Home Bio-Waste Composting for the Circular Economy
Abstract
:1. Introduction
- Subsidizing home composting using discounts in waste collecting fees and providing composters is profitable for the commune, as the reduction in waste management costs is greater than the loss of collected fees;
- The current level of financial incentives is too low to encourage the majority of citizens to participate in the home composting program;
- The majority of residents indicate a low level of perception of benefits from home composting, thus concentrating mainly on the economic aspects of home composting.
2. Literature Review
2.1. Circular Economy
2.2. Composting as a Method of Waste Management
2.3. Municipal Waste Management in Poland
2.4. Attitude toward Home Composting
3. Case Study Area Description
4. Materials and Methods
- NPV—net present value;
- (S−P)t—cash flows in subsequent years calculated as savings in the costs of the waste management system (S) minus discounts in fees collected from residents;
- I—initial investment inputs related to the purchase of composters;
- i—alternative investment interest rate;
- t = 0, 1, 2, …, 10—subsequent years of the calculation period.
5. Results
6. Discussion
7. Policy Implication
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- OECD. Beyond Growth: Toward a new economic approach. In Report of the Secretary General’s Advisory Group on a New Growth Narrative; OECD: Paris, France, 2019. [Google Scholar]
- Ellen MacArthur Foundation. Towards the circular economy. In Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2013. [Google Scholar]
- Savini, F. The economy that runs on waste: Accumulation in the circular city. J. Environ. Policy Plan. 2019, 21, 675–691. [Google Scholar] [CrossRef]
- Wilson, D.C.; Rodić, L.; Modak, P.; Soos, R.; Carpintero, A.; Velis, K.; Iyer, M.; Simonett, O. Global Waste Management Outlook; UNEP: Nairobi, Kenya, 2015. [Google Scholar]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F.; Ionkova, K.; Morton, J.; Poveda, R.A.; Sarraf, M.; Malkawi, F.; Harinath, A.S.; et al. What a Waste 2.0: Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- German NGO. Forum on Environment and Development Theecological Dimension in the Post-2015 Agenda for Sustainable Development; German NGO: Berlin Germany, 2013. [Google Scholar]
- Rodić, L.; Wilson, D.C. Resolving Governance issues to achieve priority sustainable development goals related to solid waste management in developing countries. Sustainability 2017, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Weitz, N.; Carlsen, H.; Skånberg, K.; Dzebo, A.; Viaud, V. SDGs and the Environment in the EU: A Systems View to Improve Coherence Report Commissioned by the European Environment Agency; Stockholm Environment Institute: Stockholm, Sweden, 2019. [Google Scholar]
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- European Commission. Commission of European Communities a New Circular Economy Action Plan For a Cleaner and More Competitive Europe, Communication No. 98; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Commission of European Communities Towards a Circular Economy: A Zero Waste Programme for Europe, Communication No. 398; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- European Commission. Commission of European Communities Monitoring Framework for the Circular Economy, Communication No. 29; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Andersen, J.; Boldrin, A.; Christensen, T.H.; Scheutz, C. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling. Waste Manag. 2012, 32, 31–40. [Google Scholar] [CrossRef] [Green Version]
- EEA. Bio-Waste in Europe—Turning Challenges into Opportunities. Report No 4/2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar]
- Colón, J.; Martínez-Blanco, J.; Gabarrell, X.; Artola, A.; Sánchez, A.; Rieradevall, J.; Font, X. Environmental assessment of home composting. Resources, Conservation and Recycling 2010, 54, 893–904. [Google Scholar] [CrossRef] [Green Version]
- Central Statistical Office. Odpady Komunalne i Odpady Zbierane Selektywnie w Ciagu Roku (eng. Municipal Waste and Waste Collected Selectively During the Year); Central Statistical Office: Warsaw, Poland, 2020. [Google Scholar]
