Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview
Abstract
:1. Introduction
2. History of Thermoelectricity
3. Thermoelectric Materials and Designs
4. Waste Heat Sources
5. Case Study: Waste Heat Recycling from Cement Rotary Kilns
- It is necessary to assess the surface temperature balance along the rotary kiln length to reduce side effects on the quality of the final products and the kiln service life (e.g., elimination of crack formation on the kiln shell due to hot spots)
- Optimizing the distance of the TEG system to the rotary kiln
- TEGs should not be installed directly on the kiln surface because they can increase the weight of the kiln and, thus, require more energy to rotate. Moreover, the direct installation of TEGs on the kiln surface adds a thermal resistance layer to the outer surface.
6. Challenges and Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geoff, M.; Saikawa, E. Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions. Nat. Clim. Chang. 2017, 7, 912–919. [Google Scholar]
- Yusaf, T.; Goh, S.; Borserio, J.A. Potential of renewable energy alternatives in Australia. Renew. Sustain. Energy Rev. 2011, 15, 2214–2221. [Google Scholar] [CrossRef]
- Available online: https://flowcharts.llnl.gov/content/assets/docs/2019_United-States_Energy.pdf (accessed on 15 March 2021).
- Annual Energy Outlook 2020 with Projections to 2050. January 2020; U.S. Energy Information Administration Office of Energy Analysis, U.S. Department of Energy, Washington, DC, USA; Available online: https://www.eia.gov/ or https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf; (accessed on 15 March 2021).
- Yang, J.; Stabler, F.R. Automotive Applications of Thermoelectric Materials. J. Electron. Mater. 2009, 38, 1245–1251. [Google Scholar] [CrossRef]
- Ando Junior, O.H.; Maran, A.L.O.; Henao, N.C. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew. Sustain. Energy Rev. 2018, 91, 376–393. [Google Scholar] [CrossRef]
- Zhang, Y. Thermoelectric Advances to Capture Waste Heat in Automobiles. ACS Energy Lett. 2018, 3, 1523–1524. [Google Scholar] [CrossRef]
- Ding, L.C.; Akbarzadeh, A.; Tan, L. A review of power generation with thermoelectric system and its alternative with solar ponds. Renew. Sustain. Energy Rev. 2018, 81, 799–812. [Google Scholar] [CrossRef]
- Polozine, A.; Sirotinskaya, S.; Schaeffer, L. History of Development of Thermoelectric Materials for Electric Power Generation and Criteria of their Quality. Mater. Res. Soc. 2014, 17, 1260–1267. [Google Scholar] [CrossRef] [Green Version]
- Taroni, P.J.; Hoces, I.; Stingelin, N.; Heeney, M.; Bilotti, E. Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Isr. J. Chem. 2014, 54, 534–552. [Google Scholar] [CrossRef]
- Zaferani, S.H. Improvement of Thermoelectric Properties through Manipulation of Their Microstructure: The Effect of Graphene Reinforcement. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2021. [Google Scholar]
- Mena, J.M.; Schoberth, H.G.; Gruhn, T.; Emmerich, H. Ab initio study of domain structures in half-metallic CoTi1-xMnxSb and thermoelectric CoTi1-xScxSb half-Heusler alloys. J. Alloy. Compd. 2015, 650, 728–740. [Google Scholar] [CrossRef]
- Punith, N.; Swamy, G.M.; Yalagi, S. A Thermoelectric Generator Systems Forwaste Heat Recovery—A Review. Int. J. Eng. Res. Technol. 2015, 3, 110–171. [Google Scholar]
- Brief History of Thermoelectrics, Northwestern Materials Science and Engineering. Available online: http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history.html (accessed on 15 March 2021).
- Thermoelectrics History Timeline, Copyright © 2009–2020, Alphabet Energy, Inc. Available online: http://www.alphabetenergy.com/thermoelectrics-timeline/ (accessed on 15 March 2021).
