A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems
Abstract
:1. Introduction
- Identify the AI solutions adapted for sizing the PV systems to achieve an optimal power system design and the proper utilization of resources.
- Review the forecasting techniques developed with AI to estimate the mission profile indices, power generated, and load demand.
- Establish the literature on control solutions with AI for power electronic converters to enhance the converter operation for maximizing the output power. Further, the application of AI techniques for grid forming, and grid supporting mode, i.e., islanding detection and fault ride through, are also identified.
- Review the application of AI techniques adapted for condition monitoring and reliability analysis in order to estimate the remaining useful life of different components in the system.
- Identify the future trends of AI techniques for digital twin and cyber security to control, monitor, avoid false data injection, and protect the power system from unscheduled disconnection.
2. AI Framework for Grid Connected Photovoltaic Systems
3. Application of AI for Power System Design
3.1. Parameter Identification in PV Systems
3.2. Sizing of Solar PV System
4. Application of AI for Forecasting in Grids with Photovoltaic Systems
4.1. AI for Solar Irradiance Forecasting
4.2. Literature Review of Solar Power Forecasting
5. Application of AI for Power Electronics Converter Control
5.1. Grid-Connected Inverter Control
5.2. Stand Alone Inverter Control
6. Application of AI for Monitoring
6.1. Condition Monitoring of Grid Connected PV System
6.1.1. AI Monitoring for PV Array Faults
6.1.2. AI Monitoring for Power Electronic Converter Faults
6.1.3. AI Monitoring for Faults in Filter
6.1.4. AI Monitoring for Battery Faults and Degradation
6.2. Application of AI for Reliability
7. Future Trends and Outlook
7.1. Digital Twin
7.2. Cybersecurity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Acronyms
AI | Artificial Intelligence | ABC | Artificial Bee Colony |
PV | Photovoltaic | CNN | Convolutional Neural Network |
ESS | Energy Storage System | RBFN | Radial Basis Function Network |
OPF | Optimal Power Flow | db4 | Daubechies Order 4 |
NTO | Network Topology Optimization | PCA | Principal Component Analysis |
DTR | Dynamic Thermal Rating | GAP | Global Average Pooling |
RMSE | Root Mean Square Error | ESR | Equivalent Series Resistance |
I-V | Current Voltage | NFN | Neo-Fuzzy Neuron |
THD | Total Harmonic Distortion | RUL | Remaining Useful Life |
PID | Proportional, Integral, Derivative | RLS | Recursive Least Square |
PI | Proportional-Integral | SVR | Support Vector Regression |
PR | Proportional-Resonant | SOC | State Of Charge |
LSTM | Long Short-Term Memory | SOF | State Of Function |
DL | Deep Learning | SOH | State Of Health |
k-NN | K-Nearest Neighbor | TCN | Temporal Convolutional Network |
ANN | Artificial Neural Network | RVM | Relevance Vector Machine |
SVM | Support Vector Machine | LSTM | Long Short-Term Memory |
ANFIS | Adaptive Neuro Fuzzy Inference System | AGMM | Adaptive Gaussian Mixture Model |
FPSO | Flexible particle swarm optimization algorithm | TLS | Transport Layer Security |
MPP | Maximum Power Point | DoS | Denial Of Service |
AIS | Artificial Immune System | DIA | Data Integrity Attack |
LVRT | Low Voltage Ride Through | PLC | Power Line Communication |
FACT | Flexible Alternating Current Transmission System | ICT | Information And Communication Technologies |
FLC | Fuzzy Logic Control | IoT | Internet of Things |
PSO | Particle Swarm Optimization | DT | Digital Twin |
DGs | Distributed Generation | AOM | Approach Optimization Method |
PWM | Pulse Width Modulation | RNN | Recurrent Neural Network |
OLM | On-Line Monitoring | MAB | Modified Adaptive Boosting |
RF | Random Forest | SCADA | Supervisory Control and Data Acquisition |
MLPNN | Multi-Layer Perceptron Neural Network | DER | Distributed Energy Resource |
DWT | Discrete Wavelet Transform | PSO | Particle Swarm Optimization |
PNN | Probabilistic Neural Network | GA | Genetic Algorithm |
References
- Bryson, J.J. The Past Decade and Future of AI’s Impact on Society. In Towards a New Enlightenment; Turner: Madrid, Spain, 2019. [Google Scholar]
- Zhao, S.; Blaabjerg, F.; Wang, H. An Overview of Artificial Intelligence Applications for Power Electronics. IEEE Trans. Power Electron. 2021, 36, 4633–4658. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.; Hontoria, L.; Shaari, S. Artificial intelligence techniques for sizing photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 406–419. [Google Scholar] [CrossRef]
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Khan, M.A.; Haque, A.; Kurukuru, V.B. Performance assessment of stand-alone transformerless inverters. Int. Trans. Electr. Energy Syst. 2020, 30, e12156. [Google Scholar] [CrossRef]
- Ongsakul, W.; Dieu, V.N. Artificial Intelligence in Power System Optimization; Informa UK Limited: London, UK, 2016. [Google Scholar]
- Kurukuru, V.S.B.; Blaabjerg, F.; Khan, M.A.; Haque, A. A Novel Fault Classification Approach for Photovoltaic Systems. Energies 2020, 13, 308. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Dragicevic, T.; Blaabjerg, F. Cyber Security in Control of Grid-Tied Power Electronic Converters–Challenges and Vulnerabilities. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 1, 1–15. [Google Scholar] [CrossRef]
- Zernichow, B.M. Usability of Visual Data Profiling in Data Cleaning and Transformation; University of Oslo: Basel, Switzerland, 2017. [Google Scholar]
- Saez-de-Ibarra, A.; Milo, A.; Gaztanaga, H.; Debusschere, V.; Bacha, S. Co-Optimization of Storage System Sizing and Control Strategy for Intelligent Photovoltaic Power Plants Market Integration. IEEE Trans. Sustain. Energy 2016, 7, 1749–1761. [Google Scholar] [CrossRef]
- Molzahn, D.K.; Dörfler, F.; Sandberg, H.; Low, S.H.; Chakrabarti, S.; Baldick, R.; Lavaei, J. A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems. IEEE Trans. Smart Grid 2017, 8, 2941–2962. [Google Scholar] [CrossRef]
- Xiao, R.; Xiang, Y.; Wang, L.; Xie, K. Power System Reliability Evaluation Incorporating Dynamic Thermal Rating and Network Topology Optimization. IEEE Trans. Power Syst. 2018, 33, 6000–6012. [Google Scholar] [CrossRef]
- Da Costa, L.C.; Thome, F.S.; Garcia, J.D.; Pereira, M.V.F. Reliability-Constrained Power System Expansion Planning: A Stochastic Risk-Averse Optimization Approach. IEEE Trans. Power Syst. 2021, 36, 97–106. [Google Scholar] [CrossRef]