- The National Chamber of Statutory Auditors. Sprawozdanie z Działalności Regionalnych izb Obrachunkowych i Wykonania Budżetu Przez Jednostki Samorządu Terytorialnego w 2020 Roku (eng. Report on the Activities of Regional Accounting Chambers and Budget Implementation by Local Government Units in 2020 National Council of the Regional Chambers of Audit; The National Chamber of Statutory Auditors: Warsaw, Poland, 2021. [Google Scholar]
- Seyring, N.; Dollhofer, M.; Weißenbacher, J.; Márton, M.; Herczeg, M.; Bakas, I.; Mckinnon, D. Assessment of Separate Collection Schemes in the 28 Capitals of the EU; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Vázquez, M.A.; Plana, R.; Pérez, C.; Soto, M. Development of technologies for local composting of food waste from universities. Int. J. Environ. Res. Public Health 2020, 17, 3153. [Google Scholar] [CrossRef]
- Boulding, K.E. The economics of the coming spaceship earth. In Environmental Quality in a Growing Economy; Henry, J., Ed.; The Johns Hopkins Press: Baltimore, MD, USA, 1966. [Google Scholar]
- Gołębiewski, J. Systemy Żywnościowe w Warunkach Gospodarki Cyrkularnej Studium Porównawcze Krajów Unii Europejskiej (eng. Food Systems in the Conditions of Circular Economy. Comparative Study of European Union Countries); Wydawnictwo SGGW: Warszawa, Poland, 2019; ISBN 9788375838329. [Google Scholar]
- Saavedra, Y.M.; Iritani, D.R.; Pavan, A.L.R.; Ometto, A.R. Theoretical contribution of industrial ecology to circular economy. J. Clean. Prod. 2018, 170, 1514–1522. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Carreón, J.R.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Berg, A.; Antikainen, R.; Hartikainen, E.; Kauppi, S.; Kautto, P.; Lazarevic, D.; Piesik, S.; Saikku, L. Circular Economy for Sustainable Development; Finnish Environment Institute: Helsinki, Finland, 2018. [Google Scholar]
- Cabot, M.I.; Luque, A.; Heras, A.D.L.; Aguayo, F. Aspects of sustainability and design engineering for the production of interconnected smart food packaging. PLoS ONE 2019, 14, e0216555. [Google Scholar] [CrossRef]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press A division of Farrar, Straus and Giroux: New York, NY, USA, 2002. [Google Scholar]
- Toxopeus, M.E.; De Koeijer, B.; Meij, A. Cradle to Cradle: Effective Vision vs. Efficient Practice? Procedia CIRP 2015, 29, 384–389. [Google Scholar] [CrossRef]
- Jørgensen, S.; Pedersen, L.J.T. The circular rather than the linear economy. In Restart Sustainable Business Model Innovation; Shriwastava, P., Zsolnai, L., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 103–120. [Google Scholar]
- Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-cradle design: Creating healthy emissions—A strategy for eco-effective product and system design. J. Clean. Prod. 2007, 15, 1337–1348. [Google Scholar] [CrossRef]
- Scheel, C.; Aguiñaga, E.; Bello, B. Decoupling economic development from the consumption of finite resources using circular economy. A model for developing countries. Sustainability 2020, 12, 1291. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environmental Programme. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; International Resource Panel: Paris, France, 2011. [Google Scholar]
- Giampietro, M. On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth. Ecol. Econ. 2019, 162, 143–156. [Google Scholar] [CrossRef]
- Calvo-Porral, C.; Lévy-Mangin, J.-P. The circular economy business model: Examining consumers’ acceptance of recycled goods. Adm. Sci. 2020, 10, 28. [Google Scholar] [CrossRef]
- Sijtsema, S.J.; Snoek, H.M.; Van Haaster-de Winter, M.A.; Dagevos, H. Let’s Talk about circular economy: A qualitative exploration of consumer perceptions. Sustainability 2019, 12, 286. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. Communication No. 614; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Camacho-Otero, J.; Boks, C.; Pettersen, I.N. Consumption in the Circular Economy: A Literature Review. Sustainability 2018, 10, 2758. [Google Scholar] [CrossRef] [Green Version]
- Norwegian Ministry of the Environment. Report of the Symposium on Sustainable Consumption; Norwegian Ministry of the Environment: Oslo, Norway, 1994. [Google Scholar]
- OECD. Education and Learning for Sustainable Consumption COM/ENV/CERI (99)64; OECD: Paris, France, 1999. [Google Scholar]
