Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire
Abstract
:1. Introduction
2. The Experimental Setup
3. Experimental Results
3.1. The Electric Characteristics of Jacob’s Ladder Arc
3.2. Ignition of Cable Fire
3.3. Gas Temperature and Size of Arc Discharge
3.4. Simulation of Cable Fire
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fire Department of the Ministry of Public Security. China Fire Protection Yearbook 2017; Yunnan People’s Publishing House: Kunming, China, 2017. [Google Scholar]
- Shu, Z.; Feng, J.; Chen, N.; Fang, C.B. Experiment study on fire performances of PVC electrical cables and their sheath materials. Fire Sci. Technol. 2006, 25, 247–249. [Google Scholar]
- EN60332-1-2. Tests on Electric and Optical Fiber Cables under Fire Conditions—Part 1–2: Test for Vertical Flame Propagation for a Single Insulated Wire or Cable—Procedure for 1 kW Pre-Mixed Flame; International Electrotechnical Commission: Geneva, Switzerland, 2004. [Google Scholar]
- BS4066.3-2000. Tests on Electric Cables under Fire Conditions Tests on Bunched Wires or Cables. 2018. Available online: https://infostore.saiglobal.com/en-au/standards/bs-4066-3-1994-1994-305627_saig_bsi_bsi_707143/ (accessed on 6 July 2021).
- NFPA262-2019. Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handing Spaces; National Fire Protection Association: Beijing, China, 2019. [Google Scholar]
- Hong, S.H.; Choi, M.S. An experimental study on the fire hazard analysis for communication cable in buildings. J. Korean Soc. 2011, 26, 20–25. [Google Scholar]
- Li, L.; Huang, X.; Bi, K.; Liu, X. An enhanced fire hazard assessment model and validation experiments for vertical cable trays. Nucl. Eng. Des. 2016, 301, 32–38. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gupta, S.K.; Gupta, A.; Kumar, R.; Gupta, A.K. Burning characteristics of power cables in a compartment. Procedia Earth Planet. Sci. 2015, 11, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhu, H.; Peng, L.; Zheng, Z.; Zeng, W.; Bi, K.; Chow, W. Thermal characteristics of vertically spreading cable fires in confined compartments. Fire Technol. 2019, 55, 1849–1875. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, J.Y.; Bang, K.S. Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable. J. Korean Soc. Saf. 2013, 28, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, J.; Xie, H.; Li, Q.; Wang, L.; Fan, M. Fire performance analysis of PVC and cabtyre cables based upon the ignition characteristics and fire growth indexes. In Proceedings of the Chinese Materials Conference, Yinchuan, China, 6–12 July 2017; pp. 861–869. [Google Scholar]
- Magalie, C.; Anne-Sophie, C.; Rodolphe, S.; Laurent, F.; Emmanuelle, G.; Christian, L. Fire behavior of electrical cables in cone calorimeter: Influence of cables structure and layout. Fire Saf. J. 2018, 99, 12–21. [Google Scholar] [CrossRef]
- Meinier, R.; Sonnier, R.; Zavaleta, P.; Suard, S.; Ferry, L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 342, 306–316. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. An experimental study on the fire characteristics of new and aged building wires using a cone calorimeter. J. Therm. Anal. Calorim. 2019, 135, 3115–3122. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, X.; Guo, Z.; Zeng, W.; Huang, X.; Zheng, Z.; Xu, W. Combustion characteristics and heat release rate of vertical cable fire for sustainable energy system in an analogue underground compartment. Sustain. Cities Soc. 2019, 45, 406–412. [Google Scholar] [CrossRef]
- Witkowski, A.; Girardin, B.; Försth, M.; Hewitt, F.; Fontaine, G.; Duquesne, S.; Hull, T.R. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials. Polym. Degrad. Stab. 2015, 113, 208–217. [Google Scholar] [CrossRef]
- Courty, L.; Garo, J.P. External heating of electrical cables and auto-ignition investigation. J. Hazard. Mater. 2017, 321, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.B.; Bundy, M. Cone calorimeter analysis of UL-94V-rated plastics. Fire Mater. Int. J. 2007, 31, 257–283. [Google Scholar] [CrossRef]
- Schartel, B.; Bartholmai, M.; Knoll, U. Some comments on the use of cone calorimeter data. Polym. Degrad. Stab. 2005, 88, 540–547. [Google Scholar] [CrossRef]