- Verastegui, F.; Lorca, A.; Olivares, D.E.; Negrete-Pincetic, M.; Gazmuri, P. An Adaptive Robust Optimization Model for Power Systems Planning with Operational Uncertainty. IEEE Trans. Power Syst. 2019, 34, 4606–4616. [Google Scholar] [CrossRef]
- Park, J.; Law, K.H. Bayesian Ascent: A Data-Driven Optimization Scheme for Real-Time Control with Application to Wind Farm Power Maximization. IEEE Trans. Control. Syst. Technol. 2016, 24, 1655–1668. [Google Scholar] [CrossRef]
- Liu, C.-H.; Gu, J.-C.; Yang, M.-T. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Liu, F.; Xia, Y.; Zhang, X. Power System Security Under False Data Injection Attacks With Exploitation and Exploration Based on Reinforcement Learning. IEEE Access 2018, 6, 48785–48796. [Google Scholar] [CrossRef]
- Radil, T.; Ramos, P.; Janeiro, F.; Serra, A. PQ Monitoring System for Real-Time Detection and Classification of Disturbances in a Single-Phase Power System. IEEE Trans. Instrum. Meas. 2008, 57, 1725–1733. [Google Scholar] [CrossRef]
- Styvaktakis, E.; Bollen, M.; Gu, I.Y. Expert system for classification and analysis of power system events. IEEE Trans. Power Deliv. 2002, 17, 423–428. [Google Scholar] [CrossRef]
- Haque, A.; Bharath, K.V.S.; Khan, M.A.; Khan, I.; Jaffery, Z.A. Fault diagnosis of Photovoltaic Modules. Energy Sci. Eng. 2019, 7, 622–644. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.; Mishra, S.; Salama, M.; Liew, A. Classification of power system disturbances using a fuzzy expert system and a Fourier linear combiner. IEEE Trans. Power Deliv. 2000, 15, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Semero, Y.K.; Zhang, J.; Zheng, D. North China Electric Power University PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy. CSEE J. Power Energy Syst. 2018, 4, 210–218. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, B.; Panigrahi, B.K. Framework of Gradient Descent Least Squares Regression-Based NN Structure for Power Quality Improvement in PV-Integrated Low-Voltage Weak Grid System. IEEE Trans. Ind. Electron. 2019, 66, 9724–9733. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Wang, Y.; Yang, J.; Kang, C. Data-Driven Power Flow Linearization: A Regression Approach. IEEE Trans. Smart Grid 2019, 10, 2569–2580. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Huang, Y.; Wu, F.; Liu, Y.; Zhang, X. Research on clustering equivalent modeling of large-scale photovoltaic power plants. Chin. J. Electr. Eng. 2018, 4, 80–85. [Google Scholar] [CrossRef]
- Zhang, R.; Hredzak, B. Distributed Dynamic Clustering Algorithm for Formation of Heterogeneous Virtual Power Plants Based on Power Requirements. IEEE Trans. Smart Grid 2021, 12, 192–204. [Google Scholar] [CrossRef]
- Yao, C.; Chen, M.; Hong, Y.-Y. Novel Adaptive Multi-Clustering Algorithm-Based Optimal ESS Sizing in Ship Power System Considering Uncertainty. IEEE Trans. Power Syst. 2018, 33, 307–316. [Google Scholar] [CrossRef]
- Sanchez-Garcia, R.; Fennelly, M.; Norris, S.; Wright, N.; Niblo, G.; Brodzki, J.; Bialek, J.W. Hierarchical Spectral Clustering of Power Grids. IEEE Trans. Power Syst. 2014, 29, 2229–2237. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.M.G.; Godina, R.; Marzband, M.; Pouresmaeil, E. Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity. Energies 2018, 11, 2902. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, S.; Rodrigues, E.M.G. Solar photovoltaic modeling and simulation: As a renewable energy solution. Energy Rep. 2018, 4, 701–712. [Google Scholar] [CrossRef]
- Bouali, C.; Schulte, H.; Mami, A. A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search. Energies 2019, 12, 2246. [Google Scholar] [CrossRef] [Green Version]
- Elkholy, A.; El Ela, A.A. Optimal parameters estimation and modelling of photovoltaic modules using analytical method. Heliyon 2019, 5, e02137. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Solar photovoltaic system modeling and performance prediction. Renew. Sustain. Energy Rev. 2014, 36, 304–315. [Google Scholar] [CrossRef]
- Petcuţ, F.M.; Leonida-Dragomir, T. Solar cell parameter identification using genetic algorithms. Control. Eng. Appl. Inform. 2010, 12, 30–37. [Google Scholar]
- Ebrahimi, S.M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F. Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm. Energy 2019, 179, 358–372. [Google Scholar] [CrossRef]
- Tong, N.T.; Pora, W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy 2016, 176, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Jacob, B.; Balasubramanian, K.; Azharuddin, S.M.; Rajasekar, N. Solar PV Modelling and Parameter Extraction Using Artificial Immune System. Energy Procedia 2015, 75, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 2013, 102, 943–949. [Google Scholar] [CrossRef]
- Wang, R.; Zhan, Y.; Zhou, H. Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells. Energies 2015, 8, 7563–7581. [Google Scholar] [CrossRef]
- Durrani, S.P.; Balluff, S.; Wurzer, L.; Krauter, S. Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks. J. Mod. Power Syst. Clean Energy 2018, 6, 255–267. [Google Scholar] [CrossRef]
- Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Vatankhah, R.; Ghanatian, M. Artificial neural networks and adaptive neuro-fuzzy inference systems for parameter identification of dynamic systems. J. Intell. Fuzzy Syst. 2020, 39, 6145–6155. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Tang, L. A Powerful Bio-Inspired Optimization Algorithm Based PV Cells Diode Models Parameter Estimation. Front. Energy Res. 2021, 9, 147. [Google Scholar] [CrossRef]
- Al Hajri, M.; El-Naggar, K.; AlRashidi, M.; Al-Othman, A. Optimal extraction of solar cell parameters using pattern search. Renew. Energy 2012, 44, 238–245. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Yuan, X.; Shi, D.; He, Y. Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models. Appl. Sci. 2018, 8, 2155. [Google Scholar] [CrossRef] [Green Version]
- Mellit, A. Sizing of a stand-alone photovoltaic system based on neural networks and genetic algorithms: Application for remote areas. IU J. Electr. Electron. Eng. 2007, 7, 459–469. [Google Scholar]
- Kolawole, S. Application of Neural Networks For Predicitng The Optimal Sizing Parameters Of Stand-Alone Photovoltaic Systems. SOP Trans. Appl. Phys. 2014, 2014, 12–16. [Google Scholar] [CrossRef]
- Sulaiman, S.I.; Rahman, T.K.A.; Musirin, I.; Shaari, S.; Sopian, K. An intelligent method for sizing optimization in grid-connected photovoltaic system. Sol. Energy 2012, 86, 2067–2082. [Google Scholar] [CrossRef]