- Bengtsson, M.; Alfredsson, E.; Cohen, M.; Lorek, S.; Schroeder, P. Transforming systems of consumption and production for achieving the sustainable development goals: Moving beyond efficiency. Sustain. Sci. 2018, 13, 1533–1547. [Google Scholar] [CrossRef]
- OECD. OECD 2008: Promoting Sustainable Consumption. Good Practices in OECD Countries 40; OECD: Paris, France, 2008. [Google Scholar]
- Ekström, K.M. waste management and sustainable consumption. In Reflections On Consumer Waste; Routledge: London, UK; New York, NY, USA, 2014. [Google Scholar]
- Smol, M.; Duda, J.; Czaplicka-Kotas, A.; Szołdrowska, D. Transformation towards Circular Economy (CE) in municipal waste management system: Model solutions for Poland. Sustainability 2020, 12, 4561. [Google Scholar] [CrossRef]
- Lehmann, S. Optimizing urban material flows and waste streams in urban development through principles of zero waste and sustainable consumption. Sustainability 2011, 3, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Hamid, S.; Skinder, B.M.; Bhat, M.A. Zero waste: A sustainable approach for waste management. In Innovative Waste Management Technologies for Sustainable Development; Bhat, R.A., Quadri, H., Wani, K., Dar, G.H., Mehmood, M.A., Eds.; IGI Global Publisher of Timely Knowledge: Hershey, PA, USA, 2020; pp. 134–155. Available online: https://www.igi-global.com/gateway/chapter/234624 (accessed on 11 June 2021).
- Bolton, K.; Rousta, K. Solid waste management toward zero landfill: A Swedish model. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Mesjasz-Lech, A. Municipal waste management in context of sustainable urban development. Procedia Soc. Behav. Sci. 2014, 151, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Wąs, A.; Sulewski, P.; Szymańska, M. Biorafinerie Rolnicze Jako Element Trwałej Gospodarki (eng. Agricultural Biorefineries as an Element of Sustainable Economy); Wydawnictwo SGGW: Warsaw, Poland, 2019. [Google Scholar]
- Pilarska, A.; Pilarski, K. Parametry procesu kompostowania (eng. Composting process parameters). Tech. Rol. Ogrod. Leśna 2009, 1, 16–22. [Google Scholar]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Golueke, C. Bacteriology of composting. Biocycle 1992, 33, 55–57. [Google Scholar]
- Adugna, G. A Review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar] [CrossRef]
- Tejada, M.; Hernandez, T.; Garcia, C. Soil restoration using composted plant residues: Effects on soil properties. Soil Tillage Res. 2009, 102, 109–117. [Google Scholar] [CrossRef]
- Ros, M. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Debertoldi, M.; Vallini, G.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Hassen, A.; Belguith, K.; Jedidi, N.; Cherif, A.; Cherif, M.; Boudabous, A. Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 2001, 80, 217–225. [Google Scholar] [CrossRef]
- Massiani, C.; Domeizel, M. Quality of composts: Organic matter stabilization and trace metal contamination. In The Science of Composting; De Bertoldi, M., Sequi, P., Lemmes, B., Papi, T., Eds.; Springer: Heidelberg, The Netherlands, 1996; pp. 185–194. [Google Scholar]
- Al-Rumaihi, A.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Environmental impact assessment of food waste management using two composting techniques. Sustainability 2020, 12, 1595. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Nair, J. The impact of landfilling and composting on greenhouse gas emissions—A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef]
- Friedrich, E.; Trois, C. Quantification of greenhouse gas emissions from waste management processes for municipalities—A comparative review focusing on Africa. Waste Manag. 2011, 31, 1585–1596. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Trémier, A.; Barrington, S.; Martinez, J.; Daumoin, M. Gas emissions as influenced by home composting system configuration. J. Environ. Manag. 2013, 116, 163–171. [Google Scholar] [CrossRef]
- European Bioplastics. Fact Sheet APR Home Composting; European Bioplastics: Berlin, Germany, 2015. [Google Scholar]
- Bruni, C.; Akyol, C.; Cipolletta, G.; Eusebi, A.L.; Caniani, D.; Masi, S.; Colón, J.; Fatone, F. Decentralized community composting: Past, present and future aspects of Italy. Sustainability 2020, 12, 3319. [Google Scholar] [CrossRef] [Green Version]