- Kee, S.; Haque, M.A.; Lee, Y.; Nguyen, T.L.; Villalva, D.R.; Troughton, J.; Emwas, A.; Alshareef, H.N.; Woo, H.Y.; Baran, D. A Highly Conductive Conjugated Polyelectrolyte for Flexible Organic Thermoelectrics. ACS Appl. Energy Mater. 2020, 3, 8667–8675. [Google Scholar] [CrossRef]
- Ekubaru, Y.; Sugahara, T.; Ibano, K.; Suetake, A.; Tsurumoto, M.; Kagami, N.; Suganuma, K. Fabrication and Characterization of Ultra-Lightweight, Compact, and Flexible Thermoelectric Device Based on Highly Refined Chip Mounting. Adv. Mater. Technol. 2020, 5, 1901128. [Google Scholar] [CrossRef]
- Bisht, N.; More, P.; Khanna, P.K.; Abolhassani, R.; Mishra, Y.K.; Madsen, M. Progress of hybrid nanocomposite materials for thermoelectric applications. Mater. Adv. 2021, 2, 1927. [Google Scholar] [CrossRef]
- Allison, L.K.; Andrew, T.L. A Wearable All-Fabric Thermoelectric Generator. Adv. Mater. Technol. 2019, 4, 1800615. [Google Scholar] [CrossRef]
- Available online: https://spectrum.ieee.org/a-thermoelectric-generator-for-wearable-tech#toggle-gdpr (accessed on 16 June 2020).
- Massaguer, A.; Pujol, T.; Comamala, M.; Massaguer, E. Feasibility study on a vehicular thermoelectric generator coupled to an exhaust gas heater to improve aftertreatment’s efficiency in cold-starts. Appl. Therm. Eng. 2020, 167, 114702. [Google Scholar] [CrossRef]
- Chang, C.; Wang, Z.; Fu, B.; Ji, Y. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts. Sci. Rep. 2020, 10, 20500. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://solarsystem.nasa.gov/missions/cassini/radioisotope-thermoelectric-generator/ (accessed on 16 June 2021).
- Available online: https://mars.nasa.gov/mars2020/spacecraft/rover/electrical-power/ (accessed on 16 June 2021).
- Yahyaoglu, M.; Ozen, M.; Prots, Y.; El Hamouli, O.; Tshitoyan, V.; Ji, H.; Burkhardt, U.; Lenoir, B.; Snyder, G.J.; Jain, A.; et al. Phase-Transition-Enhanced Thermoelectric Transport in Rickardite Mineral Cu3−xTe2. Chem. Mater. 2021, 33, 1832–1841. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G.J. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 2020, 11, 572. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Lee, S.; Kim, C.; Kim, Y. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 2014, 23, 105002. [Google Scholar] [CrossRef]
- Zaferani, S.H.; Ghomashchi, R.; Vashaee, D. An Assessment of Thermoelectric, Mechanical and Microstructural Reinforcement Properties of Graphene-mixed Heterostructures. ACS Appl. Energy Mater. 2021, 4, 3573–3583. [Google Scholar] [CrossRef]
- Zaferani, S.H.; Darebaghi, A.; Hong, S.; Vashaee, D.; Ghomashchi, R. Experimental Realization of Heavily p-doped Half-Heusler CoVSn Compound. Energies 2020, 13, 1459. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Kim, I.-H.; Jung, H.-J. Improving thermoelectric energy harvesting efficiency by using graphene. AIP Adv. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Falmbigl, M.; Rogi, G.; Rogl, P.; Kriegisch, M.; Müller, H.; Bauer, E.; Reinecker, M.; Schranz, W. Thermal expansion of thermoelectric type-I-clathrates. J. Appl. Phys. 2010, 108, 043529. [Google Scholar] [CrossRef]
- Kishimoto, K.; Sasaki, Y.; Koyanagi, T.; Ohoyama, K.; Akai, K. Crystal structure and thermoelectric properties of KxBa82xZnyGe462y clathrates. J. Appl. Phys. 2012, 111, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kleinke, H. New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides. Chem. Mater. 2010, 22, 604–611. [Google Scholar] [CrossRef]
