Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy
Abstract
:1. Introduction
1.1. Overview
1.2. Literature Review
1.3. Research Contributions
- I-GWO is applied to all of benchmark test models including single-diode, double-diode and three-diode models in the literature;
- The effectiveness of I-GWO is validated in terms of multiple performance aspects including accuracy, robustness and solution quality;
- A deeper comparison is made considering not only commonly used but also recently proposed parameter extraction models in the literature;
- The results demonstrate that I-GWO is often superior and quite competitive for reliably estimating the internal parameters of photovoltaic cells and modules.
1.4. Structure of the Article
2. Diode Circuit Models of Photovoltaic Systems
3. Methodology
3.1. Fundamental Concepts of Grey Wolf Optimizer
3.2. Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy
4. Experimental Results on the PV Cells
4.1. Experimental Results on the Single-Diode Model of the PV Cell
4.2. Experimental Results on the Double-Diode Model of the PV Cell
4.3. Experimental Results on the Three-Diode Model of the PV Cell
4.4. Discussion on the Single-Diode-, Double-Diode- and Three-Diode-Based Modeling Results of PV Cells
5. Experimental Results on the PV Modules
5.1. Experimental Results on the Single-Diode-Based Model of the PV Module
5.2. Experimental Results on the Double-Diode-Based Model of the PV Module
5.3. Discussion on the Single-Diode- and Double-Diode-Based Modeling Results of PV Modules
6. Discussion of the Overall Results
7. Conclusions
- The single-diode model- and the double-diode model-based I-GWO algorithms achieve better goodness-of-fit statistics than ABC, ABSO, BBO-M, BFA, BMO, GGHS, GOTLBO, IWOA, PS, SA and SATLBO methods. The double-diode model-based I-GWO algorithm outperforms the single-diode model-based one.
- Although the single-diode and the double-diode circuit models are widely preferred for PV cells in the literature, the three-diode model-based I-GWO algorithm shows closer solution accuracy to the double-diode model-based one.
- In the case of only considering the recent publications on this issue, the I-GWO algorithm ensures the best RMSE, similar to most of the implemented methods for the single-diode circuit model. However, it provides the second best RMSE for the double-diode circuit model.
- According to the experimental results on the PV modules:
- The single-diode model-based I-GWO algorithm accomplishes better goodness-of-fit statistics than ABC-DE, CPSO, FPA, HFAPS, ITLBO, IWOA, PS, SA and TLBO methods.
- Despite the single-diode circuit model is widely employed for PV modules in the literature, the double-diode model-based I-GWO algorithm demonstrates better solution accuracy than the single-diode model-based one.
- When only taking into account the recent publications on this problem, the I-GWO algorithm provides the best RMSE, similar to most of the applied methods for the single-diode circuit model.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial bee colony optimization |
ABC-DE | Artificial bee colony-differential evolution |
ABSO | Artificial bee swarm optimization |
BBO-M | Biogeography-based optimization with mutation strategies |
BFA | Bacterial foraging algorithm |
BMO | Bird mating optimizer |
CPS | Chaos particle swarm optimization |
FPA | Flower pollination algorithm |
GGHS | Grouping-based global harmony search |
GOTLBO | Generalized oppositional teaching–learning-based optimization |
GWO | Grey wolf optimizer |
HFAPS | Hybrid firefly and pattern search |
IAE | Individual absolute error |
I-GWO | Grey wolf optimizer with dimension learning-based hunting search strategy |
ITLBO | Improved teaching–learning-based optimization |
IWOA | Improved whale optimization algorithm |
LBSA | Learning backtracking search algorithm |
PS | Pattern search |
RMSE | Root mean squared error |
SA | Simulated annealing |
SATLBO | Self-adaptive teaching–learning-based optimization |
TLBO | Teaching–learning-based optimization |
References
- Renewables 2020 Global Status Report. Available online: https://www.ren21.net/gsr-2020 (accessed on 1 August 2021).
- Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar cell parameters extraction based on single and double-diode models: A review. Renew. Sustain. Energy Rev. 2016, 56, 494–509. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gong, W.; Yan, X.; Hu, C.; Bai, D.; Wang, L.; Gao, L. Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers. Manag. 2019, 186, 293–305. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Jemli, M.; Chebbi, S. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew. Sustain. Energy Rev. 2018, 90, 453–474. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Li, D.; Zeng, C.; Chen, Y.; Guo, Z.; Zhang, X.; Tan, T.; Shu, H.; Yu, T. Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm. Energy Convers. Manag. 2021, 236, 114051. [Google Scholar] [CrossRef]
- Merchaoui, M.; Sakly, A.; Mimouni, M.F. Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 2018, 175, 151–163. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 2017, 111, 307–320. [Google Scholar] [CrossRef]
- Blaifi, S.; Moulahoum, S.; Taghezouit, B.; Saim, A. An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm. Renew. Energy 2019, 135, 745–760. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Hu, J.; Tahir, N.; Xu, G. Performance comparison of exponential, Lambert W function and Special Trans function based single diode solar cell models. Energy Convers. Manag. 2018, 171, 1822–1842. [Google Scholar] [CrossRef]
- Et-Torabi, K.; Nassar-Eddine, I.; Obbadi, A.; Errami, Y.; Rmaily, R.; Sahnoun, S.; El-Fajri, A.; Agunaou, M. Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study. Energy Convers. Manag. 2017, 148, 1041–1054. [Google Scholar] [CrossRef]
- Elbaset, A.A.; Ali, H.; El Sattar, M.A. New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance. Sol. Energy 2016, 138, 26–35. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Yu, Y. Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction. Energy Convers. Manag. 2016, 127, 443–460. [Google Scholar] [CrossRef]