- Loan, L.T.T.; Takahashi, Y.; Nomura, H.; Yabe, M. Modeling home composting behavior toward sustainable municipal organic waste management at the source in developing countries. Resour. Conserv. Recycl. 2018, 140, 65–71. [Google Scholar] [CrossRef]
- Tatàno, F.; Pagliaro, G.; Di Giovanni, P.; Floriani, E.; Mangani, F. Biowaste home composting: Experimental process monitoring and quality control. Waste Manag. 2015, 38, 72–85. [Google Scholar] [CrossRef]
- Mesaric, J.; Franjkovic, J.; Šebalj, D. Supply chains in the context of life cycle assessment and sustainability. In Proceedings of the 16th International Scientific Conference Business Logistics in Modern Management, Osijek, Croatia, 13 October 2016. [Google Scholar]
- Vázquez, M.; Soto, M. The efficiency of home composting programmes and compost quality. Waste Manag. 2017, 64, 39–50. [Google Scholar] [CrossRef]
- Eurostat Municipal waste by waste management operations. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasmun/default/bar?lang=en (accessed on 28 June 2021).
- Zaleski, P.; Chawla, Y. Circular economy in Poland: Profitability analysis for two methods of waste processing in small municipalities. Energies 2020, 13, 5166. [Google Scholar] [CrossRef]
- WFD 2008/98/EC: Directive 2008/98/EC on waste (Waste Framework Directive). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 25 June 2021).
- European Commission Directive (EU). 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste; European Commission Directive: Brussels, Belgium, 2018. [Google Scholar]
- Eurostat. Available online: Ec.europa.eu/eurostat/data/database (accessed on 18 June 2021).
- Council of Ministers Mapa Drogowa. Transformacja w Kierunku Gospodarki o Obiegu Zamkniętym (eng. Roadmap. Transformation Towards a Circular Economy); Council of Ministers Mapa Drogowa: Warsaw, Poland, 2019. [Google Scholar]
- Alwaeli, M. An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng. 2015, 41. [Google Scholar] [CrossRef]
- Perepeczko, B. Świadomość ekologiczna mieszkańców i ich postawy proekologiczne (eng. Ecological awareness of the inhabitants and their pro-ecological attitudes). In Uwarunkowania Zrównoważonego Rozwoju Gmin Objętych Siecią Natura 2000 w Świetle Badań Empirycznych (eng. Conditions for the Sustainable Development of Municipalities Included in the Natura 2000 Network in the Light of Empirical Research); Bałtromiuk, A., Ed.; IRWiR PAN: Warsaw, Poland, 2011; pp. 187–212. [Google Scholar]
- Korzeniowska-Ginter, R.; Dereszewska, A.; Spigarska, E. Consumer attitude towards the implementation of the idea of bakery and confectionery waste segregation „at sources”. Rocz. Nauk. Ser. 2016, XVIII, 184–190. [Google Scholar]
- Kostecka, J.; Dunin-Mugler, C. Partycypacja społeczna a segregacja odpadów organicznych (eng. Social participation and organic waste segregation). Inżynieria Ekol. 2011, 27, 81–91. [Google Scholar]
- Jakubus, M.; Tatuśko, N. Separate collection of municipal waste in knowledge and social participation aspects. Inżynieria Ekologiczna 2015, 41, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Perks, M. Composting program participation and availability across canada. Sojourners Undergrad. J. Sociol. 2015, 6, 42–57. [Google Scholar]
- Kala, K.; Bolia, N.B. Analysis of citizen’s perception towards segregation and composting. Environ. Dev. Sustain. 2020, 23, 10763–10786. [Google Scholar] [CrossRef]
- Marcello, B.; Di Gennaro, V.; Ferrini, S. Let the citizens speak: An empirical economic analysis of domestic organic waste for community composting in Tuscany. J. Clean. Prod. 2021, 306, 127263. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Tao, G.H.; Abu Amr, S.S.; Tan, K.W. Public concerns and behaviors towards solid waste minimization using composting in Kampar district, Malaysia. Glob. Nest J. 2018, 20, 316–323. [Google Scholar]
- Tucker, P.; Speirs, D.; Fletcher, S.I.; Edgerton, E.; McKechnie, J. Factors affecting take-up of and drop-out from home composting schemes. Local Environ. 2003, 8, 245–259. [Google Scholar] [CrossRef]
- Łomianki Municipal Office. Pod Lupą. Rewolucja w Gospodarce Odpadami Komunalnymi (eng. Under the Magnifying Glass. Revolution in Municipal Waste Management). Available online: https://lomianki.pl/ftp/biuletyn/BIUM_1_2020_donetu_1.pdf (accessed on 25 June 2021).
