Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Composition of the Obtained Alloys by X-ray Diffraction
3.2. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Güther, V.; Otto, A. Recent developments in hydrogen storage applications based on metal hydrides. J. Alloy. Compd. 1999, 293, 889–892. [Google Scholar] [CrossRef]
- Dantzer, P. Properties of intermetallic compounds suitable for hydrogen storage applications. J. Mater. Sci. Eng. A 2002, 329, 313–320. [Google Scholar] [CrossRef]
- Eberle, U.; Arnold, G.; von Helmolt, R. Hydrogen storage in metale hydrogen systems and their derivatives. J. Power Sources 2006, 154, 456–460. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Keller, J.O. 5-Years of hydrogen storage research in the U.S. DOE metal hydride center of excellence (MHCoE). Int. J. Hydrog. Energy 2013, 38, 4533–4576. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrog. Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Kukkapali, V.K.; Sunwoo, K. Optimization of internal cooling fins for metal hydride reactors. Energies 2016, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Zhao, X.G.; Ma, L.Q. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrog. Energy 2009, 34, 4788–4796. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Hong, K. The development of hydrogen storage alloys and the progress of nickel hydride batteries. J. Alloy. Compd. 2001, 321, 307–313. [Google Scholar] [CrossRef]
- Ouyang, L.; Huang, J.; Wang, H.; Liu, J.; Zhu, M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review. Mater. Chem. Phys. 2017, 200, 164–178. [Google Scholar] [CrossRef]
- Jurczyk, M.; Smardz, L.; Smardz, K.; Nowak, M.; Jankowska, E. Nanocrystalline LaNi5-type electrode materials for Ni-MHx batteries. J. Solid State Chem. 2003, 171, 30–37. [Google Scholar] [CrossRef]
- Cuevas, F.; Joubert, J.-M.; Latroche, M.; Percheron-Guegan, A. Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl. Phys. A 2001, 72, 225–238. [Google Scholar] [CrossRef]
- Stetskiv, A.; Rożdżyńska-Kiełbik, B.; Kowalczyk, G.; Prochwicz, W.; Siemion, P.; Pavlyuk, V. The structural and thermal stability, electrochemical hydrogenation and corrosion behavior of LaT5−xMx(T = Co, Ni and M = Al, Ge, Li) phases. Solid State Sci. 2014, 38, 35–41. [Google Scholar] [CrossRef]
- Dymek, M.; Bala, H. Inhibition of LaNi5 electrode decay in alkaline medium by electroless encapsulation of active powder particles. J. Solid State Electrochem. 2016, 20, 2001–2007. [Google Scholar] [CrossRef] [Green Version]
- Pęska, M.; Dworecka-Wójcik, J.; Płociński, T.; Polański, M. The Influence of Cerium on the Hydrogen Storage Properties of La1−xCexNi5 Alloys. Energies 2020, 13, 1437. [Google Scholar] [CrossRef] [Green Version]
- Clay, K.R.; Goudy, A.J.; Schweibenz, R.G.; Zarynow, A. The effect of the partial replacement of lanthanum in LaNi5-xH with cerium, praseodymium, and neodymium on absorption and desorption kinetics. J. Less Common Met. 1990, 166, 153–162. [Google Scholar] [CrossRef]
- Spondaryk, M.; Gasilova, N.; Züttel, A. Hydrogen storage and electrochemical properties of LaNi5−xCux hydride-forming alloys. J. Alloy. Compd. 2019, 775, 175–180. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Witham, C.; Bowman, R.C., Jr.; Hightower, A.; Fultz, B. Electrochemical studies on LaNi5−xSnx metal hydride alloys. J. Electrochem. Soc. 1996, 143, 2578–2584. [Google Scholar] [CrossRef]
- Borzone, E.M.; Blanco, M.V.; Baruj, A.; Meyer, G.O. Stability of LaNi5−xSnx cycled in hydrogen. Int. J. Hydrog. Energy 2014, 39, 8791–8796. [Google Scholar] [CrossRef]
- Pandey, S.K.; Srivastava, A.; Srivastava, O.N. Improvement in hydrogen storage capacity in through substitution of Ni by Fe. Int. J. Hydrog. Energy 2007, 32, 2461–2465. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Zheng, Z.; Cheng, H.; Yan, K.; Zhu, Z. Long-term hydrogen absorption/desorption properties and structural changes of LaNi4Co alloy with double desorption plateaus. J. Alloy. Compd. 2019, 778, 681–690. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, S.; Lu, H.; Wu, J.; Yan, K.; Cheng, H.; Liu, J. Stability of LaNi5−xCox alloys cycled in hydrogen—Part 1 evolution in gaseous hydrogen storage performance. Int. J. Hydrog. Energy 2019, 44, 15159–15172. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Cheng, H.; Yan, K.; Wang, Y.; Liu, Y.; Jin, H.; Zheng, Z. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5−xAlx alloys. Int. J. Hydrog. Energy 2017, 42, 24904–24914. [Google Scholar] [CrossRef]