- Lim, L.H.I.; Ye, Z.; Ye, J.; Yang, D.; Du, H. A linear identification of diode models from single I-V characteristics of PV panels. IEEE Trans. Ind. Electron. 2015, 62, 4181–4193. [Google Scholar] [CrossRef] [Green Version]
- El Achouby, H.; Zaimi, M.; Ibral, A.; Assaid, E.M. New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Convers. Manag. 2018, 177, 258–271. [Google Scholar] [CrossRef]
- Chaibi, Y.; Allouhi, A.; Salhi, M. A simple iterative method to determine the electrical parameters of photovoltaic cell. J. Clean. Prod. 2020, 269, 122363. [Google Scholar] [CrossRef]
- Raj, S.; Sinha, A.K.; Panchal, A.K. Solar cell parameters estimation from illuminated I-V characteristic using linear slope equations and Newton-Raphson technique. J. Renew. Sustain. Energy 2013, 5, 033105. [Google Scholar] [CrossRef]
- Jervase, J.A.; Bourdoucen, H.; Al-Lawati, A. Solar cell parameter extraction using genetic algorithms. Meas. Sci. Technol. 2001, 12, 1922–1925. [Google Scholar] [CrossRef] [Green Version]
- Ishaque, K.; Salam, Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy 2011, 85, 2349–2359. [Google Scholar] [CrossRef]
- Ye, M.; Wang, X.; Xu, Y. Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 2009, 105, 094502. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72, 93–102. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 2013, 102, 943–949. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [Google Scholar] [CrossRef]
- Rajasekar, N.; Kumar, N.K.; Venugopalan, R. Bacterial foraging algorithm based solar PV parameter estimation. Sol. Energy 2013, 97, 255–265. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol. Energy 2013, 90, 123–133. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 2012, 86, 3241–3249. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 2016, 99, 170–180. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- AlHajri, M.F.; El-Naggar, K.M.; AlRashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern search. Renew. Energy 2012, 44, 238–245. [Google Scholar] [CrossRef]
- El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K. Simulated annealing algorithm for photovoltaic parameters identification. Sol. Energy 2012, 86, 266–274. [Google Scholar] [CrossRef]
- Yu, K.; Chen, X.; Wang, X.; Wang, Z. Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers. Manag. 2017, 145, 233–246. [Google Scholar] [CrossRef]
- Ayang, A.; Wamkeue, R.; Ouhrouche, M.; Djongyang, N.; Salome, N.E.; Pombe, J.K.; Ekemb, G. Maximum likelihood parameters estimation of single-diode model of photovoltaic generator. Renew. Energy 2019, 130, 111–121. [Google Scholar] [CrossRef]
- Beigi, A.M.; Maroosi, A. Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms. Sol. Energy 2018, 171, 435–446. [Google Scholar] [CrossRef]
- Ram, J.P.; Babu, T.S.; Dragicevic, T.; Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manag. 2017, 135, 463–476. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.J.; Qu, B.Y.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [Google Scholar] [CrossRef]
- Yousri, D.; Allam, D.; Eteiba, M.B.; Suganthan, P.N. Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants. Energy Convers. Manag. 2019, 182, 546–563. [Google Scholar] [CrossRef]
- Long, W.; Cai, S.; Jiao, J.; Xu, M.; Wu, T. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 2020, 203, 112243. [Google Scholar] [CrossRef]
- Cárdenas-Bravo, C.; Barraza, R.; Sánchez-Squella, A.; Valdivia-Lefort, P.; Castillo-Burns, F. Estimation of single-diode photovoltaic model using the differential evolution algorithm with adaptive boundaries. Energies 2021, 14, 3925. [Google Scholar] [CrossRef]
- Liu, E.J.; Hung, Y.H.; Hong, C.W. Improved metaheuristic optimization algorithm applied to hydrogen fuel cell and photovoltaic cell parameter extraction. Energies 2021, 14, 619. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Panwar, L.K.; Reddy, S.; Verma, A.; Panigrahi, B.K.; Kumar, R. Binary grey wolf optimizer for large scale unit commitment problem. Swarm Evol. Comput. 2018, 38, 251–266. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 2016, 27, 97–115. [Google Scholar] [CrossRef]
- El-Fergany, A.A.; Hasanien, H.M. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr. Power Compon. Syst. 2015, 43, 1548–1559. [Google Scholar] [CrossRef]
- Mittal, N.; Singh, U.; Sohi, B.S. Modified grey wolf optimizer for global engineering optimization. Appl. Comput. Intell. Soft Comput. 2016, 2016, 7950348. [Google Scholar] [CrossRef] [Green Version]
- Joshi, H.; Arora, S. Enhanced grey wolf optimization algorithm for global optimization. Fundam. Inform. 2017, 153, 235–264. [Google Scholar] [CrossRef]
- Hu, P.; Chen, S.; Huang, H.; Zhang, G.; Liu, L. Improved alpha-guided grey wolf optimizer. IEEE Access 2019, 7, 5421–5437. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2020, 166, 113917. [Google Scholar] [CrossRef]
- Muangkote, N.; Sunat, K.; Chiewchanwattana, S.; Kaiwinit, S. An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models. Renew. Energy 2019, 134, 1129–1147. [Google Scholar] [CrossRef]
- Kler, D.; Goswami, Y.; Rana, K.P.S.; Kumar, V. A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer. Energy Convers. Manag. 2019, 187, 486–511. [Google Scholar] [CrossRef]
- Sheng, H.; Li, C.; Wang, H.; Yan, Z.; Xiong, Y.; Cao, Z.; Kuang, Q. Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 2019, 12, 3527. [Google Scholar] [CrossRef] [Green Version]
- Elaziz, M.A.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers. Manag. 2018, 171, 1843–1859. [Google Scholar] [CrossRef]
- Allam, D.; Yousri, D.A.; Eteiba, M.B. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers. Manag. 2016, 123, 535–548. [Google Scholar] [CrossRef]
- Abbassi, R.; Abbassi, A.; Heidari, A.A.; Mirjalili, S. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K. Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 2019, 180, 192–206. [Google Scholar] [CrossRef]
- Khanna, V.; Das, B.K.; Bisht, D.; Singh, P.K. A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy 2015, 78, 105–113. [Google Scholar] [CrossRef]
