Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects
Abstract
:1. Introduction
2. Wave Energy in the Mediterranean Sea
2.1. Wave Energy Resource Assessment
2.2. Wave Energy Resource Assessment in Combination with Other Sources of Renewable Energy
2.3. Ongoing Trends of Wave Climate
2.4. Wave Energy and Other Variables
3. Wave Energy Converters (WECs) in the Mediterranean Sea
3.1. Prototypes Deployed in Operational or Relevant Environmental Conditions
3.2. Academic Research
4. Advantageous Aspects of Wave Energy Exploitation in the Mediterranean Sea
4.1. Mediterranean Ports
4.2. Mediterranean Islands
5. Discussion
6. Conclusions and Recommendations
- Several studies have broadly assessed the wave energy potential in the Mediterranean Sea; some focused on specific locations and some on the entire basin.
- Italy is the Mediterranean country where the most WECs have been deployed. The countries with at least one tested WEC are Greece, Israel and Gibraltar.
- Some studies relate wave energy exploitation to water desalination, coastal areas protection and sustainability of the Mediterranean countries.
- The question of which WECs could benefit the Mediterranean ports and islands with moderate or high wave energy potential has been broadly investigated.
- Projects about the expansion of facilities, construction and deployment of new technologies have been announced.
- The installed WECs fall in the categories of overtopping device, OWC, rotating mass, point absorber and others.
- The point absorber is the most commonly installed type of WEC.
- Onshore WECs account for the majority of WECs which have been tested among onshore, nearshore and offshore devices.
- The installed power of the several deployed WECs in the Mediterranean Sea varies between 3–2500 kW.
- SP WEC 4th Gen, SP WEC 3rd Gen, Wave Clappers and ISWEC have all been successfully deployed twice, with the latter two installed in a different environment the second time.
- Photovoltaics panels were integrated on the WECs Wave Clappers in Israel and Gibraltar, and ISWEC in Ravenna.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- EU Climate Law: MEPs Confirm Deal on Climate Neutrality by 2050. Available online: https://www.europarl.europa.eu/news/en/press-room/20210621IPR06627/eu-climate-law-meps-confirm-deal-on-climate-neutrality-by-2050 (accessed on 29 June 2021).
- International Energy Agency (IEA). Global Energy and CO2 Status Report; IEA: Paris, France, 2019. [Google Scholar]
- Falcão, A.F.d.O. Wave Energy Utilization: A Review of the Technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; Martínez De Alegría, I.; Kortabarria, I. Review of Wave Energy Technologies and the Necessary Power-Equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casas-Prat, M.; Campins, E. Impact of Climate Change on Wave Energy Resource: The Case of Menorca (Spain). Renew. Energy 2017, 101, 275–285. [Google Scholar] [CrossRef]
- Besio, G.; Mentaschi, L.; Mazzino, A. Wave Energy Resource Assessment in the Mediterranean Sea on the Basis of a 35-Year Hindcast. Energy 2016, 94, 50–63. [Google Scholar] [CrossRef]
- Prakash, S.S.; Mamun, K.A.; Islam, F.R.; Mudliar, R.; Pau’U, C.; Kolivuso, M.; Cadralala, S. Wave Energy Converter: A Review of Wave Energy Conversion Technology. In Proceedings of the Asia-Pacific World Congress on Computer Science and Engineering 2016 and Asia-Pacific World Congress on Engineering 2016, APWC on CSE/APWCE 2016, Nadi, Fiji, 5–6 December 2016. [Google Scholar]
- Ahamed, R.; McKee, K.; Howard, I. Advancements of Wave Energy Converters Based on Power Take off (PTO) Systems: A Review. Ocean Eng. 2020, 204, 107248. [Google Scholar] [CrossRef]
- Pecher, A.; Kofoed, J.P.; Folley, M.; Costello, R.; Todalshaug, J.H.; Bergdahl, L.; Têtu, A.; Alves, M. Ocean Engineering & Oceanography 7: Handbook of Ocean Wave Energy; Springer Open: Cham, Switzerland, 2017; Volume 7. [Google Scholar]
- Neill, S.P.; Hashemi, M.R. Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea; Academic Press: London, UK, 2018. [Google Scholar]
- Mørk, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the Global Wave Energy Potential. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE, Shanghai, China, 6–11 June 2010; Volume 3. [Google Scholar]
- Cornett, A.M. A Global Wave Energy Resource Assessment. In Proceedings of the International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008. [Google Scholar]
- Aderinto, T.; Li, H. Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250. [Google Scholar] [CrossRef] [Green Version]
- IEA-OES. Annual Report: An Overview of Ocean Energy Activities in 2020. 2021. Available online: https://www.ocean-energy-systems.org/publications/oes-annual-reports/ (accessed on 28 May 2021).
- Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the European Offshore Wind and Wave Energy Resource for Combined Exploitation. Renew. Energy 2017, 101, 244–264. [Google Scholar] [CrossRef]
- Mattarolo, G.; Lafon, F.; Benoit, M. Wave Energy Resource off the French Coasts: The ANEMOC Database Applied to the Energy Yield Evaluation of Wave Energy Converters. In Proceedings of the 8th European Wave and Tidal Energy, Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Liberti, L.; Carillo, A.; Sannino, G. Wave Energy Resource Assessment in the Mediterranean, the Italian Perspective. Renew. Energy 2013, 50, 938–949. [Google Scholar] [CrossRef]
- European Marine Energy Centre LTD Wave Devices. Available online: www.emec.org.uk/marine-energy/wave-devices/ (accessed on 28 May 2021).
- Arena, F.; Laface, V.; Malara, G.; Romolo, A.; Viviano, A.; Fiamma, V.; Sannino, G.; Carillo, A. Wave Climate Analysis for the Design of Wave Energy Harvesters in the Mediterranean Sea. Renew. Energy 2015, 77, 125–141. [Google Scholar] [CrossRef]
- Pelli, D.; Cappietti, L.; Oumeraci, H. Assessing the Wave Energy Potential in the Mediterranean Sea Using WAVEWATCH III. In Renewable Energies Offshore, Proceedings of 2nd International Conference on Renewable Energies Offshore, RENEW 2016, Lisbon, Portugal, 24–26 October 2016; Soares, C.G., Ed.; CRC Press/Balkema: Leiden, The Netherlands, 2016. [Google Scholar]
- Lavidas, G.; Venugopal, V.; Agarwal, A. Long-Term Evaluation of the Wave Climate and Energy Potential in the Mediterranean Sea. In Sustainable Hydraulics in the Era of Global Change, Proceedings of the 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016, Liege, Belgium, 27–29 July 2016; Erpicum, S., Dewals, B., Archambeau, P., Pirotton, M., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2016. [Google Scholar]
- Vicinanza, D.; Contestabile, P.; Ferrante, V. Wave Energy Potential in the North-West of Sardinia (Italy). Renew. Energy 2013, 50, 506–521. [Google Scholar] [CrossRef]
- Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E. Investigation of Suitable Sites for Wave Energy Converters around Sicily (Italy). Ocean Sci. 2015, 11, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Monteforte, M.; lo Re, C.; Ferreri, G.B. Wave Energy Assessment in Sicily (Italy). Renew. Energy 2015, 78, 276–287. [Google Scholar] [CrossRef]
- Vannucchi, V.; Cappietti, L. Wave Energy Assessment and Performance Estimation of State of the Artwave Energy Converters in Italian Hotspots. Sustainability 2016, 8, 1300. [Google Scholar] [CrossRef] [Green Version]
- Paladini de Mendoza, F.; Bonamano, S.; Stella, G.; Giovacchini, M.; Capizzi, D.; Fraticelli, F.; Muratore, S.; Burgio, C.; Scanu, S.; Peviani, M.A.; et al. Where Is the Best Site for Wave Energy Exploitation? Case Study along the Coast of Northern Latium (ITALY). J. Coast. Conserv. 2016, 20, 13–19. [Google Scholar] [CrossRef]
- Amarouche, K.; Akpınar, A.; Bachari, N.E.I.; Houma, F. Wave Energy Resource Assessment along the Algerian Coast Based on 39-Year Wave Hindcast. Renew. Energy 2020, 153, 840–860. [Google Scholar] [CrossRef]
- Ayat, B. Wave Power Atlas of Eastern Mediterranean and Aegean Seas. Energy 2013, 54, 251–262. [Google Scholar] [CrossRef]
