The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method
Abstract
:1. Introduction
2. The State of Knowledge on Dust Pollution Inside and Outside Buildings
2.1. Characteristics of Actual Air Pollutants in the Internal Environment
- PM from external sources transferred to the premises via ventilated or infiltrated air;
- PM from external sources, transferred to the premises as settled dust and then re-suspended in the air in the room;
- suspended dust from indoor combustion sources, such as tobacco smoke, cooking, candles or forest fires;
- particles of biological origin; and finally;
- particulate matter produced by indoor air chemistry, e.g., oxidation of cleaning ingredients (e.g., terpenes) by ozone.
2.2. Limit Values for Indoor PM Concentrations
2.3. Characteristics of Actual Air Pollutants in the Outdoor Environment in Statistical Terms
- the standard of the average daily concentration of PM10 dust: 50 µg/m3;
- the standard of the average annual concentration of PM10 dust: 20 µg/m3;
- the standard of the average daily concentration of PM2.5 dust: 25 µg/m3;
- the standard of the average annual concentration of PM2.5 dust: 10 µg/m3.
2.4. Research on Actual Dust Pollution of the External Environment in Polish Cities
2.5. Influence of Meteorological and Building Parameters on the Level of Indoor Dust Pollution
2.6. Sources of Air Pollution by Particulate Matter (PMF Numerical Methods of Outdoor Sources Apportionment)
3. Materials and Methods
3.1. Preliminary Measurements of Mass Concentrations of Dust Pollutants Inside Rooms
- Room 1–23.48 m3, 1 window
- Room 2–48.75 m3, 2 windows
- Room 3–93.14 m3, 3 windows
3.2. Measurement Methods (Measuring Instruments and Procedures of Particle Concentration Measurements Inside and Outside the Building)
3.3. Procedures for Measurements of PM2.5 Mass Concentration in the Indoor Mode Performed at ITB
- An initial measurement of the concentration of PM10, PM2.5 and CO2 was performed.
- The Samsung AX90R7080WD/EU air cleaner was turned on and PM mass concentration measurements were performed until the minimum dust concentration was achieved.
- After turning off the air cleaner, measurements of the concentration of PM10 and PM2.5 dust were taken until reaching “saturation”—the state where indoor PM concentration no longer decreases.
- After achieving the point of a steady state of PM concentration the measurements of the concentration of PM10 and PM2.5 dust were going on until reaching equilibrium of I/O concentration.
4. Results and Discussion
4.1. Results and Discussion of Preliminary Measurements of Indoor PM2.5 and PM10 Concentrations
4.2. Theoretical Basis and Possibilities of Predicting Dust Penetration through the Building Envelope. A Dynamic Model of the Mass Balance Equation of Indoor Particle Concentration Levels
4.3. Method of Determination of the Penetration Efficiency Factor P
4.4. Exemplary Determination of the Penetration Efficiency Factor Based on the Results of Tests of the Profile of Forced Changes in the Concentration of PM Particles in a Selected Room
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Arvanitis, A.; Kotzias, D.; Kephalopoulos, S.; Carrer, P.; Cavallo, D.; Cesaroni, G.; Brouwere, K.D.; de Oliveira-Fernandes, E.; Forastiere, F.; Fossati, S. The index-pm project: Health risks from exposure to indoor particulate matter. Fresenius Environ. Bull. 2010, 19, 2458–2471. [Google Scholar]
- Crouse, D.L.; Peters, P.A.; Hystad, P.; Brook, J.R.; van Donkelaar, A.; Martin, R.V.; Villeneuve, P.J.; Jerrett, M.; Goldberg, M.S.; Pope, C.A., III; et al. Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the canadian census health and environment cohort (CanCHEC). Environ. Health Perspect. 2015, 123, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Hvelplund, M.H.; Liu, L.; Frandsen, K.M.; Qian, H.; Nielsen, P.V.; Dai, Y.; Wen, L.; Zhang, Y. Numerical investigation of the lower airway exposure to indoor particulate contaminants. Indoor Built Environ. 2019, 29, 575–586. [Google Scholar] [CrossRef]