- Othman, Z.; Sulaiman, S.I.; Musirin, I.; Mohamad, K. Bat inspired algorithm for sizing optimization of grid-connected photovoltaic system. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 195–200. [Google Scholar]
- Khatib, T.; Elmenreich, W. An Improved Method for Sizing Standalone Photovoltaic Systems Using Generalized Regression Neural Network. Int. J. Photoenergy 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Kornelakis, A.; Marinakis, Y. Contribution for optimal sizing of grid-connected PV-systems using PSO. Renew. Energy 2010, 35, 1333–1341. [Google Scholar] [CrossRef]
- Mellit, A. Artificial intelligence based-modeling for sizing of a Stand-Alone Photovoltaic Power System: Proposition for a New Model using Neuro-Fuzzy System (ANFIS). In Proceedings of the 2006 3rd International IEEE Conference Intelligent Systems, New York, NY, USA, 4–6 September 2006; pp. 606–611. [Google Scholar]
- Hariri, M.H.M.; Desa, M.K.M.; Masri, S.; Zainuri, M.A.A.M. Grid-Connected PV Generation System—Components and Challenges: A Review. Energies 2020, 13, 4279. [Google Scholar] [CrossRef]
- Van der Veen, R.A.; Hakvoort, R.A. The electricity balancing market: Exploring the design challenge. Util. Policy 2016, 43, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.M.; Al-Jassim, M.M.; Metzger, W.; Glunz, S.W.; Verlinden, P.; Gang, X.; Mansfield, L.; Stanbery, B.J.; Zhu, K.; Yan, Y. The 2020 photovoltaic technologies roadmap. J. Phys. D Appl. Phys. 2020, 53, 493001. [Google Scholar] [CrossRef]
- Nwaigwe, K.; Mutabilwa, P.; Dintwa, E. An overview of solar power (PV systems) integration into electricity grids. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 2015, 1, 38–46. [Google Scholar] [CrossRef]
- Khan, M.A.; Mishra, S.; Harish, V.S.K.V. Grid connected energy efficient building with roof top SPV. In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 26–27 October 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 120–124. [Google Scholar]
- Li, Y.-Z.; Luan, R.; Niu, J.-C. Forecast of power generation for grid-connected photovoltaic system based on grey model and Markov chain. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1729–1733. [Google Scholar]
- Amjady, N.; Keynia, F.; Zareipour, H. Short-Term Load Forecast of Microgrids by a New Bilevel Prediction Strategy. IEEE Trans. Smart Grid 2010, 1, 286–294. [Google Scholar] [CrossRef]
- Ağbulut, Ü.; Gürel, A.E.; Biçen, Y. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew. Sustain. Energy Rev. 2021, 135, 110114. [Google Scholar] [CrossRef]
- Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Widén, J.; Carpman, N.; Castellucci, V.; Lingfors, D.; Olauson, J.; Remouit, F.; Bergkvist, M.; Grabbe, M.; Waters, R. Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources. Renew. Sustain. Energy Rev. 2015, 44, 356–375. [Google Scholar] [CrossRef]
- Moncada, A.; Richardson, J.W.; Vega-Avila, R. Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA SkyImager Dataset. Energies 2018, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Rajagukguk, R.A.; Ramadhan, R.A.; Lee, H.-J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Jayalakshmi, N.; Shankar, R.; Subramaniam, U.; Baranilingesan, I.; Karthick, A.; Stalin, B.; Rahim, R.; Ghosh, A. Novel Multi-Time Scale Deep Learning Algorithm for Solar Irradiance Forecasting. Energies 2021, 14, 2404. [Google Scholar] [CrossRef]
- Brahma, B.; Wadhvani, R. Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry 2020, 12, 1830. [Google Scholar] [CrossRef]
- Halpern-Wight, N.; Konstantinou, M.; Charalambides, A.G.; Reinders, A. Training and Testing of a Single-Layer LSTM Network for Near-Future Solar Forecasting. Appl. Sci. 2020, 10, 5873. [Google Scholar] [CrossRef]
- Husein, M.; Chung, I.-Y. Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach. Energies 2019, 12, 1856. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet Decomposition and Convolutional LSTM Networks Based Improved Deep Learning Model for Solar Irradiance Forecasting. Appl. Sci. 2018, 8, 1286. [Google Scholar] [CrossRef] [Green Version]
- Radicioni, M.; Lucaferri, V.; De Lia, F.; Laudani, A.; Presti, R.L.; Lozito, G.; Fulginei, F.R.; Schioppo, R.; Tucci, M. Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center. Energies 2021, 14, 707. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Lubbe, F.; Maritz, J.; Harms, T. Evaluating the Potential of Gaussian Process Regression for Solar Radiation Forecasting: A Case Study. Energies 2020, 13, 5509. [Google Scholar] [CrossRef]
- Tolba, H.; Dkhili, N.; Nou, J.; Eynard, J.; Thil, S.; Grieu, S. Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study. Energies 2020, 13, 4184. [Google Scholar] [CrossRef]
- De Paiva, G.M.; Pimentel, S.P.; Alvarenga, B.P.; Marra, E.; Mussetta, M.; Leva, S. Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks. Energies 2020, 13, 3005. [Google Scholar] [CrossRef]
- Kwon, Y.; Kwasinski, A.; Kwasinski, A. Solar Irradiance Forecast Using Naïve Bayes Classifier Based on Publicly Available Weather Forecasting Variables. Energies 2019, 12, 1529. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-R.; Kartini, U.T. k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data. Energies 2017, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Wang, L.; Bi, R. An ANN-based Approach for Forecasting the Power Output of Photovoltaic System. Procedia Environ. Sci. 2011, 11, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-De-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Nespoli, A.; Ogliari, E.; Leva, S.; Pavan, A.M.; Mellit, A.; Lughi, V.; Dolara, A. Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef] [Green Version]
- Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. ANN Sizing Procedure for the Day-Ahead Output Power Forecast of a PV Plant. Appl. Sci. 2017, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.; Dolara, A.; Magistrati, G.; Mussetta, M.; Ogliari, E.; Viola, F. Day-ahead forecasting for photovoltaic power using artificial neural networks ensembles. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1152–1157. [Google Scholar]
- Kudo, M.; Takeuchi, A.; Nozaki, Y.; Endo, H.; Sumita, J. Forecasting electric power generation in a photovoltaic power system for an energy network. Electr. Eng. Jpn. 2009, 167, 16–23. [Google Scholar] [CrossRef]
- Liu, L.; Liu, D.; Sun, Q.; Li, H.; Wennersten, R. Forecasting Power Output of Photovoltaic System Using A BP Network Method. Energy Procedia 2017, 142, 780–786. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Wang, Z.; Cui, F.; Wang, S. A Power Prediction Method for PV system Based on Wavelet Decomposition and Neural Networks. In Proceedings of the 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 13–16 July 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 234–239. [Google Scholar]
- Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks. Energies 2015, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Chugh, A.; Chaudhary, P.; Rizwan, M. Fuzzy logic approach for short term solar energy forecasting. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–6. [Google Scholar]
- Zhong, J.; Liu, L.; Sun, Q.; Wang, X. Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network. Energy Procedia 2018, 152, 1224–1229. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Haque, A.; Bharath, K.V.; Mekhilef, S. Single phase transformerless photovoltaic inverter for grid connected systems—An overview. Int. J. Power Electron. 2021, 13, 434. [Google Scholar] [CrossRef]
- Yang, Y.; Blaabjerg, F. Overview of Single-phase Grid-connected Photovoltaic Systems. Electr. Power Components Syst. 2015, 43, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Cecati, C.; Ciancetta, F.; Siano, P. A Multilevel Inverter for Photovoltaic Systems with Fuzzy Logic Control. IEEE Trans. Ind. Electron. 2010, 57, 4115–4125. [Google Scholar] [CrossRef]
- Zhang, Y.B. Research on Intelligent Control Technology of PV Grid-Connected Inverter. Appl. Mech. Mater. 2014, 672–674, 135–139. [Google Scholar] [CrossRef]
- Demirtaş, M.; Çetinbaş, I.; Serefoglu, S.; Kaplan, O. ANN controlled single phase inverter for solar energy systems. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 768–772. [Google Scholar]
- Karuppusamy, P.; Natarajan, A.M.; Vijeyakumar, K.N. An Adaptive Neuro-Fuzzy Model to Multilevel Inverter for Grid Connected Photovoltaic System. J. Circuits Syst. Comput. 2015, 24, 1550066. [Google Scholar] [CrossRef]
- Mastromauro, R.A. Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems. Energies 2020, 13, 3382. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R.R. Islanding Fault Detection in Microgrids—A Survey. Energies 2020, 13, 3479. [Google Scholar] [CrossRef]
- Abyaz, A.; Panahi, H.; Zamani, R.; Alhelou, H.H.; Siano, P.; Shafie-Khah, M.; Parente, M. An Effective Passive Islanding Detection Algorithm for Distributed Generations. Energies 2019, 12, 3160. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi-Jafarabadi, R.; Popov, M. Hybrid Islanding Detection Method of Photovoltaic-Based Microgrid Using Reference Current Disturbance. Energies 2021, 14, 1390. [Google Scholar] [CrossRef]
- Khan, M.A.; Kurukuru, V.S.B.; Haque, A.; Mekhilef, S. Islanding Classification Mechanism for Grid-Connected Photovoltaic Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1966–1975. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-G.; Ji, Y.-H.; Jung, Y.-C.; Won, C.-Y. An Islanding Detection Method for a Grid-Connected System Based on the Goertzel Algorithm. IEEE Trans. Power Electron. 2011, 26, 1049–1055. [Google Scholar] [CrossRef]
- Chiang, W.-J.; Jou, H.-L.; Wu, J.-C. Active islanding detection method for inverter-based distribution generation power system. Int. J. Electr. Power Energy Syst. 2012, 42, 158–166. [Google Scholar] [CrossRef]
- Cardenas, A.; Agbossou, K. Experimental Evaluation of Voltage Positive Feedback Based Anti-Islanding Algorithm: Multi-Inverter Case. IEEE Trans. Energy Convers. 2012, 27, 498–506. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, J.-W. New Islanding Detection Method for Inverter-Based Distributed Generation Considering Its Switching Frequency. IEEE Trans. Ind. Appl. 2010, 46, 2089–2098. [Google Scholar] [CrossRef]
- Liserre, M.; Pigazo, A.; Dell’Aquila, A.; Moreno, V.M. An Anti-Islanding Method for Single-Phase Inverters Based on a Grid Voltage Sensorless Control. IEEE Trans. Ind. Electron. 2006, 53, 1418–1426. [Google Scholar] [CrossRef]
- Ray, P.K.; Kishor, N.; Mohanty, S.R. Islanding and Power Quality Disturbance Detection in Grid-Connected Hybrid Power System Using Wavelet and SS-Transform. IEEE Trans. Smart Grid 2012, 3, 1082–1094. [Google Scholar] [CrossRef]
- Najy, W.K.A.; Zeineldin, H.H.; Alaboudy, A.K.; Woon, W.L. A Bayesian Passive Islanding Detection Method for Inverter-Based Distributed Generation Using ESPRIT. IEEE Trans. Power Deliv. 2011, 26, 2687–2696. [Google Scholar] [CrossRef]
- Jang, S.-I.; Kim, K.-H. An Islanding Detection Method for Distributed Generations Using Voltage Unbalance and Total Harmonic Distortion of Current. IEEE Trans. Power Deliv. 2004, 19, 745–752. [Google Scholar] [CrossRef]
- Dash, P.; Padhee, M.; Panigrahi, T. A hybrid time–frequency approach based fuzzy logic system for power island detection in grid connected distributed generation. Int. J. Electr. Power Energy Syst. 2012, 42, 453–464. [Google Scholar] [CrossRef]
- Mlakic, D.; Baghaee, H.R.; Nikolovski, S. A Novel ANFIS-Based Islanding Detection for Inverter-Interfaced Microgrids. IEEE Trans. Smart Grid 2018, 10, 4411–4424. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Sujod, M.Z.; Blaabjerg, F.; Yang, Y. Fault ride-through control of grid-connected photovoltaic power plants: A review. Sol. Energy 2019, 180, 340–350. [Google Scholar] [CrossRef]
- Khan, M.A.; Haque, A.; Kurukuru, V.S.B. Dynamic Voltage Support for Low-Voltage Ride-Through Operation in Single-Phase Grid-Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2021, 36, 12102–12111. [Google Scholar] [CrossRef]
- Khan, M.A.; Haque, A.; Kurukuru, V.S.B.; Saad, M. Advanced Control Strategy with Voltage Sag Classification for Single-Phase Grid-Connected Photovoltaic System. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1. [Google Scholar] [CrossRef]
- Merabet, A.L. Control System for Dual-Mode Operation of Grid-Tied Photovoltaic and Wind Energy Conversion Systems with Active and Reactive Power Injection; Saint Mary’s University: Halifax, NS, Canada, 2017. [Google Scholar]
- Khan, M.A.; Haque, A.; Kurukuru, V.S.B. Droop based Low voltage ride through implementation for grid integrated photovoltaic system. In Proceedings of the 2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 16–17 November 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–5. [Google Scholar]
- Fatama, A.Z.; Khan, M.A.; Kurukuru, V.S.B.; Haque, A.; Blaabjerg, F. Coordinated reactive power strategy using static synchronous compensator for photovoltaic inverters. Int. Trans. Electr. Energy Syst. 2020, 30, e12393. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Sujod, M.Z.; Blaabjerg, F. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant. Sol. Energy 2018, 159, 665–681. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.H.; El-Sattar, A.A.; Mansour, A.E.-A.M. Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability. Renew. Energy 2016, 85, 181–194. [Google Scholar] [CrossRef]