- Qiu, P.F.; Liu, R.H.; Yang, J.; Shi, X.; Huang, X.Y.; Zhang, W.; Chen, L.D.; Yang, J.; Singh, D.J. Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. J. Appl. Phys. 2012, 111, 1–7. [Google Scholar] [CrossRef]
- Mallik, R.C.; Anbalagan, R.; Raut, K.K.; Bali, A.; Royanian, E.; Bauer, E.; Rogl, P.; Rogl, G. Thermoelectric properties of Bi-added Co4Sb12 skutterudites. J. Phys. Condens. Matter 2013, 25, 105701. [Google Scholar] [CrossRef]
- Dong, Y.; Puneet, P.; Tritt, T.M.; Martin, J.; Nolas, G.S. High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12. J. Appl. Phys. 2012, 112, 1–5. [Google Scholar] [CrossRef]
- Cho, J.Y.; Ye, Z.; Tessema, M.M.; Waldo, R.A.; Salvador, J.R.; Yang, J.; Cai, W.; Wang, H. Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8 < x < 1). Acta Mater. 2012, 60, 2104–2110. [Google Scholar]
- Oudah, M.; Kleinke, K.M.; Kleinke, H. Thermoelectric Properties of the Quaternary Chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6. Inorg. Chem. 2015, 54, 845–849. [Google Scholar] [CrossRef]
- Ge, X.-J.; Qin, D.; Yao, K.-L.; Lü, J.-T. First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides. J. Phys. D Appl. Phys. 2017, 50, 1–6. [Google Scholar] [CrossRef]
- Kastbjerg, S.; Bindzus, N.; Søndergaard, M.; Johnsen, S.; Lock, N.; Christensen, M.; Takata, M.; Spackman, M.A.; Iversen, B.B. Direct Evidence of Cation Disorder in Thermoelectric Lead Chalcogenides PbTe and PbS. Adv. Funct. Mater. 2013, 23, 5477–5483. [Google Scholar] [CrossRef]
- Tavassoli, A.; Failamani, F.; Grytsiv, A.; Rogl, G.; Heinrich, P.; Müller, H.; Bauer, E.; Zehetbauer, M.; Rogl, P. On the Half-Heusler compounds Nb1-x{Ti,Zr,Hf}xFeSb: Phase relations, thermoelectric properties at low and high temperature, and mechanical properties. Acta Mater. 2017, 135, 263–276. [Google Scholar] [CrossRef]
- Yamamoto, A.; Takeuchi, T. The Potential of FeVSb Half-Heusler Phase for Practical Thermoelectric Material. J. Electron. Mater. 2017, 46, 3200–3206. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, X.; Yu, Y.G.; Yu, L.; Nagaraja, A.; Mason, T.O.; Zunger, A. Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Dahal, K.; Mao, J.; Huang, L.; Zhang, Q.; Ren, Z. Thermoelectric properties of n-type half-Heusler compounds (Hf0.25Zr0.75)1exNbxNiSn. Acta Mater. 2016, 113, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Xia, K.; Zhao, X.; Zhu, T. High performance p-type half-Heusler thermoelectric materials. J. Phys. D Appl. Phys. 2018, 51, 1–15. [Google Scholar] [CrossRef]
- Kaller, M.; Fuks, D.; Gelbstein, Y. Sc solubility in p-type half-Heusler (Ti1-cScc)NiSn thermoelectric alloys. J. Alloy. Compd. 2017, 729, 446–452. [Google Scholar] [CrossRef]
- Zeier, W.G.; Schmitt, J.; Hautier, G.; Aydemir, U.; Gibbs, Z.M.; Felser, C.; Snyder, G.J. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 2016, 1, 1–10. [Google Scholar] [CrossRef]
- Zeeshan, M.; Singh, H.K.; Brink, J.; Kandpal, H.C. Ab initio design of new cobalt-based half-Heusler materials for thermoelectric applications. Phys. Rev. Mater. 2017, 1, 075407-1–075407-9. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, Z.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2018, 8, 1–28. [Google Scholar] [CrossRef]
- Fairbanks, J. Thermoelectric Applications in Vehicles Status 2008; U.S. Department of Energy: Washington, DC, USA, 2008; p. 20585.
- Photo Courtesy of NASA/JPLCaltech. Available online: https://www.energy.gov/sites/prod/files/styles/borealis_photo_gallery_large_respondsmall/public/mars_rover_MMGTG_0.png?itok=8S2HxJhI (accessed on 16 June 2021).
- Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shin, H.D.; Chen, K.; Song, B.; Duncan, R.A.; Xu, Q.; Maznev, A.A.; Nelson, K.A.; Chen, G. Direct observation of large electron–phonon interaction effect on phonon heat transport. Nat. Commun. 2020, 11, 6040. [Google Scholar] [CrossRef]
- Qin, F.; Nikolaev, S.A.; Suwardi, A.; Wood, M.; Zhu, Y.; Tan, X.; Aydemir, U.; Ren, Y.; Yan, Q.; Hu, L.; et al. Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chem. Mater. 2020, 32, 10130–10139. [Google Scholar] [CrossRef]
- Maoa, J.; Shuaia, J.; Songa, S.; Wu, Y.; Dally, R.; Zhou, J.; Liu, Z.; Sun, J.; Zhang, Q.; Cruz, C.D.; et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc. Natl. Acad. Sci. USA 2017, 114, 10548–10553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.; Olvera, A.; Bailey, T.; Fu, J.; Su, X.; Veremchuk, I.; Yin, Z.; Buchannan, B.; Uher, C.; Tang, X.; et al. High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn4Bi10Se19. Mater. Adv. 2021, 2, 2382–2390. [Google Scholar] [CrossRef]
- Zaferani, S.H. Using Silane Products on Fabrication of Polymer-Based Nanocomposite for Thin Film Thermoelectric Devices. Renew. Sustain. Energy Rev. 2017, 71, 359–364. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Norouzzadeh, P.; Ede, K.F.; Vashaee, D. The effect of nanostructuring on the spectral population of electrons and phonons. J. Alloy. Compd. 2018, 753, 234–238. [Google Scholar] [CrossRef]
- Satyala, A.N.; Norouzzadeh, P.; Vashaee, D. Nano Bulk Thermoelectrics: Concepts, Techniques, and Modeling, Nanoscale Thermoelectrics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 141–183. [Google Scholar]
- Zamanipour, Z.; Shi, X.; Dehkordi, A.M.; Krasinski, J.S.; Vashaee, D. The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys. Status Solidi 2012, 209, 2049–2058. [Google Scholar] [CrossRef]
- Bao, D.; Chen, J.; Yu, Y.; Liu, W.; Huang, L.; Han, G.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem. Eng. J. 2020, 388, 124295. [Google Scholar] [CrossRef]
- Zaferani, S.H.; Ghomashchi, R.; Vashaee, D. Thermoelectric, Magnetic, and Mechanical Characteristics of Antiferromagnetic Manganese Telluride Reinforced with Graphene Nanoplates. Adv. Eng. Mater. 2021, 13, 2000816. [Google Scholar] [CrossRef]
- Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Gonzalez, M.M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. R Rep. 2019, 138, 100501. [Google Scholar] [CrossRef]
- Ying, P.; He, R.; Mao, J.; Zhang, Q.; Reith, H.; Sui, J.; Ren, Z.; Nielsch, K.; Schierning, G. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 2021, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Hua, X.; Hao, S.; Zhang, X.; Bailey, T.P.; Slade, T.J.; Yasaei, P.; Korkosz, R.J.; Tan, G.; Uher, C.; et al. Dissociation of GaSb in n-Type PbTe: Off-Centered Gallium Atom and Weak Electron−Phonon Coupling Provide High Thermoelectric Performance. Chem. Mater. 2021, 33, 1842–1851. [Google Scholar] [CrossRef]
- Malhotra, A.; Hosseini, M.; Zaferani, S.H.; Hall, M.; Vashaee, D. Enhancement of Diffusion, Densification and Solid-State Reaction in Dielectric Materials due to Interfacial Interaction of Microwave Radiation: Theory and Experiment. ACS Appl. Mater. Interfaces 2020, 12, 50941–50952. [Google Scholar] [CrossRef]
- Ahiska, R.; Yavuz, A.H.; Kaymaz, M.; Güler, İ. Control of a Thermoelectric Brain Cooler by Adaptive Neuro-Fuzzy Inference System. Instrum. Sci. Technol. 2008, 36, 636–655. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, H.; Snyder, G.J. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012, 24, 6125–6135. [Google Scholar] [CrossRef]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Heremans, J.P.; Wiendlocha, B.; Chamoire, A.M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Takagiwa, Y.; Snyder, G.J. Higher mobility in bulk semiconductors by separating the dopants from the chargeconducting band—A case study of thermoelectric PbSe. Mater. Horiz. 2015, 2, 323. [Google Scholar] [CrossRef] [Green Version]
