. Nat. Clim. Chang. 2021, 11, 313–318. [Google Scholar] [CrossRef]
- Creutzig, F.; Fernandez, B.; Haberl, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond technology: Demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef] [Green Version]
- Bowles, S. Endogenous preferences: The cultural consequences of markets and other economic institutions. J. Econ. Lit. 1998, 36, 75–111. [Google Scholar]
- Cullen, J.M.; Allwood, J.M.; Borgstein, E.H. Reducing energy demand: What are the practical limits? Environ. Sci. Technol. 2011, 45, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T. Prosperity without Growth: Economics for a Finite Planet; Earthscan: London, UK, 2011. [Google Scholar]
- Stanton, E.A. The Human Development Index: A History; Political Economy Research Institute WP 127; University of Massachusetts: Amherst, MA, USA, 2007. [Google Scholar]
- Fleurbaey, M. Beyond GDP: The quest for a measure of social welfare. J. Econ. Lit. 2009, 47, 1029–1075. [Google Scholar] [CrossRef]
- Mauleón, I. Economic issues in deep low-carbon energy systems. Energies 2020, 13, 4151. [Google Scholar] [CrossRef]
- Montano, B.; García-López, M. Malthusianism of the 21st century. Environ. Sustain. Indic. 2020, 6, 100032. [Google Scholar] [CrossRef]
- Brueckner, M.; Schwandt, H. Income and population growth. Econ. J. 2015, 125, 1653–1676. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Cottrell, A.; Luchetti, R. A Hansl Primer. 2015. Available online: http://gretl.sourceforge.net/ (accessed on 25 April 2020).
- Janet, P.K. Gnuplot in Action: Understanding Data with Graphs, 2nd ed.; Manning Publications: Shelt Alan, NY, USA, 2016. [Google Scholar]
Pop. Gr., 0.5% | Pop. Gr., 1.0% | |||
---|---|---|---|---|
GDP Gr., 2% I | GDP Gr., 3% II | GDP Gr., 2% III | GDP Gr., 3% IV | |
TFEC | 530.0 | 576.6 | 616.6 | 670.7 |
TFEC (90%) | 916.6 | 997.0 | 1066.2 | 1159.7 |
TFEC (80%) | 783.9 | 852.7 | 911.9 | 991.9 |
GDP | 154.2 | 212.7 | 154.2 | 212.7 |
contr. GDP | 590.6 | 731.4 | 590.6 | 731.4 |
contr. dyn. | −60.6 | −154.8 | 26.0 | −60.7 |
TFEC (2050/2017) | 1.372 | 1.49 | 1.59 | 1.73 |
GDP (2050/2017) | 1.922 | 2.65 | 1.922 | 2.65 |
TFEC/GDP (2050) | 3.44 | 2.7 | 4.0 | 3.15 |
2015–2050 | 2050 | 2050 | 2050 | |
---|---|---|---|---|
GDP (%) | Pop. (b.) | TPES | TFEC | |
IEA (2017) | 3.1 | 9.8 | 14,204 Mtoe | 9741 Mtoe |
Irena (2017) | 2.8 | 9.7 | 635 EJ/yr | 370 EJ/yr |
Teske (2019) | 3.2 | 9.8 | 439 EJ/yr | 310 EJ/yr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauleón, I. Aggregated World Energy Demand Projections: Statistical Assessment. Energies 2021, 14, 4657. https://doi.org/10.3390/en14154657
Mauleón I. Aggregated World Energy Demand Projections: Statistical Assessment. Energies. 2021; 14(15):4657. https://doi.org/10.3390/en14154657
Chicago/Turabian StyleMauleón, Ignacio. 2021. "Aggregated World Energy Demand Projections: Statistical Assessment" Energies 14, no. 15: 4657. https://doi.org/10.3390/en14154657
APA StyleMauleón, I. (2021). Aggregated World Energy Demand Projections: Statistical Assessment. Energies, 14(15), 4657. https://doi.org/10.3390/en14154657