- Yesilbudak, M. Accurate identification of the electrical parameters of triple-diode photovoltaic model using a metaheuristic algorithm. In Proceedings of the 9th International Conference on Smart Grid, Setubal, Portugal, 29 June–1 July 2021. [Google Scholar]
- Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [Google Scholar] [CrossRef]
- Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Wang, Z.; Qu, J.; Wang, H. Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers. Manag. 2018, 157, 460–479. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Yuan, X.; Shi, D.; He, Y.; Yao, G. Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 2018, 176, 742–761. [Google Scholar] [CrossRef]
- Hachana, O.; Hemsas, K.E.; Tina, G.M.; Ventura, C. Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module. J. Renew. Sustain. Energy 2013, 5, 053122. [Google Scholar] [CrossRef]
- Wei, H.; Cong, J.; Lingyun, X.; Deyun, S. Extracting solar cell model parameters based on chaos particle swarm algorithm. In Proceedings of the International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 398–402. [Google Scholar] [CrossRef]
- Alam, D.F.; Yousri, D.A.; Eteiba, M.B. Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 2015, 101, 410–422. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.J.; Qu, B.Y.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [Google Scholar] [CrossRef]
- Patel, S.J.; Panchal, A.K.; Kheraj, V. Extraction of solar cell parameters from a single current-voltage characteristic using teaching learning based optimization algorithm. Appl. Energy 2014, 119, 384–393. [Google Scholar] [CrossRef]
- Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manag. 2016, 129, 262–274. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A.; Felippe de Souza, J.A.M. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [Google Scholar] [CrossRef]
- Yuan, X.; He, Y.; Liu, L. Parameter extraction of solar cell models using chaotic asexual reproduction optimization. Neural Comput. Appl. 2015, 26, 1227–1239. [Google Scholar] [CrossRef]
- Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [Google Scholar] [CrossRef]
- Oliva, D.; Aziz, M.A.E.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [Google Scholar] [CrossRef]
- Jiao, S.; Chong, G.; Huang, C.; Hu, H.; Wang, M.; Heidari, A.A.; Chen, H.; Zhao, X. Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 2020, 203, 117804. [Google Scholar] [CrossRef]
- Jamadi, M.; Merrikh-Bayat, F.; Bigdeli, M. Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Environ. Eng. 2016, 7, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Cheng, S.; Yeh, W.; Chen, Z.; Wu, L. Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm. Sol. Energy 2017, 144, 594–603. [Google Scholar] [CrossRef]
- Hamid, N.F.A.; Rahim, N.A.; Selvaraj, J. Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization. J. Renew. Sustain. Energy 2016, 8, 015502. [Google Scholar] [CrossRef]
- Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [Google Scholar] [CrossRef]
- Liang, J.; Qiao, K.; Yuan, M.; Yu, K.; Qu, B.; Ge, S.; Li, Y.; Chen, G. Evolutionary multi-task optimization for parameters extraction of photovoltaic models. Energy Convers. Manag. 2020, 207, 112509. [Google Scholar] [CrossRef]
- Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Lia, K. Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 2018, 212, 1578–1588. [Google Scholar] [CrossRef]
Parameter | Lower Bound | Upper Bound |
---|---|---|
Iph (A) | 0 | 1 |
Isd, Isd1, Isd2, Isd3 (μA) | 0 | 1 |
Rs (Ω) | 0 | 0.5 |
Rsh (Ω) | 0 | 100 |
n, n1, n2, n3 | 1 | 2 |
VL-measured (V) | IL-measured (A) | IL-calculated (A) | IAE (IL) | PL-measured (W) | PL-calculated (W) | IAE (PL) |
---|---|---|---|---|---|---|
−0.2057 | 0.7640 | 0.76408783 | 0.00008783 | −0.15715480 | −0.15717287 | 0.00001807 |
−0.1291 | 0.7620 | 0.76266319 | 0.00066319 | −0.09837420 | −0.09845982 | 0.00008562 |
−0.0588 | 0.7605 | 0.76135539 | 0.00085539 | −0.04471740 | −0.04476770 | 0.00005030 |
0.0057 | 0.7605 | 0.76015406 | 0.00034594 | 0.00433485 | 0.00433288 | 0.00000197 |
0.0646 | 0.7600 | 0.75905526 | 0.00094474 | 0.04909600 | 0.04903497 | 0.00006103 |
0.1185 | 0.7590 | 0.75804238 | 0.00095762 | 0.08994150 | 0.08982802 | 0.00011348 |
0.1678 | 0.7570 | 0.75709168 | 0.00009168 | 0.12702460 | 0.12703998 | 0.00001538 |
0.2132 | 0.7570 | 0.75614137 | 0.00085863 | 0.16139240 | 0.16120934 | 0.00018306 |
0.2545 | 0.7555 | 0.75508687 | 0.00041313 | 0.19227475 | 0.19216961 | 0.00010514 |
0.2924 | 0.7540 | 0.75366386 | 0.00033614 | 0.22046960 | 0.22037131 | 0.00009829 |
0.3269 | 0.7505 | 0.75139094 | 0.00089094 | 0.24533845 | 0.24562970 | 0.00029125 |
0.3585 | 0.7465 | 0.74735382 | 0.00085382 | 0.26762025 | 0.26792634 | 0.00030609 |
0.3873 | 0.7385 | 0.74011718 | 0.00161718 | 0.28602105 | 0.28664738 | 0.00062633 |
0.4137 | 0.7280 | 0.72738218 | 0.00061782 | 0.30117360 | 0.30091801 | 0.00025559 |
0.4373 | 0.7065 | 0.70697260 | 0.00047260 | 0.30895245 | 0.30915912 | 0.00020667 |
0.4590 | 0.6755 | 0.67528011 | 0.00021989 | 0.31005450 | 0.30995357 | 0.00010093 |
0.4784 | 0.6320 | 0.63075825 | 0.00124175 | 0.30234880 | 0.30175474 | 0.00059406 |
0.4960 | 0.5730 | 0.57192835 | 0.00107165 | 0.28420800 | 0.28367646 | 0.00053154 |
0.5119 | 0.4990 | 0.49960704 | 0.00060704 | 0.25543810 | 0.25574885 | 0.00031075 |
0.5265 | 0.4130 | 0.41364885 | 0.00064885 | 0.21744450 | 0.21778612 | 0.00034162 |
0.5398 | 0.3165 | 0.31751020 | 0.00101020 | 0.17084670 | 0.17139200 | 0.00054530 |
0.5521 | 0.2120 | 0.21215505 | 0.00015505 | 0.11704520 | 0.11713080 | 0.00008560 |
0.5633 | 0.1035 | 0.10225143 | 0.00124857 | 0.05830155 | 0.05759823 | 0.00070332 |
0.5736 | −0.0100 | −0.00871743 | 0.00128257 | −0.00573600 | −0.00500032 | 0.00073568 |
0.5833 | −0.1230 | −0.12550732 | 0.00250732 | −0.07174590 | −0.07320842 | 0.00146252 |
0.5900 | −0.2100 | −0.20847226 | 0.00152774 | −0.12390000 | −0.12299863 | 0.00090137 |
IL-measured (A) | IL-calculated (A) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I-GWO | ABC | ABSO | BBO-M | BFA | BMO | GGHS | GOTLBO | IWOA | PS | SA | SATLBO | |