- Zodiatis, G.; Galanis, G.; Nikolaidis, A.; Kalogeri, C.; Hayes, D.; Georgiou, G.C.; Chu, P.C.; Kallos, G. Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-Year Study. Renew. Energy 2014, 69, 311–323. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. Wave Energy Resource Evaluation and Characterisation for the Libyan Sea. Int. J. Mar. Energy 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lavidas, G.; Venugopal, V. A 35 Year High-Resolution Wave Atlas for Nearshore Energy Production and Economics at the Aegean Sea. Renew. Energy 2017, 103, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Jadidoleslam, N.; Özger, M.; Ağiralioğlu, N. Wave Power Potential Assessment of Aegean Sea with an Integrated 15-Year Data. Renew. Energy 2016, 86, 1045–1059. [Google Scholar] [CrossRef]
- Zacharioudaki, A.; Korres, G.; Perivoliotis, L. Wave Climate of the Hellenic Seas Obtained from a Wave Hindcast for the Period 1960–2001. Ocean Dyn. 2015, 65, 795–816. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Efstratiou, C.; Nomikos, G.; Kondili, E. Wave Energy Exploitation in the North Aegean Sea: Spatial Planning of Potential Wave Power Stations. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Foteinis, S.; Hancock, J.; Mazarakis, N.; Tsoutsos, T.; Synolakis, C.E. A Comparative Analysis of Wave Power in the Nearshore by WAM Estimates and In-Situ (AWAC) Measurements. The Case Study of Varkiza, Athens, Greece. Energy 2017, 138, 500–508. [Google Scholar] [CrossRef]
- Foteinis, S.; Tsoutsos, T.; Synolakis, C. Numerical Modelling for Coastal Structures Design and Planning. A Case Study of the Venetian Harbour of Chania, Greece. Int. J. Geoengin. Case Hist. 2018, 4, 232–241. [Google Scholar]
- López-Ruiz, A.; Bergillos, R.J.; Ortega-Sánchez, M. The Importance of Wave Climate Forecasting on the Decision-Making Process for Nearshore Wave Energy Exploitation. Appl. Energy 2016, 182, 191–203. [Google Scholar] [CrossRef]
- Ponce de León, S.; Orfila, A.; Simarro, G. Wave Energy in the Balearic Sea. Evolution from a 29 Year Spectral Wave Hindcast. Renew. Energy 2016, 85, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Farkas, A.; Degiuli, N.; Martić, I. Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential. Energies 2019, 12, 2357. [Google Scholar] [CrossRef] [Green Version]
- Bahaj, A.S.; Sayigh, A. Comprehensive Renewable Energy 8: Ocean Energy; Elsevier: Amsterdam, The Netherlands, 2012; Volume 8. [Google Scholar]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-Based Multi-Criteria Decision Analysis for Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Viola, A.; Trapanense, M.; Frazitta, V. New Solutions for Energy Supply: Sea Wave and Offshore Photovoltaic in Sardinia (Italy). In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, OCEAN 2018, Charleston, SC, USA, 22–25 October 2018. [Google Scholar]
- Ferrari, F.; Besio, G.; Cassola, F.; Mazzino, A. Optimized Wind and Wave Energy Resource Assessment and Offshore Exploitability in the Mediterranean Sea. Energy 2020, 190, 116447. [Google Scholar] [CrossRef]
- Emmanouil, G.; Galanis, G.; Kalogeri, C.; Zodiatis, G.; Kallos, G. 10-Year High Resolution Study of Wind, Sea Waves and Wave Energy Assessment in the Greek Offshore Areas. Renew. Energy 2016, 90, 399–419. [Google Scholar] [CrossRef]
- Ganea, D.; Amortila, V.; Mereuta, E.; Rusu, E. A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands. Sustainability 2017, 9, 1025. [Google Scholar] [CrossRef] [Green Version]