- Azizi, K.; Farsadi, M.; Kangarlu, M.F. Efficient Approach to LVRT Capability of DFIG-Based Wind Turbines under Symmetrical and Asymmetrical Voltage Dips Using Dynamic Voltage Restorer. Int. J. Power Electron. Drive Syst. (IJPEDS) 2017, 8, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Kececioglu, O.F.; Gani, A.; Sekkeli, M. Design and Hardware Implementation Based on Hybrid Structure for MPPT of PV System Using an Interval Type-2 TSK Fuzzy Logic Controller. Energies 2020, 13, 1842. [Google Scholar] [CrossRef] [Green Version]
- Harrag, A.E.; Messalti, S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 2015, 49, 1247–1260. [Google Scholar] [CrossRef]
- Angadi, S.; Yaragatti, U.; Suresh, Y.; Raju, A. System Parameter Based Performance Optimization of Solar PV Systems with Perturbation Based MPPT Algorithms. Energies 2021, 14, 2007. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Amjad, M.; Mekhilef, S. An Improved Particle Swarm Optimization (PSO)—Based MPPT for PV With Reduced Steady-State Oscillation. IEEE Trans. Power Electron. 2012, 27, 3627–3638. [Google Scholar] [CrossRef]
- Shi, K.; Zhou, G.; Xu, P.; Ye, H.; Tan, F. The Integrated Switching Control Strategy for Grid-Connected and Islanding Operation of Micro-Grid Inverters Based on a Virtual Synchronous Generator. Energies 2018, 11, 1544. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Dong, W.; Etemadi, A.H. A Unified Control and Power Management Scheme for PV-Battery-Based Hybrid Microgrids for Both Grid-Connected and Islanded Modes. IEEE Trans. Smart Grid 2018, 9, 5975–5985. [Google Scholar] [CrossRef]
- Hmad, J.; Houari, A.; Trabelsi, H.; Machmoum, M. Fuzzy logic approach for smooth transition between grid-connected and stand-alone modes of three-phase DG-inverter. Electr. Power Syst. Res. 2019, 175, 105892. [Google Scholar] [CrossRef]
- Khan, M.; Haque, A.; Blaabjerg, F.; Kurukuru, V.; Wang, H. Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems. Energies 2021, 14, 3979. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Shadmand, M.B.; Balog, R. Model Predictive Control of a Voltage-Source Inverter with Seamless Transition Between Islanded and Grid-Connected Operations. IEEE Trans. Ind. Electron. 2017, 64, 7906–7918. [Google Scholar] [CrossRef]
- Khan, J.F.; Bhuiyan, S.M.; Rahman, K.M.; Murphy, G.V. Space vector PWM for a two-phase VSI. Int. J. Electr. Power Energy Syst. 2013, 51, 265–277. [Google Scholar] [CrossRef]
- Oghorada, O.; Zhang, L.; Esan, B.; Dickson, E. Carrier-based sinusoidal pulse-width modulation techniques for flying capacitor modular multi-level cascaded converter. Heliyon 2019, 5, e03022. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.N.; Filho, A.J.S.; Fernandes, D.; Tahim, A.P.N.; Da Silva, E.R.C.; Costa, F.F. A discrete repetitive current controller for single-phase grid-connected inverters. In Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–6. [Google Scholar]
- Setiawan, D.K.; Ashari, M.; Suryoatmojo, H. Harmonics Reduction for Four-Leg Distribution Network-Connected Single Phase Transformerless PV Inverter System Using Diagonal Recurrent Neural Network. In Proceedings of the 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, 13–15 March 2019; pp. 331–335. [Google Scholar]
- Khan, M.A.; Haque, A.; Kurukuru, V.S.B. Intelligent control of a novel transformerless inverter topology for photovoltaic applications. Electr. Eng. 2020, 102, 627–641. [Google Scholar] [CrossRef]
- Khan, M.A.; Haque, A.; Kurukuru, V.S.B.; Wang, H.; Blaabjerg, F. Standalone operation of Distributed Generation Systems with Improved Harmonic Elimination Scheme. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 1. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Blaabjerg, F. Monte Carlo Simulation with Incremental Damage for Reliability Assessment of Power Electronics. IEEE Trans. Power Electron. 2021, 36, 7366–7371. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Wu, L.; Yu, J.; Cheng, S.; Lin, P.; Chen, H. Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents. Energy Convers. Manag. 2018, 178, 250–264. [Google Scholar] [CrossRef]
- Akram, M.N.; Lotfifard, S. Modeling and Health Monitoring of DC Side of Photovoltaic Array. IEEE Trans. Sustain. Energy 2015, 6, 1245–1253. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Cheng, S.; Lin, P.; Wu, Y.; Lin, W. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy 2017, 204, 912–931. [Google Scholar] [CrossRef]
- Huang, J.-M.; Wai, R.-J.; Yang, G.-J. Design of Hybrid Artificial Bee Colony Algorithm and Semi-Supervised Extreme Learning Machine for PV Fault Diagnoses by Considering Dust Impact. IEEE Trans. Power Electron. 2019, 35, 7086–7099. [Google Scholar] [CrossRef]
- Aziz, F.; Haq, A.U.; Ahmad, S.; Mahmoud, Y.; Jalal, M.; Ali, U. A Novel Convolutional Neural Network-Based Approach for Fault Classification in Photovoltaic Arrays. IEEE Access 2020, 8, 41889–41904. [Google Scholar] [CrossRef]
- Chowdhury, D.; Bhattacharya, M.; Khan, D.; Saha, S.; Dasgupta, A. Wavelet decomposition based fault detection in cascaded H-bridge multilevel inverter using artificial neural network. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1931–1935. [Google Scholar]
- Bhattacharya, M.; Saha, S.; Khan, D.; Nag, T. Wavelet based component fault detection in diode clamped multilevel inverter using probabilistic neural network. In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2017; pp. 1163–1168. [Google Scholar] [CrossRef]
- Bharath, K.V.S.; Haque, A.; Khan, M.A. Condition Monitoring of Photovoltaic Systems Using Machine Leaming Techniques. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), New Delhi, India, 22–24 October 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 870–875. [Google Scholar]
- He, Z.; Zhang, X.; Liu, C.; Han, T. Fault Prognostics for Photovoltaic Inverter Based on Fast Clustering Algorithm and Gaussian Mixture Model. Energies 2020, 13, 4901. [Google Scholar] [CrossRef]
- Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Gao, H. A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network with Global Average Pooling and 2-D Feature Image. IEEE Access 2020, 8, 73677–73697. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Wang, H.; Blaabjerg, F. Reliability analysis of grid-interfaced filter capacitors. Chin. J. Electr. Eng. 2018, 4, 21–28. [Google Scholar] [CrossRef]