- Poland in numbers Commune of Łomianki in numbers. Available online: https://www.polskawliczbach.pl/gmina_Lomianki#dane-demograficzne (accessed on 2 July 2021).
- Łomianki Municipal Office. Uchwała Nr XX/179/2020. Available online: https://bip.lomianki.pl/bip/prawo-lokalne/uchwaly-rady-miejskiej/2020/10006,Uchwala-Nr-XX1792020-z-dnia-30-stycznia-2020-roku-w-sprawie-miejscowego-planu-za.html (accessed on 15 June 2021).
- Dąbrowski, T. Łomianki Commune Website. Available online: https://www.lomianki.pl/pl/aktualnosci/2540,Kompostownik-dla-kazdego.html (accessed on 28 June 2021).
- NGO. Natural and Ecological Education. Available online: https://www.fundacjakim.pl/dzialania-fundacji/edukacja-przyrodniczo-ekologiczna.html (accessed on 9 August 2021).
- Łomianki Municipal Office. Analiza Stanu Gospodarki Odpadami Komunalnymi Gminy Łomianki w 2019 Roku (eng. Analysis of the State of the Municipal Economy in the Łomianki Commune in 2019). Available online: https://bip.lomianki.pl/download/2/25896/Analizastanugospodarkiodpadamikomunalnymi2019.pdf (accessed on 12 July 2021).
- Act on the Maintenance of Cleanliness and Order in Communes, 1966. In Journal of Laws of the Republic of Poland of 2019, position 2010 i 2020. Available online: https://dziennikustaw.gov.pl/D2019000201001.pdf (accessed on 28 June 2021).
- 29th December 2016 on the Detailed Method of Selective Collection of Selected Fractions Regulation of the Minister of the Environment. In Journal of Laws of the Republic of Poland; 2019. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170000019/O/D20170019.pdf (accessed on 29 June 2021).
- Kostecka, J.; Pączka, G.; Garczyńska, M.; Podolak-Machowska, A.; Dunin-Mugler, C.; Szura, R. Wykorzystanie wermikompostowania do zagospodarowania odpadów organicznych w gospodarstwach domowych (eng. The use of vermicomposting for the management of organic waste in households). Inżynieria i Ochr. Środowiska 2014, 17, 21–30. [Google Scholar]
- Szpadt, R. Problemy gospodarki odpadami komunalnymi ulegającymi biodegradacji (eng. Problems of municipal biodegradable waste management). Available online: http://www.pzits-cedeko.com.pl/referaty/Ryszard_Szpadt.pdf (accessed on 16 June 2021).
- Zamorowska, K. Mikroorganizmy odpowiedzią na problemy z zagospodarowaniem bioodpadów (eng. Microorganisms as a response to problems with bio-waste management). Available online: https://www.teraz-srodowisko.pl/aktualnosci/mikroorganizmy-odpowiedzia-na-problemy-z-zagospodarowaniem-bioodpadow-6509.html (accessed on 6 June 2021).