- Kumarasinghe, C.; Neophytou, N. Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: The case of Co-based half-Heusler alloys. Phys. Rev. B 2019, 99, 195202. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Fan, F.-R.; Hong, X.; He, B.; Le, C.; Schnelle, W.; He, Y.; Imasato, K.; Borrmann, H.; Hess, C.; et al. Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb2. Adv. Mater. 2021, 33, 2003168. [Google Scholar] [CrossRef]
- Norouzzadeh, P.; Vashaee, D. Classification of valleytronics in thermoelectricity. Sci. Rep. 2016, 6, 22724. [Google Scholar] [CrossRef] [Green Version]
- Norouzzadeh, P.; Myles, C.W.; Vashaee, D. Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J. Phys. Condens. Matter 2013, 25, 475502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norouzzadeh, P.; Myles, C.W.; Vashaee, D. Electronic, elastic, vibrational, and thermodynamic properties of type-VIII clathrates Ba8Ga16Sn30 and Ba8Al16Sn30 by first principles. J. Appl. Phys. 2013, 114, 163509. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Norouzzadeh, P.; Myles, C.W.; Vashaee, D. Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Sci. Rep. 2014, 4, 7028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashaee, D.; Shakouri, A. Nonequilibrium Electrons and Phonons in Thin Film Thermionic Coolers. Microscale Thermophys. Eng. 2004, 8, 91–100. [Google Scholar] [CrossRef]
- Zamanipour, Z.; Vashaee, D. Comparison of thermoelectric properties of p-type nanostructured bulk Si0.8Ge0.2 alloy with Si0.8Ge0.2 composites embedded with CrSi2 nano-inclusisons. J. Appl. Phys. 2012, 112, 093714. [Google Scholar] [CrossRef]
- Vashaee, D.; Zhang, Y.; Shakouri, A.; Zeng, G.; Chiu, Y.J. Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime. Phys. Rev. B 2006, 74, 195315. [Google Scholar] [CrossRef] [Green Version]
- Vashaee, D.; Shakouri, A. HgCdTe superlattices for solid-state cryogenic refrigeration. Appl. Phys. Lett. 2006, 88, 132110. [Google Scholar] [CrossRef] [Green Version]
- Polash, M.M.H.; Vashaee, D. Magnon-bipolar carrier drag thermopower in antiferromagnetic/ferromagnetic semiconductors: Theoretical formulation and experimental evidence. Phys. Rev. B 2020, 102, 045202. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, T.; Polash, M.M.H.; Rasoulianboroujeni, M.; Liu, N.; Manley, M.E.; Deng, Y.; Sun, P.J.; Chen, X.L.; Hermann, R.P.; et al. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci. Adv. 2019, 5, eaat9461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, B.; Kumar, A.; Banerji, P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 2010, 108, 064322. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Li, J.-F.; Zhao, W.-Y.; Tan, Q.; Wei, T.-R.; Wu, C.-F.; Xing, Z.-B. PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion. Appl. Phys. Lett. 2014, 104, 113905. [Google Scholar] [CrossRef]
- Zaferani, S.H.; Ghomashchi, R.; Vashaee, D. Strategies for engineering phonon transport in Heusler thermoelectric compounds. Renew. Sustain. Energy Rev. 2019, 112, 158–169. [Google Scholar] [CrossRef]
- Li, J.; Hao, S.; Qu, S.; Wolverton, C.; Zhao, J.; Wang, Y. In4Pb5.5Sb5S19: A Stable Quaternary Chalcogenide with Low Thermal Conductivity. Inorg. Chem. 2021, 60, 325–333. [Google Scholar] [CrossRef]
- Xie, L.; Feng, J.H.; Li, R.; He, J.Q. First-Principles Study of Anharmonic Lattice Dynamics in Low Thermal Conductivity AgCrSe2: Evidence for a Large Resonant Four-Phonon Scattering. Phys. Rev. Lett. 2020, 125, 245901. [Google Scholar] [CrossRef]
- Sztekler, K.; Komorowski, M.; Tarnowska, M.; Posak, Ł. Utilization of waste heat from rotary kiln for burning clinker in the cement plant. In Proceedings of the 1st International Conference on the Sustainable Energy and Environment Development (SEED 2016), E3S Web Conference, 17 October 2016; Volume 10. [Google Scholar] [CrossRef] [Green Version]
- Ismailov, T.A.; Yevdulov, O.V.; Khazamova, M.A.; Gidurimova, D.A. Experimental Investigations of Thermoelectric Device for the Therapy of Whitlow. J. Thermoelectr. 2013, 4, 78–84. [Google Scholar]