0.7640 | 0.76408783 | 0.76411649 | 0.76419950 | 0.764006 | 0.76375638 | 0.76407301 | 0.76427395 | 0.76406947 | 0.76411104 | 0.76453686 | 0.76302 | 0.76411170 |
0.7620 | 0.76266319 | 0.76268988 | 0.76273599 | 0.762604 | 0.76225177 | 0.76265244 | 0.76283178 | 0.76265530 | 0.76268677 | 0.76334281 | 0.76029 | 0.76268727 |
0.7605 | 0.76135539 | 0.76138027 | 0.76139250 | 0.761317 | 0.76087046 | 0.76134837 | 0.76150788 | 0.76135711 | 0.76137931 | 0.76224651 | 0.75846 | 0.76137966 |
0.7605 | 0.76015406 | 0.76017726 | 0.76015842 | 0.760135 | 0.75960129 | 0.76015046 | 0.76029177 | 0.76016458 | 0.76017829 | 0.76123873 | 0.75953 | 0.76017850 |
0.7600 | 0.75905526 | 0.75907693 | 0.75902980 | 0.759053 | 0.75843942 | 0.75905479 | 0.75917946 | 0.75907379 | 0.75907977 | 0.76031405 | 0.75951 | 0.75907986 |
0.7590 | 0.75804238 | 0.75806260 | 0.75798989 | 0.758056 | 0.75736672 | 0.75804473 | 0.75815418 | 0.75806811 | 0.75806715 | 0.75945277 | 0.75842 | 0.75806713 |
0.7570 | 0.75709168 | 0.75711046 | 0.75701517 | 0.757120 | 0.75635939 | 0.75709654 | 0.75719203 | 0.75712365 | 0.75711665 | 0.75862051 | 0.75528 | 0.75711655 |
0.7570 | 0.75614137 | 0.75615851 | 0.75604439 | 0.756182 | 0.75536290 | 0.75614837 | 0.75623090 | 0.75617828 | 0.75616647 | 0.75773228 | 0.75616 | 0.75616634 |
0.7555 | 0.75508687 | 0.75510175 | 0.75497490 | 0.755138 | 0.75430479 | 0.75509541 | 0.75516600 | 0.75512652 | 0.75511190 | 0.75663600 | 0.75418 | 0.75511189 |
0.7540 | 0.75366386 | 0.75367503 | 0.75354509 | 0.753723 | 0.75301450 | 0.75367306 | 0.75373240 | 0.75370269 | 0.75368844 | 0.75499175 | 0.75262 | 0.75368886 |
0.7505 | 0.75139094 | 0.75139553 | 0.75127766 | 0.751453 | 0.75123146 | 0.75139941 | 0.75144823 | 0.75142346 | 0.75141424 | 0.75221549 | 0.74800 | 0.75141578 |
0.7465 | 0.74735382 | 0.74734659 | 0.74726287 | 0.747414 | 0.74850543 | 0.74735961 | 0.74739866 | 0.74737248 | 0.74737425 | 0.74727172 | 0.74425 | 0.74737831 |
0.7385 | 0.74011718 | 0.74008965 | 0.74006839 | 0.740168 | 0.74421951 | 0.74011789 | 0.74014854 | 0.74011329 | 0.74013200 | 0.73863638 | 0.73584 | 0.74014108 |
0.7280 | 0.72738218 | 0.72732129 | 0.72739411 | 0.727416 | 0.73746259 | 0.72737526 | 0.72740023 | 0.72734810 | 0.72738680 | 0.72399106 | 0.72795 | 0.72740519 |
0.7065 | 0.70697260 | 0.70686255 | 0.70705319 | 0.706985 | 0.72755533 | 0.70695641 | 0.70698035 | 0.70690638 | 0.70696108 | 0.70134090 | 0.70595 | 0.70699455 |
0.6755 | 0.67528011 | 0.67510032 | 0.67542197 | 0.675269 | 0.71326437 | 0.67525426 | 0.67528403 | 0.67518771 | 0.67524429 | 0.66728745 | 0.67494 | 0.67530100 |
0.6320 | 0.63075825 | 0.63048974 | 0.63093243 | 0.630728 | 0.69435344 | 0.63072465 | 0.63076799 | 0.63065613 | 0.63069024 | 0.62066105 | 0.63023 | 0.63077852 |
0.5730 | 0.57192835 | 0.57155476 | 0.57209370 | 0.571887 | 0.67050682 | 0.57189047 | 0.57195351 | 0.57183841 | 0.57182156 | 0.56012769 | 0.57152 | 0.57194903 |
0.4990 | 0.49960704 | 0.49911913 | 0.49972317 | 0.499563 | 0.64221085 | 0.49956892 | 0.49965307 | 0.49954963 | 0.49945852 | 0.48643873 | 0.49845 | 0.49962975 |
0.4130 | 0.41364885 | 0.41304219 | 0.41368320 | 0.413612 | 0.60947083 | 0.41361435 | 0.41371590 | 0.41363948 | 0.41345872 | 0.39922035 | 0.41189 | 0.41367578 |
0.3165 | 0.31751020 | 0.31679010 | 0.31745673 | 0.317485 | 0.57351699 | 0.31748147 | 0.31758854 | 0.31754982 | 0.31728410 | 0.30142983 | 0.31459 | 0.31754398 |
0.2120 | 0.21215505 | 0.21133129 | 0.21203015 | 0.212142 | 0.53459720 | 0.21213257 | 0.21222726 | 0.21223264 | 0.21190186 | 0.19355774 | 0.21077 | 0.21219865 |
0.1035 | 0.10225143 | 0.10134078 | 0.10209924 | 0.102245 | 0.49427111 | 0.10223341 | 0.10229267 | 0.10234141 | 0.10198377 | 0.07983175 | 0.10300 | 0.10230769 |
−0.0100 | −0.00871743 | −0.00969324 | −0.00881685 | −0.008731 | 0.45354725 | −0.00873587 | −0.00874118 | −0.00865916 | −0.00898356 | −0.03693312 | −0.01094 | −0.00864575 |
−0.1230 | −0.12550732 | −0.12653296 | −0.12549663 | −0.125537 | 0.41080836 | −0.12552919 | −0.12562452 | −0.12551303 | −0.12575903 | −0.16117142 | −0.12753 | −0.12541726 |
−0.2100 | −0.20847226 | −0.20951676 | −0.20829509 | −0.208530 | 0.38015838 | −0.20850287 | −0.20868792 | −0.20857077 | −0.20870043 | −0.25151582 | −0.21250 | −0.20836716 |
RMSE | 9.8602 × 10−4 | 10.967 × 10−4 | 9.9124 × 10−4 | 9.8634 × 10−4 | 2.1887 × 10−1 | 9.8622 × 10−4 | 9.9089 × 10−4 | 9.8744 × 10−4 | 9.9487 × 10−4 | 1.4936 × 10−2 | 1.71 × 10−3 | 9.8780 × 10−4 |
Design Coefficients | I-GWO | ABC | ABSO | BBO-M | BFA | BMO | GGHS | GOTLBO | IWOA | PS | SA | SATLBO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Iph (A) | 0.76077561 | 0.7608 | 0.76080 | 0.76078 | 0.7602 | 0.76077 | 0.76092 | 0.760780 | 0.7608 | 0.7617 | 0.7620 | 0.7608 |
Isd (μA) | 0.32302197 | 0.3251 | 0.30623 | 0.31874 | 0.8000 | 0.32479 | 0.32620 | 0.331552 | 0.3232 | 0.9980 | 0.4798 | 0.32315 |
Rs (Ω) | 0.03637706 | 0.0364 | 0.03659 | 0.03642 | 0.0325 | 0.03636 | 0.03631 | 0.036265 | 0.0364 | 0.0313 | 0.0345 | 0.03638 |
Rsh (Ω) | 53.71770917 | 53.6433 | 52.2903 | 53.36227 | 50.8691 | 53.8716 | 53.0647 | 54.115426 | 53.7317 | 64.1026 | 43.1035 | 53.7256 |
n | 1.48118398 | 1.4817 | 1.47583 | 1.47984 | 1.6951 | 1.48173 | 1.48217 | 1.483820 | 1.4812 | 1.6 | 1.5172 | 1.48123 |
VL-measured (V) | IL-measured (A) | IL-calculated (A) | IAE (IL) | PL-measured (W) | PL-calculated (W) | IAE (PL) |
---|---|---|---|---|---|---|
−0.2057 | 0.7640 | 0.76398559 | 0.00001441 | −0.15715480 | −0.15715184 | 0.00000296 |
−0.1291 | 0.7620 | 0.76260568 | 0.00060568 | −0.09837420 | −0.09845239 | 0.00007819 |
−0.0588 | 0.7605 | 0.76133874 | 0.00083874 | −0.04471740 | −0.04476672 | 0.00004932 |
0.0057 | 0.7605 | 0.76017434 | 0.00032566 | 0.00433485 | 0.00433299 | 0.00000186 |
0.0646 | 0.7600 | 0.75910778 | 0.00089222 | 0.04909600 | 0.04903836 | 0.00005764 |
0.1185 | 0.7590 | 0.75812113 | 0.00087887 | 0.08994150 | 0.08983735 | 0.00010415 |
0.1678 | 0.7570 | 0.75718800 | 0.00018800 | 0.12702460 | 0.12705615 | 0.00003155 |
0.2132 | 0.7570 | 0.75624275 | 0.00075725 | 0.16139240 | 0.16123095 | 0.00016145 |
0.2545 | 0.7555 | 0.75517632 | 0.00032368 | 0.19227475 | 0.19219237 | 0.00008238 |
0.2924 | 0.7540 | 0.75372138 | 0.00027862 | 0.22046960 | 0.22038813 | 0.00008147 |