- An, X.H.; Pan, Y.B.; Luo, Q.; Zhang, X.; Zhang, J.Y.; Li, Q. Application of a new kinetic model for the hydriding kinetics of LaNi5−xAlx (0 ≤ x ≤ 1.0) alloys. J. Alloy. Compd. 2010, 506, 63–69. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, J.; Yang, N.; Chen, J.; Gu, C.; Cheng, H.; Yan, K.; Zhu, Z.; Wang, K. Long-term hydrogen absorption/desorption properties of an AB5-type LaNi4.75Mn0.25 alloy. Mater. Sci. Eng. B 2020, 262, 114777. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Zhang, W.; Zhu, S.; Zhang, N.; Ke, D.; Liu, J.; Yan, K.; Cheng, H. Effect of Mn on the long-term cycling performance of AB5-type hydrogen storage alloy. Int. J. Hydrog. Energy 2021, 46, 21973–21983. [Google Scholar] [CrossRef]
- Rożdżyńska-Kiełbik, B.; Iwasieczko, W.; Drulis, H.; Pavlyuk, V.V.; Bala, H. Hydrogenation equilibria characteristics of LaNi5−xZnx intermetallics. J. Alloy. Compd. 2000, 298, 237–243. [Google Scholar] [CrossRef]
- Achard, J.-C.; Percheron-Gue’gan, A.; Diaz, H.; Briaucourt, F.; Demany, F. Proceedings of the Second International Congress on Hydrogen in Metals, Paris, France, 6–11 June 1977; 1977; pp. 1–12. [Google Scholar]
- Singh, A.; Singh, B.K.; Davidson, D.J.; Srivastava, O.N. Studies on improvement of hydrogen storage capacity of AB5 type: MmNi4.6Fe0.4 alloy. Int. J. Hydrog. Energy 2004, 29, 1151–1156. [Google Scholar] [CrossRef]
- Witham, C.; Bowman, R.C., Jr.; Fultz, B. Gas-phase H2 absorption and microstructural properties of LaNi5−x Gex alloys. J. Alloy. Compd. 1997, 253, 574–578. [Google Scholar] [CrossRef]
- Witham, C.; Ratnakumar, B.V.; Bowman, R.C.; Hightower, A., Jr.; Fultz, B. Electrochemical evaluation of LaNi5−xGex metal hydride alloys. J. Electrochem. Soc. 1996, 143, 205–208. [Google Scholar] [CrossRef]
- Witham, C.; Hightower, A.; Fultz, B.; Ratnakumar, B.V.; Bowman, R.C. Electrochemical properties of LaNi5−xGex alloys in NiMH batteries. J. Electrochem. Soc. 1997, 144, 3758–3764. [Google Scholar] [CrossRef]
- Chu, H.-L.; Qiu, S.-J.; Sun, L.-X.; Zhang, Y.; Xu, F.; Tao, J.; Li, W.-X.; Zhu, M.; Hu, W.-Y. The improved electrochemical properties of novel La-Mg-Ni based hydrogen storage composites. Electrochim. Acta 2007, 52, 6700–6706. [Google Scholar] [CrossRef]
- Drulis, H.; Hackemer, A.; Głuchowski, P.; Giza, K.; Adamczyk, L.; Bala, H. Gas phase hydrogen absorption and electrochemical performance of La2(Ni,Co,Mg,M)10 based alloys. Int. J. Hydrog. Energy 2014, 39, 2423–2429. [Google Scholar] [CrossRef]
- Hussein, M.A.; Kumar, M.; Drew, R.; Al-Aqeeli, N. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid. Materials 2018, 11, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.M.; Sudhagar, P.; Ramakrishna, S.; Kang, Y.S.; Kim, H.; Gasem, Z.M.; Rajendran, N. Evaluation of chemically modified Ti–5Mo–3Fe alloy surface: Electrochemical aspects and in vitro bioactivity on MG63 cells. Appl. Surf. Sci. 2014, 307, 52–61. [Google Scholar] [CrossRef]
- Bala, H.; Giza, K.; Kukuła, I. Determination of hydrogenation ability and exchange current of H2O/H2 system on hydrogen absorbing metal alloys. J. Appl. Electrochem. 2010, 40, 791–797. [Google Scholar] [CrossRef]
- Giza, K.; Drulis, H. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process. Int. J. Mater. Res. 2016, 107, 103–108. [Google Scholar] [CrossRef]
- Zheng, G.; Popov, B.; White, R.E. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J. Electrochem. Soc. 1995, 142, 2695–2698. [Google Scholar] [CrossRef] [Green Version]
- Giza, K.; Musiał-Gładysz, A. Evaluation of the influence of Cu2O addition on electrochemical properties of LaNi5 hydrogen storage alloy. Ochr. Przed Korozją 2018, 61, 114–118. [Google Scholar] [CrossRef]
- Karwowska, M.; Fijalkowski, K.J.; Czerwiński, A.A. Corrosion of hydrogen storage metal alloy LaMm-Ni4.1Al0.3Mn0.4Co0.45 in the aqueous solutions of alkali metal hydroxides. Materials 2018, 11, 2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocon, J.D.; Kim, J.W.; Abrenica, G.H.; Lee, J. Quasi-perpetual discharge behaviour in p-type Ge–air batteries. Phys. Chem. Chem. Phys. 2014, 16, 22487–22494. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giza, K.; Owczarek, E. Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys. Energies 2021, 14, 5285. https://doi.org/10.3390/en14175285
Giza K, Owczarek E. Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys. Energies. 2021; 14(17):5285. https://doi.org/10.3390/en14175285
Chicago/Turabian StyleGiza, Krystyna, and Edyta Owczarek. 2021. "Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys" Energies 14, no. 17: 5285. https://doi.org/10.3390/en14175285
APA StyleGiza, K., & Owczarek, E. (2021). Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys. Energies, 14(17), 5285. https://doi.org/10.3390/en14175285