- Wysocki, C.; Stawicka, J. Trawy na terenach zurbanizowanych (eng. Grasses in urban aeras). In Grassland Science in Poland; Goliński, P., Kozłowski, S., Golińska, B., Eds.; Polskie Towarzystwo Łąkarskie: Poznań, Poland, 2005; p. 232. [Google Scholar]
- Mbuligwe, S.; Kassenga, G.; Kaseva, M.; Chaggu, E. Potential and constraints of composting domestic solid waste in developing countries: Findings from a pilot study in Dar es Salaam, Tanzania. Resour. Conserv. Recycl. 2002, 36, 45–59. [Google Scholar] [CrossRef]
- Breitenbeck, G.A.; Schellinger, D. Calculating the reduction in material mass and volume during composting. Compos. Sci. Util. 2004, 12, 365–371. [Google Scholar] [CrossRef]
- Wong, J.W. Effects of lime addition on sewage sludge composting process. Water Res. 2000, 34, 3691–3698. [Google Scholar] [CrossRef]
- Chen, L.; de Haro Marti, M.; Moore, A.; Falen, C. The Composting Process. Available online: https://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1179.pdf (accessed on 28 June 2021).
- Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S. Thermophilic composting of municipal solid waste. Appl. Energy 2009, 86, 663–668. [Google Scholar] [CrossRef]
- Erler, E. Can you compost in winter? University of New Hampshire. Available online: https://extension.unh.edu/blog/2020/11/can-you-compost-winter (accessed on 9 September 2021).
- Mazik, M. How to speed up the composting? Available online: https://zielonyogrodek.pl/pielegnacja/nawozenie/5416-jak-przyspieszyc-kompostowanie (accessed on 14 June 2021).
- Witaszek, M.; Witaszek, K. Comparison of carbon dioxide emission for different modes of transport. Sci. J. Silesian Univ. Technol. Ser. Transp. 2015, 88, 145–153. [Google Scholar] [CrossRef]
- Francesco, R.; Lorenzo, D.; Giovanni, L.; Lazzeri, L. The role of compost in bio-waste management and circular economy. In Designing Sustainable Technologies, Products and Policies. From Science to Innovation; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer Open: Luxembourg, 2017; pp. 133–143. [Google Scholar]
- Adami, L.; Schiavon, M. From circular economy to circular ecology: A Review on the Solution of environmental problems through circular waste management approaches. Sustainability 2021, 13, 925. [Google Scholar] [CrossRef]
- Fernando, R.L.S. People‘s participation in home composting: An exploratory study based on Moratuwa and Kaduwela municipalities in the Western Province of Sri Lanka. Manag. Environ. Qual. Int. J. 2020, 32, 344–358. [Google Scholar] [CrossRef]
- European Commission. Success Stories on Composting and Separate Collection; European Commission: Brussels, Belgium, 2000; Available online: https://op.europa.eu/en/publication-detail/-/publication/dc960474-5b04-4b95-80cf-6ef658e08ab4 (accessed on 18 June 2021).
- De Kraker, J.; Kujawa-Roeleveld, K.; Villena, M.J.; Pabón-Pereira, C. Decentralized valorization of residual flows as an alternative to the traditional urban waste management system: The Case of Peñalolén in Santiago de Chile. Sustainability 2019, 11, 6206. [Google Scholar] [CrossRef] [Green Version]
- Sakarika, M.; Spiller, M.; Baetens, R.; Donies, G.; Vanderstuyf, J.; Vinck, K.; Vrancken, K.C.; Van Barel, G.; Du Bois, E.; Vlaeminck, S.E. Proof of concept of high-rate decentralized pre-composting of kitchen waste: Optimizing design and operationof a novel drum reactor. Waste Manag. 2019, 91, 20–32. [Google Scholar] [CrossRef]