0.3269 | 0.7505 | 0.75139834 | 0.00089834 | 0.24533845 | 0.24563212 | 0.00029367 |
0.3585 | 0.7465 | 0.74730096 | 0.00080096 | 0.26762025 | 0.26790739 | 0.00028714 |
0.3873 | 0.7385 | 0.74001058 | 0.00151058 | 0.28602105 | 0.28660610 | 0.00058505 |
0.4137 | 0.7280 | 0.72724727 | 0.00075273 | 0.30117360 | 0.30086219 | 0.00031141 |
0.4373 | 0.7065 | 0.70685089 | 0.00035089 | 0.30895245 | 0.30910589 | 0.00015344 |
0.4590 | 0.6755 | 0.67521122 | 0.00028878 | 0.31005450 | 0.30992195 | 0.00013255 |
0.4784 | 0.6320 | 0.63076133 | 0.00123867 | 0.30234880 | 0.30175622 | 0.00059258 |
0.4960 | 0.5730 | 0.57199506 | 0.00100494 | 0.28420800 | 0.28370955 | 0.00049845 |
0.5119 | 0.4990 | 0.49970619 | 0.00070619 | 0.25543810 | 0.25579960 | 0.00036150 |
0.5265 | 0.4130 | 0.41373353 | 0.00073353 | 0.21744450 | 0.21783070 | 0.00038620 |
0.5398 | 0.3165 | 0.31754600 | 0.00104600 | 0.17084670 | 0.17141133 | 0.00056463 |
0.5521 | 0.2120 | 0.21212289 | 0.00012289 | 0.11704520 | 0.11711305 | 0.00006785 |
0.5633 | 0.1035 | 0.10216343 | 0.00133657 | 0.05830155 | 0.05754866 | 0.00075289 |
0.5736 | −0.0100 | −0.00879128 | 0.00120872 | −0.00573600 | −0.00504268 | 0.00069332 |
0.5833 | −0.1230 | −0.12554249 | 0.00254249 | −0.07174590 | −0.07322893 | 0.00148303 |
0.5900 | −0.2100 | −0.20837039 | 0.00162961 | −0.12390000 | −0.12293853 | 0.00096147 |
IL-measured (A) | IL-calculated (A) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I-GWO | ABC | ABSO | BBO-M | BFA | BMO | GGHS | GOTLBO | IWOA | PS | SA | SATLBO | |
0.7640 | 0.76398559 | 0.76410804 | 0.76403502 | 0.764012 | 0.76388145 | 0.76396284 | 0.76340309 | 0.76392012 | 0.76400729 | 0.76243038 | 0.76646121 | 0.76400509 |
0.7620 | 0.76260568 | 0.76268506 | 0.76263393 | 0.762622 | 0.76260595 | 0.76259149 | 0.76218425 | 0.76255531 | 0.76262606 | 0.76148891 | 0.76468566 | 0.76261657 |
0.7605 | 0.76133874 | 0.76137879 | 0.76134765 | 0.761345 | 0.76143514 | 0.76133237 | 0.76106530 | 0.76130221 | 0.76135792 | 0.76062446 | 0.76305572 | 0.76134178 |
0.7605 | 0.76017434 | 0.76017885 | 0.76016577 | 0.760172 | 0.76036004 | 0.76017503 | 0.76003720 | 0.76015047 | 0.76019247 | 0.75982953 | 0.76155847 | 0.76017033 |
0.7600 | 0.75910778 | 0.75908129 | 0.75908399 | 0.759098 | 0.75937824 | 0.75911467 | 0.75909595 | 0.75909536 | 0.75912510 | 0.75909914 | 0.76018880 | 0.75909775 |
0.7590 | 0.75812113 | 0.75806948 | 0.75808501 | 0.758106 | 0.75847887 | 0.75813308 | 0.75822556 | 0.75811893 | 0.75813799 | 0.75841556 | 0.75892593 | 0.75810646 |
0.7570 | 0.75718800 | 0.75711955 | 0.75714374 | 0.757168 | 0.75765292 | 0.75720341 | 0.75740107 | 0.75719461 | 0.75720500 | 0.75774555 | 0.75774066 | 0.75717084 |
0.7570 | 0.75624275 | 0.75616948 | 0.75619643 | 0.756221 | 0.75687958 | 0.75625930 | 0.75655818 | 0.75625656 | 0.75626080 | 0.75700638 | 0.75655912 | 0.75622630 |
0.7555 | 0.75517632 | 0.75511412 | 0.75513618 | 0.755157 | 0.75614656 | 0.75519085 | 0.75558326 | 0.75519520 | 0.75519659 | 0.75604422 | 0.75526164 | 0.75516493 |
0.7540 | 0.75372138 | 0.75368820 | 0.75369715 | 0.753708 | 0.75540113 | 0.75373018 | 0.75420083 | 0.75374287 | 0.75374504 | 0.75451974 | 0.75355064 | 0.75372013 |
0.7505 | 0.75139834 | 0.75140874 | 0.75139883 | 0.751395 | 0.75456613 | 0.75139802 | 0.75191286 | 0.75141973 | 0.75142581 | 0.75184505 | 0.75090086 | 0.75141152 |
0.7465 | 0.74730096 | 0.74735900 | 0.74733104 | 0.747310 | 0.75348409 | 0.74728965 | 0.74778817 | 0.74731969 | 0.74733114 | 0.74697902 | 0.74633335 | 0.74733029 |
0.7385 | 0.74001058 | 0.74010050 | 0.74006690 | 0.740029 | 0.75191648 | 0.73998948 | 0.74038196 | 0.74002463 | 0.74003977 | 0.73838554 | 0.73834643 | 0.74005270 |
0.7280 | 0.72724727 | 0.72733002 | 0.72731699 | 0.727270 | 0.74946983 | 0.72722099 | 0.72740292 | 0.72725524 | 0.72726887 | 0.72372666 | 0.72457201 | 0.72729318 |
0.7065 | 0.70685089 | 0.70686894 | 0.70691299 | 0.706869 | 0.74577408 | 0.70682682 | 0.70671884 | 0.70685222 | 0.70685660 | 0.70099012 | 0.70283447 | 0.70688721 |
0.6755 | 0.67521122 | 0.67510421 | 0.67524504 | 0.675217 | 0.74018574 | 0.67519590 | 0.67478041 | 0.67520485 | 0.67519269 | 0.66675449 | 0.66949075 | 0.67522544 |
0.6320 | 0.63076133 | 0.63049080 | 0.63075592 | 0.630753 | 0.73240839 | 0.63075703 | 0.63012287 | 0.63074579 | 0.63071392 | 0.61985418 | 0.62306482 | 0.63074786 |
0.5730 | 0.57199506 | 0.57155199 | 0.57195291 | 0.571976 | 0.72213315 | 0.57199880 | 0.57131229 | 0.57196869 | 0.57191851 | 0.55898457 | 0.56205974 | 0.57195709 |
0.4990 | 0.49970619 | 0.49911062 | 0.49964147 | 0.499685 | 0.70944075 | 0.49971121 | 0.49916209 | 0.49966858 | 0.49960459 | 0.48496174 | 0.48725401 | 0.49965419 |
0.4130 | 0.41373353 | 0.41302496 | 0.41366862 | 0.413723 | 0.69424594 | 0.41373079 | 0.41349724 | 0.41368567 | 0.41361375 | 0.39747244 | 0.39837975 | 0.41368276 |
0.3165 | 0.31754600 | 0.31676056 | 0.31749834 | 0.317553 | 0.67709896 | 0.31753040 | 0.31767836 | 0.31749316 | 0.31741489 | 0.29957236 | 0.29877496 | 0.31750791 |
0.2120 | 0.21212289 | 0.21128524 | 0.21210320 | 0.212151 | 0.65812734 | 0.21209349 | 0.21258827 | 0.21207364 | 0.21198595 | 0.19182079 | 0.18923344 | 0.21210409 |
0.1035 | 0.10216343 | 0.10127431 | 0.10216807 | 0.102208 | 0.63813758 | 0.10212650 | 0.10279516 | 0.10213007 | 0.10202311 | 0.07850771 | 0.07438873 | 0.10216083 |
−0.0100 | −0.00879128 | −0.00978343 | −0.00879319 | −0.008750 | 0.61773270 | −0.00881673 | −0.00834550 | −0.00879077 | −0.00893910 | −0.03747352 | −0.04242094 | −0.00879859 |
−0.1230 | −0.12554249 | −0.12665126 | −0.12556054 | −0.125513 | 0.59606795 | −0.12554722 | −0.12551080 | −0.12549444 | −0.12569749 | −0.16060685 | −0.16597348 | −0.12556179 |
−0.2100 | −0.20837039 | −0.20965688 | −0.20845031 | −0.208379 | 0.58050794 | −0.20833403 | −0.20905426 | −0.20827036 | −0.20854079 | −0.24982997 | −0.25460551 | −0.20843149 |
RMSE | 9.824852 × 10−4 | 11.146 × 10−4 | 9.8344 × 10−4 | 9.8272 × 10−4 | 2.9827 × 10−1 | 9.8266 × 10−4 | 10.684 × 10−4 | 9.8317 × 10−4 | 9.8580 × 10−4 | 1.5176 × 10−2 | 16.644 × 10−3 | 9.8294 × 10−4 |