- Bhargava, C.; Banga, V.K.; Singh, Y. An intelligent prognostic model for electrolytic capacitors health monitoring: A design of experiments approach. Adv. Mech. Eng. 2018, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Soualhi, A.; Makdessi, M.; German, R.; Echeverria, F.R.; Razik, H.; Sari, A.; Venet, P.; Clerc, G. Heath Monitoring of Capacitors and Supercapacitors Using the Neo-Fuzzy Neural Approach. IEEE Trans. Ind. Inform. 2017, 14, 24–34. [Google Scholar] [CrossRef]
- Abo-Khalil, A.G.; Lee, D.-C. DC-Link Capacitance Estimation in AC/DC/AC PWM Converters Using Voltage Injection. IEEE Trans. Ind. Appl. 2008, 44, 1631–1637. [Google Scholar] [CrossRef]
- Soliman, H.A.H.; Wang, H.; Gadalla, B.S.A.; Blaabjerg, F. Condition monitoring for DC-link capacitors based on artificial neural network algorithm. In Proceedings of the 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015; pp. 587–591. [Google Scholar] [CrossRef]
- Yu, J. Health Degradation Detection and Monitoring of Lithium-Ion Battery Based on Adaptive Learning Method. IEEE Trans. Instrum. Meas. 2013, 63, 1709–1721. [Google Scholar] [CrossRef]
- Samadi, M.F.; Saif, M. State-Space Modeling and Observer Design of Li-Ion Batteries Using Takagi—Sugeno Fuzzy System. IEEE Trans. Control. Syst. Technol. 2017, 25, 301–308. [Google Scholar] [CrossRef]
- Zhou, D.; Li, Z.; Zhu, J.; Zhang, H.; Hou, L. State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network. IEEE Access 2020, 8, 53307–53320. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Liu, P.; Wang, Z.; Zhang, L. Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model. IEEE Trans. Power Electron. 2021, 36, 1303–1315. [Google Scholar] [CrossRef]
- Wang, H.; Liserre, M.; Blaabjerg, F.; Rimmen, P.D.P.; Jacobsen, J.B.; Kvisgaard, T.; Landkildehus, J. Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 97–114. [Google Scholar] [CrossRef]
- Wang, H.; Ma, K.; Blaabjerg, F. Design for reliability of power electronic systems. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 33–44. [Google Scholar]
- Testa, A.; De Caro, S.; Russo, S. A Reliability Model for Power MOSFETs Working in Avalanche Mode Based on an Experimental Temperature Distribution Analysis. IEEE Trans. Power Electron. 2011, 27, 3093–3100. [Google Scholar] [CrossRef]
- Choi, U.; Vernica, I.; Zhou, D.; Blaabjerg, F. Comparative evaluation of reliability assessment methods of power modules in motor drive inverter. Microelectron. Reliab. 2020, 114, 113730. [Google Scholar] [CrossRef]
- Han, L.; Liang, L.; Xin, W.; Luo, F. Influence of Wire-Bonding Layout on Reliability in IGBT Module. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–7. [Google Scholar]
- Khan, M.A.; Haque, A.; Kurukuru, V.B. Reliability Analysis of a Solar Inverter during Reactive Power Injection. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December2020; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–6. [Google Scholar]
- Peyghami, S.; Dragicevic, T.; Blaabjerg, F. Intelligent long-term performance analysis in power electronics systems. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic, T.; Wheeler, P.; Blaabjerg, F. Artificial Intelligence Aided Automated Design for Reliability of Power Electronic Systems. IEEE Trans. Power Electron. 2019, 34, 7161–7171. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Reliability analysis of hybrid renewable energy system by fault tree analysis. Energy Environ. 2018, 30, 542–555. [Google Scholar] [CrossRef]
- Reigosa, P.D.; Wang, H.; Yang, Y.; Blaabjerg, F. Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter under a Long-Term Operation. IEEE Trans. Power Electron. 2015, 31, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, D.; Hua, T.; Zhu, J.; Chen, G.; Wei, T.; Yang, T. Reliability evaluation of modular multilevel converter based on Markov model. J. Mod. Power Syst. Clean Energy 2019, 7, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Stark, R.; Kind, S.; Neumeyer, S. Innovations in digital modelling for next generation manufacturing system design. CIRP Ann. 2017, 66, 169–172. [Google Scholar] [CrossRef]
- Brosinsky, C.; Westermann, D.; Krebs, R. Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar]
- Zhou, M.; Yan, J.; Feng, D. Digital twin and its application to power grid online analysis. CSEE J. Power Energy Syst. 2019. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Karanjkar, N.; Joglekar, A.; Mohanty, S.; Prabhu, V.; Raghunath, D.; Sundaresan, R. Digital Twin for Energy Optimization in an SMT-PCB Assembly Line. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 85–89. [Google Scholar]
- Jain, P.; Poon, J.; Singh, J.P.; Spanos, C.; Sanders, S.R.; Panda, S.K. A Digital Twin Approach for Fault Diagnosis in Distributed Photovoltaic Systems. IEEE Trans. Power Electron. 2019, 35, 940–956. [Google Scholar] [CrossRef]
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart City Digital Twin—Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Andryushkevich, S.K.; Kovalyov, S.; Nefedov, E. Composition and Application of Power System Digital Twins Based on Ontological Modeling. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; Volume 1, pp. 1536–1542. [Google Scholar]
- Lu, Y.; Peng, T.; Xu, X. Energy-efficient cyber-physical production network: Architecture and technologies. Comput. Ind. Eng. 2019, 129, 56–66. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, W.; Zhou, Y.; Chen, J.; Xiang, Y.; Mu, Y. Energy-Internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 2018, 228, 2153–2164. [Google Scholar] [CrossRef]
- Kaur, E.; Sharma, S.; Verma, A.; Singh, M. An Energy Management and Recommender System for Lighting Control in Internet-of-Energy enabled Buildings. IFAC PapersOnLine 2019, 52, 288–293. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Saad, A.; Faddel, S.; Mohammed, O. IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation. Energies 2020, 13, 4762. [Google Scholar] [CrossRef]
- Ruohomaki, T.; Airaksinen, E.; Huuska, P.; Kesaniemi, O.; Martikka, M.; Suomisto, J. Smart City Platform Enabling Digital Twin. In Proceedings of the 2018 International Conference on Intelligent Systems (IS), Funchal, Portugal, 25–27 September 2018; pp. 155–161. [Google Scholar]
- Zhang, D.; Chan, C.C.; Zhou, G.Y. Enabling Industrial Internet of Things (IIoT) towards an emerging smart energy system. Glob. Energy Interconnect. 2018, 1, 39–47. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, H.; Tao, F.; Juang, C.-F. DT-II:Digital twin enhanced Industrial Internet reference framework towards smart manufacturing. Robot. Comput. Manuf. 2020, 62, 101881. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, L.; Romagnoli, A. On the feature engineering of building energy data mining. Sustain. Cities Soc. 2018, 39, 508–518. [Google Scholar] [CrossRef]