- Azzellino, A.; Lanfredi, C.; Riefolo, L.; Contestabile, P.; Vicinanza, D. Combined Exploitation of Offshore Wind and Wave Energy in the Italian Seas: A Spatial Planning Approach. Front. Energy Res. 2019, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Castrillo, R.; Mestres, M.; Mösso, C.; Lionello, P.; Marzo, L. Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco. Energies 2020, 13, 2993. [Google Scholar] [CrossRef]
- Caloiero, T.; Aristodemo, F.; Algieri Ferraro, D. Trend Analysis of Significant Wave Height and Energy Period in Southern Italy. Theor. Appl. Climatol. 2019, 138, 917–930. [Google Scholar] [CrossRef]
- Caloiero, T.; Aristodemo, F.; Ferraro, D.A. Changes of Significant Wave Height, Energy Period and Wave Power in Italy in the Period 1979–2018. Environ. Sci. Proc. 2020, 2, 0. [Google Scholar] [CrossRef]
- de Leo, F.; Besio, G.; Mentaschi, L. Trends and Variability of Ocean Waves under RCP8.5 Emission Scenario in the Mediterranean Sea. Ocean Dyn. 2021, 71, 97–117. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Sierra, J.P. Projected Future Wave Climate in the NW Mediterranean Sea. J. Geophys. Res. Ocean. 2013, 118, 3548–3568. [Google Scholar] [CrossRef]
- Bergillos, R.J.; López-Ruiz, A.; Medina-López, E.; Moñino, A.; Ortega-Sánchez, M. The Role of Wave Energy Converter Farms on Coastal Protection in Eroding Deltas, Guadalfeo, Southern Spain. J. Clean. Prod. 2018, 171, 356–367. [Google Scholar] [CrossRef]
- Lavidas, G. Energy and Socio-Economic Benefits from the Development of Wave Energy in Greece. Renew. Energy 2019, 132, 1290–1300. [Google Scholar] [CrossRef]
- Buscaino, G.; Mattiazzo, G.; Sannino, G.; Papale, E.; Bracco, G.; Grammauta, R.; Carillo, A.; Kenny, J.M.; de Cristofaro, N.; Ceraulo, M.; et al. Acoustic Impact of a Wave Energy Converter in Mediterranean Shallow Waters. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.Y.; Kiung, Y. Wave Energy Converters (WEC) for Desalination Applications. A Potential Application in Mediterranean Sea. In Proceedings of the OCEANS 2017—Anchorage, Anchorage, AK, USA, 18–21 September 2017; Volume 2017. [Google Scholar]
- Foteinis, S.; Tsoutsos, T. Strategies to Improve Sustainability and Offset the Initial High Capital Expenditure of Wave Energy Converters (WECs). Renew. Sustain. Energy Rev. 2017, 70, 775–785. [Google Scholar] [CrossRef]
- Molina, R.; Manno, G.; lo Re, C.; Anfuso, G.; Ciraolo, G. Storm Energy Flux Characterization along the Mediterranean Coast of Andalusia (Spain). Water 2019, 11, 509. [Google Scholar] [CrossRef] [Green Version]
- Viola, A.; Franzitta, V.; Trapanese, M.; Curto, D. Nexus Water & Energy: A Case Study of Wave Energy Converters (Wecs) to Desalination Applications in Sicily. Int. J. Heat Technol. 2016, 34, S379–S386. [Google Scholar] [CrossRef]
- Corsini, A.; Tortora, E.; Cima, E. Preliminary Assessment of Wave Energy Use in an Off-Grid Minor Island Desalination Plant. Energy Procedia 2015, 82, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Mattiazzo, G. State of the Art and Perspectives of Wave Energy in the Mediterranean Sea: Backstage of ISWEC. Front. Energy Res. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Franzitta, V.; Curto, D. Sustainability of the Renewable Energy Extraction Close to the Mediterranean Islands. Energies 2017, 10, 283. [Google Scholar] [CrossRef] [Green Version]
- Sinn Power Project Heraklion. Available online: https://www.sinnpower.com/projects (accessed on 24 May 2021).