Design Coefficients | I-GWO | ABC | ABSO | BBO-M | BFA | BMO | GGHS | GOTLBO | IWOA | PS | SA | SATLBO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Iph (A) | 0.76078188 | 0.7608 | 0.76078 | 0.76083 | 0.7609 | 0.76078 | 0.76056 | 0.760752 | 0.7608 | 0.7602 | 0.7623 | 0.76078 |
Isd1 (μA) | 0.22628489 | 0.0407 | 0.26713 | 0.59115 | 0.0094 | 0.21110 | 0.37014 | 0.800195 | 0.6771 | 0.9889 | 0.4767 | 0.25093 |
Isd2 (μA) | 0.74609152 | 0.2874 | 0.38191 | 0.24523 | 0.0453 | 0.87688 | 0.13504 | 0.220462 | 0.2355 | 0.0001 | 0.0100 | 0.545418 |
Rs (Ω) | 0.03673977 | 0.0364 | 0.03657 | 0.03664 | 0.0351 | 0.03682 | 0.03562 | 0.036783 | 0.0367 | 0.0320 | 0.0345 | 0.03663 |
Rsh (Ω) | 55.46161769 | 53.7804 | 54.6219 | 55.0494 | 60 | 55.8081 | 62.7899 | 56.075304 | 55.4082 | 81.3008 | 43.1035 | 55.1170 |
n1 | 1.45112760 | 1.4495 | 1.46512 | 2 | 1.3809 | 1.44533 | 1.49638 | 1.999973 | 2 | 1.6 | 1.5172 | 1.45982 |
n2 | 1.99999856 | 1.4885 | 1.98152 | 1.45798 | 1.5255 | 1.99997 | 1.92998 | 1.448974 | 1.4545 | 1.1920 | 2 | 1.99941 |
VL-measured (V) | IL-measured (A) | IL-calculated (A) | IAE (IL) | PL-measured (W) | PL-calculated (W) | IAE (PL) |
---|---|---|---|---|---|---|
−0.2057 | 0.7640 | 0.76398709 | 0.00001291 | −0.15715480 | −0.15715214 | 0.00000266 |
−0.1291 | 0.7620 | 0.76260528 | 0.00060528 | −0.09837420 | −0.09845234 | 0.00007814 |
−0.0588 | 0.7605 | 0.76133662 | 0.00083662 | −0.04471740 | −0.04476659 | 0.00004919 |
0.0057 | 0.7605 | 0.76017067 | 0.00032933 | 0.00433485 | 0.00433297 | 0.00000188 |
0.0646 | 0.7600 | 0.75910281 | 0.00089719 | 0.04909600 | 0.04903804 | 0.00005796 |
0.1185 | 0.7590 | 0.75811520 | 0.00088480 | 0.08994150 | 0.08983665 | 0.00010485 |
0.1678 | 0.7570 | 0.75718164 | 0.00018164 | 0.12702460 | 0.12705508 | 0.00003048 |
0.2132 | 0.7570 | 0.75623678 | 0.00076322 | 0.16139240 | 0.16122968 | 0.00016272 |
0.2545 | 0.7555 | 0.75517186 | 0.00032814 | 0.19227475 | 0.19219124 | 0.00008351 |
0.2924 | 0.7540 | 0.75371974 | 0.00028026 | 0.22046960 | 0.22038765 | 0.00008195 |
0.3269 | 0.7505 | 0.75140063 | 0.00090063 | 0.24533845 | 0.24563287 | 0.00029442 |
0.3585 | 0.7465 | 0.74730763 | 0.00080763 | 0.26762025 | 0.26790979 | 0.00028954 |
0.3873 | 0.7385 | 0.74002079 | 0.00152079 | 0.28602105 | 0.28661005 | 0.00058900 |
0.4137 | 0.7280 | 0.72725875 | 0.00074125 | 0.30117360 | 0.30086695 | 0.00030665 |
0.4373 | 0.7065 | 0.70686030 | 0.00036030 | 0.30895245 | 0.30911001 | 0.00015756 |
0.4590 | 0.6755 | 0.67521557 | 0.00028443 | 0.31005450 | 0.30992394 | 0.00013056 |
0.4784 | 0.6320 | 0.63075947 | 0.00124053 | 0.30234880 | 0.30175533 | 0.00059347 |
0.4960 | 0.5730 | 0.57198816 | 0.00101184 | 0.28420800 | 0.28370613 | 0.00050187 |
0.5119 | 0.4990 | 0.49969717 | 0.00069717 | 0.25543810 | 0.25579498 | 0.00035688 |
0.5265 | 0.4130 | 0.41372646 | 0.00072646 | 0.21744450 | 0.21782698 | 0.00038248 |
0.5398 | 0.3165 | 0.31754365 | 0.00104365 | 0.17084670 | 0.17141006 | 0.00056336 |
0.5521 | 0.2120 | 0.21212657 | 0.00012657 | 0.11704520 | 0.11711508 | 0.00006988 |
0.5633 | 0.1035 | 0.10217168 | 0.00132832 | 0.05830155 | 0.05755330 | 0.00074825 |
0.5736 | −0.0100 | −0.00878486 | 0.00121514 | −0.00573600 | −0.00503900 | 0.00069700 |
0.5833 | −0.1230 | −0.12554052 | 0.00254052 | −0.07174590 | −0.07322778 | 0.00148188 |
0.5900 | −0.2100 | −0.20838115 | 0.00161885 | −0.12390000 | −0.12294488 | 0.00095512 |
Parameter | Lower Bound | Upper Bound |
---|---|---|
Iph (A) | 0 | 2 |
Isd, Isd1, Isd2 (μA) | 0 | 50 |
Rs (Ω) | 0 | 2 |
Rsh (Ω) | 0 | 2000 |
n, n1, n2 | 1 | 50 |
VL-measured (V) | IL-measured (A) | IL-calculated (A) | IAE (IL) | PL-measured (W) | PL-calculated (W) | IAE (PL) |
---|---|---|---|---|---|---|
0.1248 | 1.0315 | 1.02911935 | 0.00238065 | 0.12873120 | 0.12843409 | 0.00029711 |
1.8093 | 1.0300 | 1.02738121 | 0.00261879 | 1.86357900 | 1.85884083 | 0.00473817 |
3.3511 | 1.0260 | 1.02574189 | 0.00025811 | 3.43822860 | 3.43736365 | 0.00086495 |
4.7622 | 1.0220 | 1.02410721 | 0.00210721 | 4.86696840 | 4.87700334 | 0.01003494 |
6.0538 | 1.0180 | 1.02229182 | 0.00429182 | 6.16276840 | 6.18875024 | 0.02598184 |
7.2364 | 1.0155 | 1.01993067 | 0.00443067 | 7.34856420 | 7.38062633 | 0.03206213 |
8.3189 | 1.0140 | 1.01636308 | 0.00236308 | 8.43536460 | 8.45502286 | 0.01965826 |
9.3097 | 1.0100 | 1.01049613 | 0.00049613 | 9.40279700 | 9.40741581 | 0.00461881 |
10.2163 | 1.0035 | 1.00062896 | 0.00287104 | 10.25205705 | 10.22272564 | 0.02933141 |
11.0449 | 0.9880 | 0.98454839 | 0.00345161 | 10.91236120 | 10.87423857 | 0.03812263 |
11.8018 | 0.9630 | 0.95952173 | 0.00347827 | 11.36513340 | 11.32408352 | 0.04104988 |
12.4929 | 0.9255 | 0.92283890 | 0.00266110 | 11.56217895 | 11.52893413 | 0.03324482 |
13.1231 | 0.8725 | 0.87259977 | 0.00009977 | 11.44990475 | 11.45121405 | 0.00130930 |
13.6983 | 0.8075 | 0.80727438 | 0.00022562 | 11.06137725 | 11.05828657 | 0.00309068 |
14.2221 | 0.7265 | 0.72833657 | 0.00183657 | 10.33235565 | 10.35847556 | 0.02611991 |
14.6995 | 0.6345 | 0.63713806 | 0.00263806 | 9.32683275 | 9.36561089 | 0.03877814 |
15.1346 | 0.5345 | 0.53621307 | 0.00171307 | 8.08944370 | 8.11537039 | 0.02592669 |
15.5311 | 0.4275 | 0.42951129 | 0.00201129 | 6.63954525 | 6.67078280 | 0.03123755 |
15.8929 | 0.3185 | 0.31877441 | 0.00027441 | 5.06188865 | 5.06624983 | 0.00436118 |
16.2229 | 0.2085 | 0.20738941 | 0.00111059 | 3.38247465 | 3.36445773 | 0.01801692 |
16.5241 | 0.1010 | 0.09616708 | 0.00483292 | 1.66893410 | 1.58907440 | 0.07985970 |
16.7987 | −0.0080 | −0.00832544 | 0.00032544 | −0.13438960 | −0.13985663 | 0.00546703 |
17.0499 | −0.1110 | −0.11093649 | 0.00006351 | −1.89253890 | −1.89145600 | 0.00108290 |
17.2793 | −0.2090 | −0.20924720 | 0.00024720 | −3.61137370 | −3.61564506 | 0.00427136 |
17.4885 | −0.3030 | −0.30086342 | 0.00213658 | −5.29901550 | −5.26164986 | 0.03736564 |
IL-measured (A) | IL-calculated (A) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
I-GWO | ABC-DE | CPSO | FPA | HFAPS | ITLBO | IWOA | LBSA | PS | SA | TLBO | |
1.0315 | 1.02911935 | 1.03017445 | 1.02792156 | 1.03038364 | 1.02910807 | 1.02910483 | 1.02909984 | 1.02905696 | 1.02937896 | 1.03145977 | 1.02930433 |
1.0300 | 1.02738121 | 1.02816019 | 1.02696797 | 1.02828740 | 1.02737398 | 1.02736674 | 1.02735602 | 1.02738316 | 1.02700030 | 1.02941504 | 1.02621400 |