- Wang, S.; Inthavong, K.; Wen, J.; Tu, J.; Xue, C. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Respir. Physiol. Neurobiol. 2009, 166, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.-Q. A Review of Recent Advances in Research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Ryu, S.H.; Lee, G.; Bae, G.-N. Indoor-to-outdoor particle concentration ratio model for human exposure analysis. Atmos. Environ. 2016, 127, 100–106. [Google Scholar] [CrossRef]
- Branco, P.; Alvim-Ferraz, M.D.C.; Martins, F.; Sousa, S. Children’s exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment. Environ. Res. 2015, 140, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalimeri, K.K.; Bartzis, J.G.; Sakellaris, I.A.; Fernandes, E.D.O. Investigation of the PM2.5, NO2 and O3 I/O ratios for office and school microenvironments. Environ. Res. 2019, 179, 108791. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, H.; Wei, S.; Zhang, L.; Zhao, Q. The Correlation between Indoor and Outdoor Particulate Matter of Different Building Types in Daqing, China. Proc. Eng. 2017, 205, 360–367. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; He, Z.; Li, C.; Chen, Z. Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustain. Cities Soc. 2019, 53, 101871. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, Y. Determination the PM2.5 concentration in the room of Liting mosquito-repellent incense and cigarette. Inn. Mong. Environ. Sci. 2013, 25, 184–185. [Google Scholar]
- Zhang, N.; Han, B.; He, F.; Xu, J.; Zhao, R.; Zhang, Y.; Bai, Z. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environ. Pollut. 2017, 227, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhou, Z.; Nie, T.; Wang, K.; Nie, L.; Pan, T.; Wu, X.; Tian, H.; Zhong, L.; Li, J.; et al. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures. Atmos. Environ. 2016, 142, 303–312. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Yuan, J.; Zuo, J.; Chen, G.; Xu, L.; Rameezdeen, R. Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tian, 2016. China. Renew. Sustain. Energy Rev. 2016, 64, 372–381. [Google Scholar] [CrossRef]
- Simeone, M.G.; Ubaldi, V.; Lepore, A.; Cirillo, M.C. A Web graphig tool for travelling through a virtual home, school or office to improve our awareness on Indoor air risk. In Proceedings of the 8th International Conference and Exhibition on Healthy Buildings, Lisboa, Portugal, 4–8 June 2006; p. 315. [Google Scholar]
- Jantunen, M.J. Indoor Air Exposure. In Proceedings of the 8th International Conference and Exhibition on Healthy Buildings, Lisboa, Portugal, 4–8 June 2006; p. 23. [Google Scholar]
- Isaxon, C.; Gudmundsson, A.; Nordin, E.; Lönnblad, L.; Dahl, A.; Wieslander, G.; Bohgard, M.; Wierzbicka, A. Contribution of indoor-generated particles to residential exposure. Atmos. Environ. 2015, 106, 458–466. [Google Scholar] [CrossRef]
- Wallace, L.; Ott, W. Personal exposure to ultrafine particles. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Wallis, S.L.; Hernandez, G.; Poyner, D.; Birchmore, R.; Berry, T.-A. Particulate matter in residential buildings in New Zealand: Part I. Variability of particle transport into unoccupied spaces with mechanical ventilation. Atmos. Environ. 2019, 2, 100024. [Google Scholar] [CrossRef]
- Hänninen, O.; Lebret, E.; Ilacqua, V.; Katsouyanni, K.; Künzli, N.; Srám, R.; Jantunen, M. Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos. Environ. 2004, 38, 6411–6423. [Google Scholar] [CrossRef]
- Lai, H.; Bayer-Oglesby, L.; Colvile, R.; Götschi, T.; Jantunen, M.; Künzli, N.; Kulinskaya, E.; Schweizer, C.; Nieuwenhuijsen, M. Determinants of indoor air concentrations of PM2.5, black smoke and NO2 in six European cities (EXPOLIS study). Atmos. Environ. 2006, 40, 1299–1313. [Google Scholar] [CrossRef]