- OCEAN POWER TECHNOLOGIES Products, PB3 POWERBUOY. Available online: https://oceanpowertechnologies.com/pb3-powerbuoy/ (accessed on 24 May 2021).
- Eco Wave Power Jaffa Port, Israel. Available online: https://ecowavepower.com/israel/ (accessed on 24 May 2021).
- 40South Energy Italia Design and Construction of the H24 Underwater Wave Energy Converters. Available online: https://40southenergy.it (accessed on 24 May 2021).
- Climate Innovation Window OBREC. Available online: https://www.climateinnovationwindow.eu/innovations/obrec (accessed on 24 May 2021).
- Contestabile, P.; Crispino, G.; di Lauro, E.; Ferrante, V.; Gisonni, C.; Vicinanza, D. Overtopping Breakwater for Wave Energy Conversion: Review of State of Art, Recent Advancements and What Lies Ahead. Renew. Energy 2020, 147, 705–718. [Google Scholar] [CrossRef]
- Wave for Energy Technology, ISWEC. Available online: https://www.waveforenergy.com/tech/iswec (accessed on 24 May 2021).
- Eco Wave Power Gibraltar. Available online: http://www.ecowavepower.com/gibraltar/ (accessed on 24 May 2021).
- Wavenergy.it WAVENERGY.IT S.R.L. Available online: https://www.wavenergy.it/about (accessed on 24 May 2021).
- Sinn Power Ocean Hybrid Platform. Available online: https://www.sinnpower.com/platform (accessed on 24 May 2021).
- Miquel, A.M.; Lamberti, A.; Antonini, A.; Archetti, R. The MoonWEC, A New Technology for Wave Energy Conversion in the Mediterranean Sea. Ocean Eng. 2020, 217, 107958. [Google Scholar] [CrossRef]
- Lavidas, G.; de Leo, F.; Besio, G. Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour. Energies 2020, 13, 4201. [Google Scholar] [CrossRef]
- Naty, S.; Viviano, A.; Foti, E. Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port. Sustainability 2016, 8, 1342. [Google Scholar] [CrossRef] [Green Version]
- Arena, F.; Romolo, A.; Malara, G.; Fiamma, V.; Laface, V. The First Worldwide Application at Full-Scale of the REWEC3 Device in the Port of Civitavecchia: Initial Energetic Performances. In Progress in Renewable Energies Offshore, Proceedings of 2nd International Conference on Renewable Energies Offshore, RENEW 2016, Lisbon, Portugal, 24–26 October 2016; Soares, C.G., Ed.; CRC Press/Balkema: Leiden, The Netherlands, 2016. [Google Scholar]
- Iuppa, C.; Contestabile, P.; Cavallaro, L.; Foti, E.; Vicinanza, D. Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion. Sustainability 2016, 8, 1226. [Google Scholar] [CrossRef] [Green Version]
- Contestabile, P.; Iuppa, C.; di Lauro, E.; Cavallaro, L.; Andersen, T.L.; Vicinanza, D. Wave Loadings Acting on Innovative Rubble Mound Breakwater for Overtopping Wave Energy Conversion. Coast. Eng. 2017, 122, 60–74. [Google Scholar] [CrossRef]
- Iuppa, C.; Cavallaro, L.; Musumeci, R.E.; Vicinanza, D.; Foti, E. Empirical Overtopping Volume Statistics at an OBREC. Coast. Eng. 2019, 152. [Google Scholar] [CrossRef]
- Cavallaro, L.; Iuppa, C.; Castiglione, F.; Musumeci, R.E.; Foti, E. A Simple Model to Assess the Performance of an Overtopping Wave Energy Converter Embedded in a Port Breakwater. J. Mar. Sci. Eng. 2020, 8, 858. [Google Scholar] [CrossRef]