- Al-Sayegh, W.A.; Aljumaiah, O.; Andrews, G.E.; Phylaktou, H.N. PVC cable fire toxicity using the cone calorimeter. In Fire Science and Technology; Springer: Singapore, 2015; pp. 175–182. [Google Scholar]
- Tolstrup, J.; Giuliani, L.; Narasimhan, H.; Jensen, J.L.; Jomaas, G. Experimental study of epoxy coatings for fire protection of bridge cables. Ce/Papers 2019, 3, 653–658. [Google Scholar] [CrossRef]
- Siemon, M.; Riese, O.; Zehfuß, J. Assessment of the burning behavior of protected and unprotected cables and cable trays in nuclear installations using small and large-scale experiments. In Proceedings of the SMiRT 23, 14th International Seminar on Fire Safety in Nuclear Power Plants and Installations, Salford, UK, 17–18 September 2015. [Google Scholar]
- Fan, D.; Ding, H. Cable tunnel fire experiment study based on linear optical fiber fire detectors. In Proceedings of the Fourth Asia Pacific Optical Sensors Conference International Society for Opticsand Photonics, Wuhan, China, 15–18 October 2013. [Google Scholar]
- Ke, G.; Zimeng, L.; Jinzhang, J.; Zeyi, L.; Yisimayili, A.; Zhipeng, Q.; Shengnan, L. Study on flame spread characteristics of flame-retardant cables in mine. Adv. Polym. Technol. 2020, 2020, 8765679. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Zhang, W.H.; Xiao, X.Y. Simulation and experimental study on arcfault of cable. Electrotech. Appl. 2018, 37, 78–83. [Google Scholar]
- Liu, S.R.; Hu, Y.X.; Zheng, J.K.; Su, X.T.; Xu, Y. Dynamics Simulation of 10 kV Cable Tunnel Fire for Single-phase Arc Grounding Fault. High Volt. Eng. 2021, 1–8. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13336/j.1003-6520.hve.20201203 (accessed on 6 July 2021).
- Liu, X.H.; Zhu, Z.Y.; Guo, Y. An electrical fire sources imulation method for arcignition cable. Electr. Power Eng. Technol. 2021. Accepted. [Google Scholar]
- Wang, B.; Liang, C.; Li, F. Arc modeling and single-end fault location for arc grounding fault in transmission line considering arc gap length. Proc. CSEE 2019, 39, 1001–1009. [Google Scholar]
- Li, J.S.; Yu, H.; Jiang, M.; Liu, H.; Li, G.L. Numerical Modeling of Space–Time Characteristics of Plasma Initialization in a Secondary Arc. Energies 2019, 12, 2128. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Jiao, Z.J.; Wang, L.N.; Mu, Y. A Method of Dc Arc Detection in All-Electric Aircraft. Energies 2020, 13, 4190. [Google Scholar] [CrossRef]
- Luna, B.V.; José, L.M.; Manuel, M.M.; Domingo, T.; Serge, W.; Patrick, S. Analysis of Internal Signal Perturbations in Dc/Dc and Dc/Ac Converters under Arc Fault. Energies 2021, 14, 3005. [Google Scholar] [CrossRef]
- Nowak, K.; Jerzy, J.; Grzegorz, D. The Possibilities to Reduce Arc Flash Exposure with Arc Fault Eliminators. Energies 2021, 14, 1927. [Google Scholar] [CrossRef]
- Wang, L.N.; Qiu, H.C.; Yang, P.; Mu, L.H. Arc Fault Detection Algorithm Based on Variational Mode Decomposition and Improved Multi-Scale Fuzzy Entropy. Energies 2021, 14, 4137. [Google Scholar] [CrossRef]
- Doyle, S.J.; Xu, K.G. Use of thermocouples and argon line broadening for gas temperature measurement in a radio frequency atmospheric micro-plasma jet. Rev. Sci. Instrum. 2017, 88, 023114. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Chen, J.; Zhang, W.; Hu, L.; Cao, J.; Liu, J.; Zhu, Z.; Wu, S. Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire. Energies 2021, 14, 5675. https://doi.org/10.3390/en14185675
Li C, Chen J, Zhang W, Hu L, Cao J, Liu J, Zhu Z, Wu S. Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire. Energies. 2021; 14(18):5675. https://doi.org/10.3390/en14185675
Chicago/Turabian StyleLi, Chenying, Jie Chen, Wei Zhang, Libing Hu, Jingying Cao, Jianjun Liu, Zhenyu Zhu, and Shuqun Wu. 2021. "Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire" Energies 14, no. 18: 5675. https://doi.org/10.3390/en14185675
APA StyleLi, C., Chen, J., Zhang, W., Hu, L., Cao, J., Liu, J., Zhu, Z., & Wu, S. (2021). Influence of Arc Size on the Ignition and Flame Propagation of Cable Fire. Energies, 14(18), 5675. https://doi.org/10.3390/en14185675