- Xie, X.; Parlikad, A.K.; Puri, R.S. A Neural Ordinary Differential Equations Based Approach for Demand Forecasting within Power Grid Digital Twins. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–21 October 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–6. [Google Scholar]
- Nwauka, O.; Telukdarie, A.; Enslin, J. Virtual Power Plant basic requirements for integration of Distributed Energy Resources, driven by industry 4. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France, 26–27 July 2018; 2018, pp. 511–525. [Google Scholar]
- Terashmila, L.K.A.; Iqbal, T.; Mann, G. A comparison of low cost wireless communication methods for remote control of grid-tied converters. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 1–4. [Google Scholar]
- Sahoo, S.; Peng, J.C.-H. A Localized Event-Driven Resilient Mechanism for Cooperative Microgrid against Data Integrity Attacks. IEEE Trans. Cybern. 2021, 51, 3687–3698. [Google Scholar] [CrossRef]
- Liu, S.; Siano, P.; Wang, X. Intrusion-Detector-Dependent Frequency Regulation for Microgrids Under Denial-of-Service Attacks. IEEE Syst. J. 2020, 14, 2593–2596. [Google Scholar] [CrossRef]
- Sakhnini, J.; Karimipour, H.; Dehghantanha, A. Smart Grid Cyber Attacks Detection Using Supervised Learning and Heuristic Feature Selection. In Proceedings of the 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 108–112. [Google Scholar]
- Li, Q.; Li, F.; Zhang, J.; Ye, J.; Song, W.; Mantooth, A. Data-driven Cyberattack Detection for Photovoltaic (PV) Systems through Analyzing Micro-PMU Data. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscatavai, NJ, USA; pp. 431–436. [Google Scholar]
- Habibi, M.R.; Sahoo, S.; Rivera, S.; Dragicevic, T.; Blaabjerg, F. Decentralized Coordinated Cyber-Attack Detection and Mitigation strategy in DC Microgrids based on Artificial Neural Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2021, PP, 1. [Google Scholar] [CrossRef]
- Sahoo, S.; Dragicevic, T.; Blaabjerg, F. Multilayer Resilience Paradigm against Cyber Attacks in DC Microgrids. IEEE Trans. Power Electron. 2021, 36, 2522–2532. [Google Scholar] [CrossRef]
- Sahoo, S.; Dragicevic, T.; Blaabjerg, F. Resilient Operation of Heterogeneous Sources in Cooperative DC Microgrids. IEEE Trans. Power Electron. 2020, 35, 12601–12605. [Google Scholar] [CrossRef]
- Sahoo, S.; Dragicevic, T.; Blaabjerg, F. An Event-Driven Resilient Control Strategy for DC Microgrids. IEEE Trans. Power Electron. 2020, 35, 13714–13724. [Google Scholar] [CrossRef]
- Sahoo, S.; Mishra, S.; Peng, J.C.-H.; Dragicevic, T. A Stealth Cyber-Attack Detection Strategy for DC Microgrids. IEEE Trans. Power Electron. 2019, 34, 8162–8174. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Peng, J.C.-H.; Mishra, S.; Dragicevic, T. Distributed Screening of Hijacking Attacks in DC Microgrids. IEEE Trans. Power Electron. 2020, 35, 7574–7582. [Google Scholar] [CrossRef]
Conventional Algorithms | Application | Advantages | Drawback of Conventional Algorithms | Solution with AI | AI Techniques |
---|---|---|---|---|---|
Predictive and stochastic methods | Monitoring and Maintenance | Simple implementation, Better Interpretability | Sensitive to outliers | Replace Outliers with a suitable value using Quantile Methods |
|
Data Minimization Approaches | Maintenance | Flexible framework | Can only be used with clustering and intelligent approaches | Replace data minimization approaches with filtering and normalization approaches |
|
Kernel based approaches | Control and Maintenance | Uncertainty Quantification, Better approximation capability, Computational Efficiency | Probabilistic output, long training time | Probabilistic outcomes are overcome with predictability, which uses statistics to analyze the frequency of past successful and unsuccessful events, and solves training sets locally to minimize the training time. |
|
Randomized Probabilistic approaches | Maintenance | Better Interpretability | Complex computations, and Probabilistic output with random variables | Uses symbolic reasoning to solve complex computations. |
|
Population based methods | Design control and maintenance | Parallel Capability, Achieved global convergence | Complex implementation approach, less convergence speed | Achieves pre-training with a pretty small learning rates to achieve fast convergence |
|
Trajectory based methods | Control | Simple implementation, Fast convergence | Has local optima, and no parallel capability | Work on uncertain jump positions and are less susceptible to premature convergence and less likely to be stuck in local optima. |
|
Algorithm | Diode Model | Accuracy |
---|---|---|
Genetic Algorithm [34] | Double Diode Model | Moderate RMSE |
Particle Swarm Optimization [35,36] | Single and Double Diode Model | High RMSE |
Artificial Immune System [37] | Double Diode Model | High RMSE |
Artificial Bee Colony [38], [39] | Single and Double Diode Model | High RMSE |
Pattern search [44,45] | Single and Double Diode Model | Low RMSE |
Neural network [40,41] | Single Diode Model | Moderate RMSE |
Algorithm | Advantages | Disadvantages |
---|---|---|
Genetic Algorithm with ANN [46] |
|
|
Artificial Neural Network [47] |
|
|
Bat algorithm [48,49] |
|
|
Generalized Regression Neural Network [50] |
|
|
Particle Swarm Optimization [51] |
|
|
Adaptive-Neuro Fuzzy Inference Systems [52] |
|
|
Algorithm | Objective | Advantages | Disadvantages |
---|---|---|---|
LSTM neural network technique [66,68,69] | Develop a multi-time scale model |
|
|
Wavelet decomposition [70] | Decompose the raw solar irradiance data into subsequence |
|
|
ANN [71,72] | Accurate forecasting under strong irregularities and rapidly changing scenarios |
|
|
Gaussian process regression [73,74] | Develop probabilistic renewable energy management systems |
|
|
Algorithm | Advantages | Disadvantages |
---|---|---|
Wavelet and ANN [87,88] |
|
|
Fuzzy Logic [89] |
|
|
Artificial Neural Network [79,80,83] |
|
|
Back Propagation Neural Network [90,91] |
|
|
Islanding Method | Principle Methods | Detection | Advantage | Disadvantage |
---|---|---|---|---|
Active | Goertzel algorithm [103] |
|
| |
Virtual resistor method [104] | ||||
Voltage positive feedback [105] | ||||
Passive | Switching frequency [106] |
|
| |
Grid voltage sensor-less [107] | ||||
Hybrid | Wavelet and S-transform [108] | Less than |