- Mitaftsi, O. Quantifying Household Waste Diversion from Landfill Disposal by Home Composting and Kerbside Collection; Department of Civil and Environmental engineering, Imperial College London: London, UK, 2008. [Google Scholar]
Categories of Waste | Amount (tons) |
---|---|
Unsorted (mixed) municipal waste | 5949.5 |
Mixed packaging waste | 1529.46 |
Glass packaging | 286.02 |
Paper and cardboard packaging | 155.96 |
Green waste | 2305.87 |
Months | Kitchen Waste | Green Waste | ||
---|---|---|---|---|
kg per Person | dm3/Person 1 | kg per sq.m 1 | dm3/sq.m | |
January | 8.9 | 12,7 | 0.00 | 0.00 |
February | 6.8 | 9.7 | 0.00 | 0.00 |
March | 11.2 | 16.0 | 0.00 | 0.00 |
April | 11.5 | 16.5 | 0.00 | 0.00 |
May | 12.0 | 17.1 | 0.10 | 1.74 |
June | 13.5 | 19.3 | 0.11 | 1.96 |
July | 14.6 | 20.8 | 0.07 | 1.31 |
August | 17.5 | 25.0 | 0.07 | 1.31 |
September | 19.5 | 27.9 | 0.06 | 1.09 |
October | 13.1 | 18.7 | 0.04 | 0.65 |
November | 11.5 | 16.5 | 0.00 | 0.00 |
December | 13.5 | 19.3 | 0.00 | 0.00 |
Total | 153.6 | 219.4 | 0.460 | 8.1 |
Discount in the Residents’ Contribution to the Waste Management System | |||||
---|---|---|---|---|---|
6% (Current) | 15% | 30% | 50% | 75% | |
Standard annual premium (fee) PLN/person | 396 | 396 | 396 | 396 | 396 |
Reduced premium (fee) PLN/person | 372 | 336.6 | 277.2 | 198 | 99 |
Number of people included (2.6 × 6929 households) | 18,015.6 | 18,015.6 | 18,015.6 | 18,015.6 | 18,015.6 |
Due contribution (fee) 100% at the commune level [thousands PLN] | 7134.2 | 7134.2 | 7134.2 | 7134.2 | 7134.2 |
Deduction at the commune level—lost revenues (commune cost) [thousands PLN] | 432.4 | 1070.1 | 2140.3 | 3567.1 | 5350.6 |
Estimated reduction in system costs at the commune level (fees paid by the commune for biowaste treatment) [thousands PLN] | 3363.3 | 3363.3 | 3363.3 | 3363.3 | 3363.3 |
One-off expenditure of the commune for the purchase of composters (PLN 500 × 6929 households) [thousands PLN] | 4802.6 | 4802.6 | 4802.6 | 4802.6 | 4802.6 |
Discount in the Residents’ Contribution to the Waste Management System | |||||
---|---|---|---|---|---|
6% | 15% | 30% | 50% | 75% | |
Simple return period [years] | 1.6 | 2.1 | 3.9 | never | never |
IRR 1 [%] | 60.49 | 46.72 | 21.97 | - | - |
NPV 2 [thousands PLN] | 19,172.0 | 13,988.8 | 5291.7 | −6304.6 | −20,799.8 |
Definitely YES | YES, but Expects a Larger Discount on the Waste Collection Fee | NOT Interested at All | |
---|---|---|---|
Share of respondents declaring their willingness to join or continue participation in home composting | 32.4% | 49.0% | 18.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulewski, P.; Kais, K.; Gołaś, M.; Rawa, G.; Urbańska, K.; Wąs, A. Home Bio-Waste Composting for the Circular Economy. Energies 2021, 14, 6164. https://doi.org/10.3390/en14196164
Sulewski P, Kais K, Gołaś M, Rawa G, Urbańska K, Wąs A. Home Bio-Waste Composting for the Circular Economy. Energies. 2021; 14(19):6164. https://doi.org/10.3390/en14196164
Chicago/Turabian StyleSulewski, Piotr, Karolina Kais, Marlena Gołaś, Grzegorz Rawa, Klaudia Urbańska, and Adam Wąs. 2021. "Home Bio-Waste Composting for the Circular Economy" Energies 14, no. 19: 6164. https://doi.org/10.3390/en14196164
APA StyleSulewski, P., Kais, K., Gołaś, M., Rawa, G., Urbańska, K., & Wąs, A. (2021). Home Bio-Waste Composting for the Circular Economy. Energies, 14(19), 6164. https://doi.org/10.3390/en14196164