- Palma, G.; Contestabile, P.; Zanuttigh, B.; Formentin, S.M.; Vicinanza, D. Integrated Assessment of the Hydraulic and Structural Performance of the OBREC Device in the Gulf of Naples, Italy. Appl. Ocean. Res. 2020, 101, 102217. [Google Scholar] [CrossRef]
- Contestabile, P.; Crispino, G.; Russo, S.; Gisonni, C.; Cascetta, F.; Vicinanza, D. Crown Wall Modifications as Response Towave Overtopping under a Future Sea Level Scenario: An Experimental Parametric Study for an Innovative Composite Seawall. Appl. Sci. 2020, 10, 2227. [Google Scholar] [CrossRef] [Green Version]
- di Lauro, E.; Maza, M.; Lara, J.L.; Losada, I.J.; Contestabile, P.; Vicinanza, D. Advantages of an Innovative Vertical Breakwater with an Overtopping Wave Energy Converter. Coast. Eng. 2020, 159, 103713. [Google Scholar] [CrossRef]
- Franzitta, V.; Curto, D.; Milone, D.; Rao, D. Assessment of Renewable Sources for the Energy Consumption in Malta in the Mediterranean Sea. Energies 2016, 9, 1034. [Google Scholar] [CrossRef] [Green Version]
- Konispoliatis, D.N.; Katsaounis, G.M.; Manolas, D.I.; Soukissian, T.H.; Polyzos, S.; Mazarakos, T.P.; Voutsinas, S.G.; Mavrakos, S.A. Refos: A Renewable Energy Multi-Purpose Floating Offshore System. Energies 2021, 14, 3126. [Google Scholar] [CrossRef]
- Moretti, G.; Malara, G.; Scialò, A.; Daniele, L.; Romolo, A.; Vertechy, R.; Fontana, M.; Arena, F. Modelling and Field Testing of a Breakwater-Integrated U-OWC Wave Energy Converter with Dielectric Elastomer Generator. Renew. Energy 2020, 146, 628–642. [Google Scholar] [CrossRef]
- Cascajo, R.; García, E.; Quiles, E.; Correcher, A.; Morant, F. Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia. Energies 2019, 12, 787. [Google Scholar] [CrossRef] [Green Version]
- Shehata, A.S.; Xiao, Q.; El-Shaib, M.; Sharara, A.; Alexander, D. Comparative Analysis of Different Wave Turbine Designs Based on Conditions Relevant to Northern Coast of Egypt. Energy 2017, 120, 450–467. [Google Scholar] [CrossRef] [Green Version]
- Bozzi, S.; Besio, G.; Passoni, G. Wave Power Technologies for the Mediterranean Offshore: Scaling and Performance Analysis. Coast. Eng. 2018, 136, 130–146. [Google Scholar] [CrossRef]
- Sirigu, S.A.; Bonfanti, M.; Begovic, E.; Bertorello, C.; Dafnakis, P.; Giorgi, G.; Bracco, G.; Mattiazzo, G. Experimental Investigation of the Mooring System of a Wave Energy Converter in Operating and Extreme Wave Conditions. J. Mar. Sci. Eng. 2020, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave Energy Device and Breakwater Integration: A Review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Li, L.; Zhu, J.; Ye, G.; Feng, X. Development of Green Ports with the Consideration of Coastal Wave Energy. Sustainability 2018, 10, 4270. [Google Scholar] [CrossRef] [Green Version]
- Vicinanza, D.; di Lauro, E.; Contestabile, P.; Gisonni, C.; Lara, J.L.; Losada, I.J. Review of Innovative Harbor Breakwaters for Wave-Energy Conversion. J. Waterw. Port Coast. Ocean. Eng. 2019, 145, 03119001. [Google Scholar] [CrossRef]
- Rusu, L.; Guedes Soares, C. Wave Energy Assessments in the Azores Islands. Renew. Energy 2012, 45, 183–196. [Google Scholar] [CrossRef]