|
|
Combination of voltage amplitude and frequency [109] | ||||
Voltage unbalance and THD [110] | Within | |||
Artificial Intelligence based approach | Fuzzy with S-transform [111] | Less than |
|
|
Wavelet with neural network [102] | Less than | |||
Adaptive neuro-fuzzy inference system (ANFIS) [112] | Less than |
Algorithm | Computation Burden | Reactive Current Injection | Advantage | Disadvantage |
---|---|---|---|---|
Dynamic voltage restorer [121] | High | Sufficient |
|
|
Static synchronous compensator [118] | High | Good |
|
|
PSO [120] | Low | Sufficient | Fast response Hight efficiency | Presence of oscillation and overshooting |
FLC [119] | Low | Sufficient | Simple and flexible No overlapping | Presence of oscillation and overshooting |
Algorithm | Output Response | Feasibility | Power Consumption | Learning | Transients |
---|---|---|---|---|---|
P&O, Incremental Conductance [124] | Slow | Simple | Loss | No | Common |
Particle Swarm Optimization [125] | Slow | Complex | Efficient | No | Common |
Hopfield Neural Network | Fast | Complex | Efficient | Yes | No |
Neural Network | Fast | Complex | Efficient | Yes | No |
Ant Colony Optimization | Fast | Simple | Efficient | Yes | Common |
Genetic Algorithm [123] | Fast | Complex | Efficient | Yes | Common |
Fuzzy Logic Control [122] | Fast | Complex | Efficient | No | No |
Genetic Algorithm-Neural Network | Fast | Very Complex | Efficient | Yes | No |
Adaptive Neuro Fuzzy Inference System | Fast | Very Complex | Efficient | Yes | No |
Reinforcement Learning | Fast | Very Complex | Efficient | Yes | No |
Adaptive Neuro Fuzzy Inference System-Genetic Algorithm | Fast | Very Complex | Efficient | Yes | No |
Fault Location | Fault | Cause | Impact | Detection Technique |
---|---|---|---|---|
PV Panel Fault | Delamination | Over exposed to direct sunlight | All the faults in the panel will result in reduction of solar panel output and increase the burden on the DC–DC converter. |
|
Cell Crack | Physical damage | |||
Shorting of Diode | Overheating | |||
Discoloration | Over exposed to direct sunlight | |||
Snail Trial | Moisture in atmosphere | |||
Glass Crack | Physical Damage | |||
Combination Box Fault | Oxidation | Environmental impact | Reduce the power flow | Visual inspection and signal-based monitoring |
Corrosion | Environmental impact | |||
Power Converter Fault | Bond wire melting | Overheating of thermal joints | Cause stress on the inverter operation, wear out in the inverter components, and reduces the operating lifetime of inverter |
|
Bond wire lift-off | Overheating | |||
Crack in bond wire | Stress on the bond wire | |||
Aluminum corrosion | Environmental impact | |||
Substrate crack | Thermal Stress on substrate | |||
Delamination of Die | Overheating of Power electronic switch | |||
Filter Fault | Thermal over stress | Overheating |
|
|
Crack in dielectric | Sudden change in temperature | |||
Leakage in electrolyte | Expose to thermal stress during storage | |||
Evaporate in electrolyte | Expose to thermal stress during storage | |||
Relay Fault | Iron core failure | Leakage current |
|
|
Coil failure | Short-circuit of counter electromotive voltage absorbing diode | |||
Residue voltage | Semiconductor control circuit with residual voltage | |||
Excessive current | Allowable inrush current exceeded | |||
High contact resistance | Contact carbonization | |||
Battery Fault | Ageing | Stress factors (Temperature, depth of discharge, C-rate) |
|
|
Loss of cooling | Lithium plating/dendrite formulation | |||
Cell failure | Electrolyte decomposition, | |||
Battery management system failure | Failure of converter control circuit |
Conventional Algorithms | Application to Power Electronics | Advantages | Drawback of Conventional Algorithms |
---|---|---|---|
Reliability Block Diagram | Analysis of component fault by representing them as a block | Simple for implementation | External cases, such as human interference and priority-based events, are not considered |
Fault Tree Analysis [165] | Identification of probability of each fault. | External factors accounted for and also assisted in designing | Interdependence is not analyzed adequately |
Monte Carlo [166] | Generates random events in a computer model to count the instance of occurring for a specific condition. | High precision, less work in calculation and rapid convergence | Canonical problems are identified while estimating the functional exception of a lifetime model for repairable and non-repairable components |
Markov Analysis [167] | Identification of transition rate based on failure and repair rate | Easy to implement for a system where repair is possible | The modeling is large due to state base modeling with a constant repair and failure rate |
Methodology | Function | Advantages | Drawbacks |
---|---|---|---|
Dynamic digital mirror [169] | Power management | Operates faster than the supervisory control and data acquisition | Difficult to provide a comprehensive model of the power system |
Ontological modeling language [175] | Hybrid operation of distributed generation units | Acts a medium for DT application in the energy sector | Data synchronization cannot be automated |
Regression [174] | Power flow management | Energy benchmarking by analyzing the temporal dimensions | Less efficiency |
Deep neural network [186] | Application with smart grid functions | Improved performance with volatile electricity load forecasting to achieve balance and stability | Stochasticity and uncertainty in the data |
Predictive analytics model [187] | Virtual power plants | Offers efficient coefficient estimation | Regulatory and institutional policies act as barrier to deployment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Sahoo, S.; Malik, A.; Blaabjerg, F. A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems. Energies 2021, 14, 4690. https://doi.org/10.3390/en14154690
Kurukuru VSB, Haque A, Khan MA, Sahoo S, Malik A, Blaabjerg F. A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems. Energies. 2021; 14(15):4690. https://doi.org/10.3390/en14154690
Chicago/Turabian StyleKurukuru, Varaha Satra Bharath, Ahteshamul Haque, Mohammed Ali Khan, Subham Sahoo, Azra Malik, and Frede Blaabjerg. 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems" Energies 14, no. 15: 4690. https://doi.org/10.3390/en14154690
APA StyleKurukuru, V. S. B., Haque, A., Khan, M. A., Sahoo, S., Malik, A., & Blaabjerg, F. (2021). A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems. Energies, 14(15), 4690. https://doi.org/10.3390/en14154690