- Luo, Q.; Li, P.; Cai, L.; Zhou, P.; Tang, D.; Zhai, P.; Zhang, Q. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns. J. Electron. Mater. 2015, 44, 1750–1762. [Google Scholar] [CrossRef]
- Wu, W.-N.; Liu, X.-Y.; Hu, Z.; Zhang, R.; Lu, X.-Y. Improving the sustainability of cement clinker calcination process by assessing the heat loss through kiln shell and its influencing factors: A case study in China. J. Clean. Prod. 2019, 224, 132–141. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rezania, A.; Rosendahl, L. Harvesting waste heat from cement kiln shell by thermoelectric system. Energy 2019, 168, 358–369. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rezania, A.; Rosendahl, L. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln. J. Clean. Prod. 2019, 232, 1321–1334. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rezaniakolaei, A.; Rosendahl, L. Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln. Energies 2018, 11, 671. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-T.; Won, C.-C.; Chu, H.-S.; Hwang, J.-D. A case study of thermoelectric generator application on rotary cement furnace. In Proceedings of the 8th International Conference on Microsystems, Packaging, Assembly and Circuits Technology (IMPACT), Taipei, Taiwan, 22–25 October 2013. [Google Scholar] [CrossRef]
- Sztekler, K.; Wojciechowski, K.; Komorowski, M.; Tarnowska, M. The thermoelectric generators use for waste heat utilization from cement plant. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2017; Volume 14, p. 01031. [Google Scholar] [CrossRef]
- Mills, G.L.; Kelly, T.K.; Brown, B. Integration of Thermoelectric Coolers into a Solid Nitrogen Dewar. Adv. Cryog. Eng. 1996, 41, 1121–1128. [Google Scholar]
- Tang, Y.; Li, X.; Lv, H.; Wang, W.; Zhi, C.; Li, H. Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring: A minireview. InfoMat 2020, 2, 1109–1130. [Google Scholar] [CrossRef]
- Lee, B.; Cho, H.; Park, K.T.; Kim, J.-S.; Park, M.; Kim, H.; Hong, Y.; Chung, S. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 2020, 11, 5948. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhu, R.; Li, G. Self-Powered Electronic Skin with Multisensory Functions Based on Thermoelectric Conversion. Adv. Mater. Technol. 2020, 5, 2000419. [Google Scholar] [CrossRef]
Optimum Fill Factor | Optimum Leg Length (mm) | Optimum Power Output (W) | Optimum Power Output (W/m2) | Cost ($US) | Cost per Power ($US/W) | Payback Period (year) | |
---|---|---|---|---|---|---|---|
Bi2Te3 | 0.01 | 4 | 825.0 | 64.8 | 31,517 | 38.2 | 12.46 |
0.05 | 8.8 | 1511.9 | 118.8 | 38,465 | 25.44 | 8.30 | |
0.1 | 12.4 | 1573.5 | 123.7 | 51,106 | 32.48 | 10.59 | |
0.2 | 16.7 | 1430.4 | 112.4 | 83,007 | 58.03 | 18.93 | |
0.5 | 26 | 1110.7 | 87.3 | 223,460 | 201.2 | 65.62 | |
0.7 | 31 | 992.299 | 77.9 | 347,320 | 350.012 | 114.16 | |
0.9 | 36.1 | 922.405 | 72.5 | 499,240 | 541.24 | 176.53 | |
Zn4Sb3 | 0.01 | 1.6 | 855.6 | 67.2 | 30,980 | 36.21 | 11.81 |
0.05 | 2.6 | 2558 | 201 | 32,677 | 12.77 | 4.17 | |
0.1 | 4.2 | 3175.1 | 249.5 | 34,877 | 10.9845 | 3.58 | |
0.2 | 7.5 | 3564 | 280.1 | 39,530 | 11.09 | 3.62 | |
0.5 | 16 | 3818.8 | 300.1 | 55,136 | 14.44 | 4.71 | |
0.7 | 21 | 3861 | 303.5 | 66,743 | 17.29 | 5.64 | |
0.9 | 25.2 | 3867.9 | 303.9 | 79,000 | 20.424 | 6.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshmand Zaferani, S.; Jafarian, M.; Vashaee, D.; Ghomashchi, R. Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview. Energies 2021, 14, 5646. https://doi.org/10.3390/en14185646
Hooshmand Zaferani S, Jafarian M, Vashaee D, Ghomashchi R. Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview. Energies. 2021; 14(18):5646. https://doi.org/10.3390/en14185646
Chicago/Turabian StyleHooshmand Zaferani, Sadeq, Mehdi Jafarian, Daryoosh Vashaee, and Reza Ghomashchi. 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview" Energies 14, no. 18: 5646. https://doi.org/10.3390/en14185646
APA StyleHooshmand Zaferani, S., Jafarian, M., Vashaee, D., & Ghomashchi, R. (2021). Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview. Energies, 14(18), 5646. https://doi.org/10.3390/en14185646