- Franzitta, V.; Curto, D.; Rao, D.; Milone, D. Near Zero Energy Island with Sea Wave Energy: The Case Study of Pantelleria in Mediterranean Sea. In Proceedings of the OCEANS 2016—Shanghai, Institute of Electrical and Electronics Engineers, Shanghai, China, 10–13 April 2016. [Google Scholar]
- Majidi Nezhad, M.; Groppi, D.; Rosa, F.; Piras, G.; Cumo, F.; Garcia, D.A. Nearshore Wave Energy Converters Comparison and Mediterranean Small Island Grid Integration. Sustain. Energy Technol. Assess. 2018, 30, 68–76. [Google Scholar] [CrossRef]
- Rusu, L.; Onea, F.; Rusu, E. The Expected Impact of Marine Energy Farms Operating in Island Environments with Mild Wave Energy Resources—A Case Study in the Mediterranean Sea. Inventions 2021, 6, 33. [Google Scholar] [CrossRef]
Geographical Area | Data | Part of the Mediterranean Sea | Authors | ||
---|---|---|---|---|---|
Numerical Wave Models | In Situ Measurements | Satellite Data | |||
Mediterranean Sea | x | x | Entire | [6] | |
Mediterranean Sea | x | x | Entire | [19] | |
Mediterranean Sea | x | x | Entire | [20] | |
Mediterranean Sea | x | x | Entire | [21] | |
Libyan Sea | x | Eastern | [30] | ||
Aegean Sea | x | x | Eastern | [31] | |
Levantine Sea | x | x | Eastern | [29] | |
Eastern Mediterranean Sea and Aegean Sea | x | Eastern | [28] | ||
Aegean Sea | x | x | Eastern | [32] | |
Greek Coasts | x | x | x | Eastern | [33] |
North Aegean Sea | x | x | Eastern | [34] | |
Varkiza Coasts | x | x | Eastern | [35] | |
Chania’s Venetian harbour Coast | x | x | Eastern | [36] | |
North-western Sardinian Coasts | x | x | Western | [22] | |
Sicilian Coasts | x | x | x | Western | [23] |
Tuscany, Liguria, Sardinia and Sicily Coasts | x | Western | [25] | ||
Italian Coasts | x | x | x | Western | [17] |
Sicilian Coasts | x | x | Western | [24] | |
Northern Latium Coasts | x | x | Western | [26] | |
Algerian Coasts | x | x | Western | [27] | |
Balearic Sea | x | x | x | Western | [38] |
Croatian Coasts | x | Western | [39] |
Geographical Area | Period | Part of the Mediterranean Sea | Authors |
---|---|---|---|
European Coasts | 2001–2010 | Entire | [15] |
Mediterranean Sea | 1979–2016 | Entire | [43] |
Greek Coasts | - | Eastern | [41] |
Greek Coasts | 2001–2010 | Eastern | [44] |
Greek Coasts | 2005–2015 | Eastern | [45] |
Italian Coasts | 2005–2014 | Western | [46] |
Geographical Area | Period | Data | Part of the Mediterranean Sea | Authors | |||
---|---|---|---|---|---|---|---|
Significant Wave Height | Wave Period | Wave Power | Wave Direction | ||||
Mediterranean Sea | 1970–2100 | x | x | x | Entire | [50] | |
Coasts of Calabria | 1979–2017 | x | x | Western | [48] | ||
Italian Coasts | 1979–2018 | x | x | x | Western | [49] | |
Coasts of Menorca | 1971–2000 and 2071–2100 | x | x | x | x | Western | [5] |
Coasts of Morocco | 1986–2005 and 2081–2100 | x | x | x | x | Western | [47] |
North-western Mediterranean Sea | 1971–2000 and 2071–2100 1 | x | x | x | Western | [51] |
Country | Company | Year of Deployment | Device Name | TechnologyReadiness Level (TRL) | Type of WEC | Location | Power (kW) | Area of Deployment | Sea of Deployment | Part of the Mediterranean Sea |
---|---|---|---|---|---|---|---|---|---|---|