1.0260 | 1.02574189 | 1.02627040 | 1.02601443 | 1.02632468 | 1.02573833 | 1.02572746 | 1.02571159 | 1.02580220 | 1.02477876 | 1.02749395 | 1.02334149 |
1.0220 | 1.02410721 | 1.02441028 | 1.02494314 | 1.02440212 | 1.02410695 | 1.02409281 | 1.02407244 | 1.02422000 | 1.02261770 | 1.02559753 | 1.02058283 |
1.0180 | 1.02229182 | 1.02239587 | 1.02352338 | 1.02233907 | 1.02229450 | 1.02227745 | 1.02225334 | 1.02245075 | 1.02033338 | 1.02353459 | 1.01774797 |
1.0155 | 1.01993067 | 1.01986476 | 1.02132383 | 1.01977851 | 1.01993586 | 1.01991628 | 1.01988948 | 1.02012840 | 1.01756542 | 1.02093136 | 1.01446920 |
1.0140 | 1.01636308 | 1.01616052 | 1.01760376 | 1.01607148 | 1.01637024 | 1.01634861 | 1.01632050 | 1.01659038 | 1.01366300 | 1.01711601 | 1.01009017 |
1.0100 | 1.01049613 | 1.01019398 | 1.01120384 | 1.01013681 | 1.01050459 | 1.01048147 | 1.01045384 | 1.01074119 | 1.00754628 | 1.01098230 | 1.00352898 |
1.0035 | 1.00062896 | 1.00026301 | 1.00041693 | 1.00027739 | 1.00063790 | 1.00061394 | 1.00058889 | 1.00087724 | 0.99752449 | 1.00081360 | 0.99309562 |
0.9880 | 0.98454839 | 0.98414502 | 0.98313210 | 0.98426893 | 0.98455684 | 0.98453275 | 0.98451240 | 0.98478323 | 0.98138761 | 0.98438529 | 0.97659274 |
0.9630 | 0.95952173 | 0.95908448 | 0.95685722 | 0.95934435 | 0.95952866 | 0.95950512 | 0.95949111 | 0.95972619 | 0.95638895 | 0.95895664 | 0.95129317 |
0.9255 | 0.92283890 | 0.92233718 | 0.91922846 | 0.92273981 | 0.92284342 | 0.92282092 | 0.92281398 | 0.92299851 | 0.91978636 | 0.92181968 | 0.91448600 |
0.8725 | 0.87259977 | 0.87196513 | 0.86867891 | 0.87249801 | 0.87260126 | 0.87258000 | 0.87257968 | 0.87270572 | 0.86963283 | 0.87108747 | 0.86426077 |
0.8075 | 0.80727438 | 0.80640080 | 0.80396690 | 0.80703559 | 0.80727260 | 0.80725242 | 0.80725711 | 0.80732478 | 0.80434601 | 0.80524422 | 0.79906808 |
0.7265 | 0.72833657 | 0.72710844 | 0.72646017 | 0.72782987 | 0.72833185 | 0.72831225 | 0.72831990 | 0.72833839 | 0.72536107 | 0.72578882 | 0.72036366 |
0.6345 | 0.63713806 | 0.63543924 | 0.63733075 | 0.63625072 | 0.63713112 | 0.63711131 | 0.63711992 | 0.63710443 | 0.63400607 | 0.63408576 | 0.62948043 |
0.5345 | 0.53621307 | 0.53394565 | 0.53875110 | 0.53488116 | 0.53620495 | 0.53618404 | 0.53619217 | 0.53616146 | 0.53281166 | 0.53267911 | 0.52893879 |
0.4275 | 0.42951129 | 0.42661823 | 0.43408767 | 0.42775622 | 0.42950323 | 0.42948031 | 0.42948777 | 0.42946112 | 0.42574868 | 0.42552413 | 0.42267978 |
0.3185 | 0.31877441 | 0.31521801 | 0.32486580 | 0.31665110 | 0.31876765 | 0.31874188 | 0.31874903 | 0.31874459 | 0.31457256 | 0.31436038 | 0.31243610 |
0.2085 | 0.20738941 | 0.20317121 | 0.21405555 | 0.20501754 | 0.20738516 | 0.20735582 | 0.20736411 | 0.20739711 | 0.20270269 | 0.20257359 | 0.20158869 |
0.1010 | 0.09616708 | 0.09129595 | 0.10250023 | 0.09366422 | 0.09616639 | 0.09613288 | 0.09614376 | 0.09622719 | 0.09096064 | 0.09097124 | 0.09093929 |
−0.0080 | −0.00832544 | −0.01375892 | −0.00409525 | −0.01070827 | −0.00832170 | −0.00835961 | −0.00834240 | −0.00820286 | −0.01401275 | −0.01388329 | −0.01294519 |
−0.1110 | −0.11093649 | −0.11690797 | −0.10961273 | −0.11309173 | −0.11092761 | −0.11097026 | −0.11094529 | −0.11074205 | −0.11711378 | −0.11684060 | −0.11492873 |
−0.2090 | −0.20924720 | −0.21570702 | −0.21178492 | −0.21104130 | −0.20923267 | −0.20928021 | −0.20924559 | −0.20897460 | −0.21589688 | −0.21548275 | −0.21259889 |
−0.3030 | −0.30086342 | −0.30773606 | −0.30836317 | −0.30213765 | −0.30084292 | −0.30089531 | −0.30084866 | −0.30050991 | −0.30793928 | −0.30741745 | −0.30356751 |
RMSE | 2.425075 × 10−3 | 3.885510 × 10−3 | 4.212772 × 10−3 | 2.742457 × 10−3 | 2.425088 × 10−3 | 2.425194 × 10−3 | 2.425233 × 10−3 | 2.430500 × 10−3 | 4.507511 × 10−3 | 4.169322 × 10−3 | 6.567087 × 10−3 |
Design Coefficients | I-GWO | ABC-DE | CPSO | FPA | HFAPS | ITLBO | IWOA | LBSA | PS | SA | TLBO |
---|---|---|---|---|---|---|---|---|---|---|---|
Iph (A) | 1.03051453 | 1.0318 | 1.0286 | 1.032091 | 1.03050 | 1.03050 | 1.03050 | 1.0304 | 1.0313 | 1.0331 | 1.031805 |
Isd (μA) | 3.48217802 | 3.2774 | 8.3010 | 3.047538 | 3.48420 | 3.48230 | 3.47170 | 3.5233 | 3.1756 | 3.6642 | 3.280945 |
Rs (Ω) | 1.20127379 | 1.2062 | 1.0755 | 1.217583 | 1.20130 | 1.20130 | 1.20160 | 1.2014 | 1.2053 | 1.1989 | 1.206000 |
Rsh (Ω) | 981.95296539 | 845.2495 | 1850.10 | 811.3721 | 984.2813 | 981.9823 | 978.6771 | 1020.40 | 714.2857 | 833.3333 | 548.6660 |
n | 48.64274143 | 48.3948 | 52.2430 | 48.13128 | 48.64490 | 48.64280 | 48.63130 | 48.6866 | 48.2889 | 48.8211 | 48.44228 |
VL-measured (V) | IL-measured (A) | IL-calculated (A) | IAE (IL) | PL-measured (W) | PL-calculated (W) | IAE (PL) |
---|---|---|---|---|---|---|
0.1248 | 1.0315 | 1.02902043 | 0.00247957 | 0.12873120 | 0.12842175 | 0.00030945 |
1.8093 | 1.0300 | 1.02731856 | 0.00268144 | 1.86357900 | 1.85872747 | 0.00485153 |
3.3511 | 1.0260 | 1.02571413 | 0.00028587 | 3.43822860 | 3.43727063 | 0.00095797 |
4.7622 | 1.0220 | 1.02411457 | 0.00211457 | 4.86696840 | 4.87703839 | 0.01006999 |
6.0538 | 1.0180 | 1.02233684 | 0.00433684 | 6.16276840 | 6.18902277 | 0.02625437 |
7.2364 | 1.0155 | 1.02001793 | 0.00451793 | 7.34856420 | 7.38125773 | 0.03269353 |
8.3189 | 1.0140 | 1.01649688 | 0.00249688 | 8.43536460 | 8.45613594 | 0.02077134 |
9.3097 | 1.0100 | 1.01067549 | 0.00067549 | 9.40279700 | 9.40908557 | 0.00628857 |
10.2163 | 1.0035 | 1.00083662 | 0.00266338 | 10.25205705 | 10.22484712 | 0.02720993 |
11.0449 | 0.9880 | 0.98474750 | 0.00325250 | 10.91236120 | 10.87643761 | 0.03592359 |
11.8018 | 0.9630 | 0.95965098 | 0.00334902 | 11.36513340 | 11.32560896 | 0.03952444 |
12.4929 | 0.9255 | 0.92283175 | 0.00266825 | 11.56217895 | 11.52884479 | 0.03333416 |
13.1231 | 0.8725 | 0.87242874 | 0.00007126 | 11.44990475 | 11.44896958 | 0.00093517 |
13.6983 | 0.8075 | 0.80692677 | 0.00057323 | 11.06137725 | 11.05352501 | 0.00785224 |
14.2221 | 0.7265 | 0.72792472 | 0.00142472 | 10.33235565 | 10.35261820 | 0.02026255 |
14.6995 | 0.6345 | 0.63677482 | 0.00227482 | 9.32683275 | 9.36027143 | 0.03343868 |
15.1346 | 0.5345 | 0.53598343 | 0.00148343 | 8.08944370 | 8.11189475 | 0.02245105 |
15.5311 | 0.4275 | 0.42953019 | 0.00203019 | 6.63954525 | 6.67107628 | 0.03153103 |
15.8929 | 0.3185 | 0.31898240 | 0.00048240 | 5.06188865 | 5.06955540 | 0.00766675 |
16.2229 | 0.2085 | 0.20772966 | 0.00077034 | 3.38247465 | 3.36997744 | 0.01249721 |
16.5241 | 0.1010 | 0.09638138 | 0.00461862 | 1.66893410 | 1.59261548 | 0.07631862 |
16.7987 | −0.0080 | −0.00791325 | 0.00008675 | −0.13438960 | −0.13293226 | 0.00145734 |
17.0499 | −0.1110 | −0.11071284 | 0.00028716 | −1.89253890 | −1.88764282 | 0.00489608 |
17.2793 | −0.2090 | −0.20942375 | 0.00042375 | −3.61137370 | −3.61869576 | 0.00732206 |
17.4885 | −0.3030 | −0.30136159 | 0.00163841 | −5.29901550 | −5.27036217 | 0.02865333 |
Model | Algorithm | Iph (A) | Isd, Isd1 (μA) | Isd2 (μA) | Rs (Ω) | Rsh (Ω) | n, n1 | n2 | RMSE |
---|---|---|---|---|---|---|---|---|---|
Single-diode model for R.T.C. France PV cell | CARO [66] | 0.76079 | 0.31724 | - | 0.03644 | 53.0893 | 1.48168 | - | 9.8665 × 10−4 |
CSO [67] | 0.76078 | 0.323 | - | 0.03638 | 53.7185 | 1.48118 | - | 9.8602 × 10−4 | |
CWOA [68] | 0.76077 | 0.3239 | - | 0.03636 | 53.7987 | 1.4812 | - | 9.8602 × 10−4 | |
DE-WOA [58] | 0.760776 | 0.323021 | - | 0.036377 | 53.718524 | 1.481184 | - | 9.8602 × 10−4 | |
EHHO [69] | 0.760775 | 0.323 | - | 0.036375 | 53.74282 | 1.481238 | - | 9.8602 × 10−4 | |
GWO [36] | 0.769969 | 0.91215 | - | 0.02928 | 18.103 | 1.596658 | - | 7.5011 × 10−3 | |
GWOCS [36] | 0.760773 | 0.32192 | - | 0.03639 | 53.632 | 1.4808 | - | 9.8607 × 10−4 | |
IJAYA [34] | 0.7608 | 0.3228 | - | 0.0364 | 53.7595 | 1.4811 | - | 9.8603 × 10−4 | |
ISCE [57] | 0.76077553 | 0.32302083 | - | 0.03637709 | 53.71852771 | 1.4811836 | - | 9.8602 × 10−4 | |
MABC [70] | 0.760779 | 0.321323 | - | 0.036389 | 53.39999 | 1.481385 | - | 9.8610 × 10−4 | |
MSSO [71] | 0.760777 | 0.323564 | - | 0.03637 | 53.742465 | 1.481244 | - | 9.8607 × 10−4 | |
NM-PSO [72] | 0.76077 | 0.32451 | - | 0.03636 | 53.8258 | 1.48157 | - | 9.8605 × 10−4 | |
ORcr-IJADE [47] | 0.760776 | 0.323021 | - | 0.036377 | 53.718523 | 1.481184 | - | 9.8602 × 10−4 | |
PGJAYA [73] | 0.7608 | 0.323 | - | 0.0364 | 53.7185 | 1.4812 | - | 9.8602 × 10−4 | |
SGDE [74] | 0.76078 | 0.32302 | - | 0.036377 | 53.71853 | 1.481184 | - | 9.8602 × 10−4 | |
TLABC [75] | 0.76078 | 0.32302 | - | 0.03638 | 53.71636 | 1.48118 | - | 9.8602 × 10−4 | |
I-GWO | 0.76077561 | 0.32302197 | - | 0.03637706 | 53.71770917 | 1.48118398 | - | 9.8602 × 10−4 | |
Double-diode model for R.T.C. France PV cell | CARO [66] | 0.76075 | 0.29315 | 0.09098 | 0.03641 | 54.3967 | 1.47338 | 1.77321 | 9.8260 × 10−4 |
CSO [67] | 0.76078 | 0.22732 | 0.72785 | 0.036737 | 55.3813 | 1.45151 | 1.99769 | 9.8252 × 10−4 | |
CWOA [68] | 0.76077 | 0.2415 | 0.6 | 0.03666 | 55.2016 | 1.45651 | 1.9899 | 9. 8272 × 10−4 | |
DE-WOA [58] | 0.760781 | 0.225974 | 0.749346 | 0.03674 | 55.485437 | 1.451017 | 2 | 9.824849 × 10−4 | |
EHHO [69] | 0.760769017 | 0.586184 | 0.240965 | 0.036598831 | 55.63943956 | 1.968451449 | 1.456910409 | 9.8360 × 10−4 | |
GWO [36] | 0.761668 | 0.40302 | 0.45338 | 0.03265 | 72.52775 | 1.646 | 1.5527 | 2.2124 × 10−3 | |
GWOCS [36] | 0.76076 | 0.53772 | 0.24855 | 0.03666 | 54.7331 | 2 | 1.4588 | 9.8334 × 10−4 | |
IJAYA [34] | 0.7601 | 0.0050445 | 0.75094 | 0.0376 | 77.8519 | 1.2186 | 1.6247 | 9.8293 × 10−4 | |
ISCE [57] | 0.76078108 | 0.22597409 | 0.74934898 | 0.03674043 | 55.48544409 | 1.4510167 | 2 | 9.824849 × 10−4 | |
MABC [70] | 0.7607821 | 0.6306922 | 0.24102992 | 0.03671215 | 54.7550094 | 2.00000538 | 1.4568573 | 9.8276 × 10−4 | |
MSSO [71] | 0.760748 | 0.234925 | 0.671593 | 0.036688 | 55.714662 | 1.454255 | 1.995305 | 9.8281 × 10−4 | |
NM-PSO [72] | 0.76078 | 0.23820 | 0.64810 | 0.03668 | 55.2154 | 1.45544 | 2 | 9.8259 × 10−4 | |
ORcr-IJADE [47] | 0.760781 | 0.225974 | 0.749348 | 0.03674 | 55.485438 | 1.451017 | 2 | 9.824858 × 10−4 | |
PGJAYA [73] | 0.7608 | 0.21031 | 0.88534 | 0.0368 | 55.8135 | 1.445 | 2 | 9.8263 × 10−4 | |
SGDE [74] | 0.76079 | 0.2807 | 0.24996 | 0.03648 | 54.3667 | 1.469655 | 1.93228 | 9.8441 × 10−4 | |
TLABC [75] | 0.76081 | 0.42394 | 0.24011 | 0.03667 | 54.66797 | 1.9075 | 1.45671 | 9.8414 × 10−4 | |
I-GWO | 0.76078188 | 0.22628489 | 0.74609152 | 0.03673977 | 55.46161769 | 1.4511276 | 1.99999856 | 9.824852 × 10−4 | |
Single-diode-based model for Photowatt-PWP201 PV module | CARO [66] | 1.03185 | 3.28401 | - | 1.20556 | 841.3213 | 48.40363 | - | 2.4270 × 10−3 |
DE-WOA [58] | 1.030514 | 3.482263 | - | 1.201271 | 981.982143 | 48.642835 | - | 2.425075 × 10−3 | |
EHHO [69] | 1.030498656 | 3.488188406 | - | 1.201110352 | 984.4964824 | 48.64931708 | - | 2.425080 × 10−3 | |
GWO [36] | 1.03038 | 4.9068 | - | 1.15926 | 1173.7966 | 50 | - | 2.6749 × 10−3 | |
GWOCS [36] | 1.03049 | 3.465 | - | 1.2019 | 982.7566 | 48.62367 | - | 2.4251 × 10−3 | |
IJAYA [34] | 1.0305 | 3.4703 | - | 1.2016 | 977.3752 | 48.6298 | - | 2.4251 × 10−3 | |
ISCE [57] | 1.0305143 | 3.48226304 | - | 1.201271 | 981.9822803 | 48.642835 | - | 2.425075 × 10−3 | |
NM-PSO [72] | 1.0304 | 3.4888 | - | 1.2012 | 992.9415 | 48.6498 | - | 2.4387 × 10−3 | |
ORcr-IJADE [47] | 1.030514 | 3.482263 | - | 1.201271 | 981.982241 | 48.642835 | - | 2.425075 × 10−3 | |
PGJAYA [73] | 1.0305 | 3.4818 | - | 1.2013 | 981.8545 | 48.6424 | - | 2.425075 × 10−3 | |
SGDE [74] | 1.0305 | 3.4823 | - | 1.20127 | 981.9822 | 48.6428 | - | 2.425075 × 10−3 | |
TLABC [75] | 1.03056 | 3.4715 | - | 1.20165 | 972.93567 | 48.63131 | - | 2.425075 × 10−3 | |
I-GWO | 1.03051453 | 3.48217802 | - | 1.20127379 | 981.95296539 | 48.64274143 | - | 2.425075 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesilbudak, M. Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy. Energies 2021, 14, 5735. https://doi.org/10.3390/en14185735
Yesilbudak M. Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy. Energies. 2021; 14(18):5735. https://doi.org/10.3390/en14185735
Chicago/Turabian StyleYesilbudak, Mehmet. 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy" Energies 14, no. 18: 5735. https://doi.org/10.3390/en14185735
APA StyleYesilbudak, M. (2021). Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy. Energies, 14(18), 5735. https://doi.org/10.3390/en14185735