Italy | 40South Energy Italia SRLpower | 2015 | H24 | 7 | Other | Nearshore | 50 | Marina di Pisa | Ligurian Sea | Western |
data University of Campania Luigi Vanvitelli | 2015 | Overtopping Breakwater for Energy Conversion (OBREC) | 6 | Overtopping | Onshore | 8 | Port of Naples | Tyrrhenian Sea | Western | |
Polytechnic of Turin and Wave for Energy Srl | 2016 | Inertial Sea Wave Energy Converter (ISWEC) | 7 | Rotating mass | Offshore | 100 | Coast of Pantelleria | Strait of Sicily | Western | |
Mediterranean University of Reggio Calabria in cooperation with Wavenergy.it | 2017 | REWEC3 | 7 | Oscillating Water Column (OWC) | Onshore | 2500 | Port of Civitavecchia | Tyrrhenian Sea | Western | |
Ocean Power Technologies | 2018 | PB3 PowerBuoy | 7 | Point absorber | Offshore | 3 | Ravenna | Adriatic Sea | Western | |
Polytechnic of Turin and Wave for Energy Srl | 2019 | ISWEC | 7 | Rotating mass | Offshore | 50 | Ravenna | Adriatic Sea | Western | |
Greece | Sinn Power | 2018 | SP WEC 3rd Gen | 7 | Point absorber | Onshore | 18 | Port of Heraklion | Cretan Sea | Eastern |
Sinn Power | 2019 | SP WEC 4th Gen | 7 | Point absorber | Onshore | 36 | Port of Heraklion | Cretan Sea | Eastern | |
Israel | Eco Wave Power | 2014 | Wave clapper | 7 | Point absorber | Onshore | - | Port of Jaffa | Levantine Sea | Eastern |
Gibraltar | Eco Wave Power | 2016 | Wave clapper | 7 | Point absorber | Onshore | 100 | Gibraltar | Alboran Sea | Western |
Geographical Area | Name of WECs | Types of WEC | Location | Part of the Mediterranean Sea | Authors |
---|---|---|---|---|---|
Entire Mediterranean Sea | MoonWEC, AquaBuOY, Archimedes Wave Swing (AWS), OE buoy, Langlee, Pelamis, Pontoon, SeaPower and Wavebob | Other, Point absorber, Oscillating wave surge converter, Oscillating water column (OWC) and Attenuator | Offshore | Entire | [72,88] |
Port of Civitavecchia | REWEC3 | OWC | Onshore | Western | [75] |
Maltese Coasts | DEIM (Department of Energy, Engineering Information and Mathematical Models (DEIM) | Point absorber 1 | Offshore | Western | [83] |
Sardinian Coasts | DEIM | Point absorber 1 | Offshore | Western | [42] |
Port of Naples | Overtopping Breakwater for Energy Conversion (OBREC) | Overtopping | Onshore | Western | [67,76,77,78,79,80,81] |
Pantelleria island | DEIM | Point absorber 1 | Offshore | Western | [61] |
Sea area of eastern Crete and north-west of Sicily | Renewable Energy Multi-Purpose Floating Offshore System (REFOS) | OWC 2 | Offshore | Eastern and Western | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dialyna, E.; Tsoutsos, T. Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. Energies 2021, 14, 4764. https://doi.org/10.3390/en14164764
Dialyna E, Tsoutsos T. Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. Energies. 2021; 14(16):4764. https://doi.org/10.3390/en14164764
Chicago/Turabian StyleDialyna, Evangelia, and Theocharis Tsoutsos. 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects" Energies 14, no. 16: 4764. https://doi.org/10.3390/en14164764
APA StyleDialyna, E., & Tsoutsos, T. (2021). Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. Energies, 14(16), 4764. https://doi.org/10.3390/en14164764