- Choi, D.H.; Kang, D.H. Infiltration of Ambient PM2.5 through Building Envelope in Apartment Housing Units in Korea. Aerosol Air Qual. Res. 2017, 17, 598–607. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Morawska, L.; Gilbert, D. Particle deposition rates in residential houses. Atmos. Environ. 2005, 39, 3891–3899. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L.; He, C.; Hitchins, J.; Gilbert, D.; Parappukkaran, S. The relationship between indoor and outdoor airborne particles in the residential environment. Atmos. Environ. 2001, 35, 3463–3473. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.; Apte, M.G.; Gundel, L.; Sextro, R.G.; Nazaroff, W. Determining Size-Specific Emission Factors for Environmental Tobacco Smoke Particles. Aer. Sci. Technol. 2003, 37, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Brauer, F.M.B.L.H.; Brauer, L.H.; Behm, F.M.; Lane, J.D.; Westman, E.C.; Perkins, C.; Rose, J.E. Individual differences in smoking reward from de-nicotinized cigarettes. Nicotine Tob. Res. 2001, 3, 101–109. [Google Scholar] [CrossRef]
- Dockery, D.W.; Spengler, J.D. Indoor-outdoor relationships of respirable sulphates and particles. Atmos. Environ. 1981, 15, 335–343. [Google Scholar] [CrossRef]
- Kamens, R.; Lee, C.-T.; Wiener, R.; Leith, D. A study of characterize indoor particles in three non-smoking homes. Atmos. Environ. Part A. Gen. Top. 1991, 25, 939–948. [Google Scholar] [CrossRef]
- Chao, C.Y.; Tung, T.C.; Burnett, J. Influence of Different Indoor Activities on the Indoor Particulate Levels in Residential Buildings. Indoor Built Environ. 1998, 7, 110–121. [Google Scholar] [CrossRef]
- Carrer, P.; Fernandes, E.D.O.; Santos, H.; Hänninen, O.; Kephalopoulos, S.; Wargocki, P. On the Development of Health-Based Ventilation Guidelines: Principles and Framework. Int. J. Environ. Res. Public Health 2018, 15, 1360. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005: Summary of Risk Assessment; WHO: Geneve, Switzerland, 2006. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Europe. Copenhagen; WHO Regional Office for Europe: Copenhagen, Denmark, 1987; p. 426, (WHO regional publications. European series no.23). [Google Scholar]
- World Health Organization. Health Risks of Particulate Matter from Long-Range Transboundary Air Pollution. 2006 Joint WHO/Convention Task Force on the Health Aspects of Air Pollution; European Centre for Environment and Health: Bonn, Germany, 2006. [Google Scholar]
- Samek, L.; Stegowski, Z.; Furman, L.; Styszko, K.; Szramowiat, K.; Fiedor, J. Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water Air Soil Pollut. 2017, 228, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Wang, Y. Study on the Influence of Thermal Properties of Building Envelope on Indoor Pollutant Diffusion. Environ. Sci. Eng. 2020, 1113–1122. [Google Scholar] [CrossRef]
- Yu, L.; Kang, N.; Wang, W.; Guo, H.; Ji, J. Study on the Influence of Air Tightness of the Building Envelope on Indoor Particle Concentration. Sustainability 2020, 12, 1708. [Google Scholar] [CrossRef] [Green Version]
- Vestreng, V.; Goodwin, J.; Adams, M. Inventory Review 2004. Emission Data Reported to CLRTAP and Under the NEC Directive; Norwegian Meteorological Institute: Oslo, Norway, 2004. [Google Scholar]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef] [PubMed]
- Ścibor, M.; Bokwa, A.; Balcerzak, B. Impact of wind speed and apartment ventilation on indoor concentrations of PM10 and PM2.5 in Kraków, Poland. Air Qual. Atmos. Health 2020, 13, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.T. Indoor–outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmos. Environ. 2002, 36, 1543–1551. [Google Scholar] [CrossRef]
- Klaić, Z.B.; Ollier, S.J.; Babić, K.; Beslic, I. Influences of outdoor meteorological conditions on indoor wintertime short-term PM1 levels. Geofizika 2015, 237–264. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, T. Spatial-temporal variability of PM2.5 air quality in Beijing, China during 2013–2018. J. Environ. Manag. 2020, 262, 110263. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhao, W.; Yan, X.; Zhao, W.; Xiong, Q. Spatial and temporal variation of PM2.5 in Beijing city after rain. Ecol. Environ. Sci. 2014, 23, 797–805. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Barmparesos, N.; Saraga, D.; Karavoltsos, S.; Maggos, T.; Assimakopoulos, V.D.; Sakellari, A.; Bairachtari, K.; Assimakopoulos, M.N. Chemical Composition and Source Apportionment of PM10 in a Green-Roof Primary School Building. Appl. Sci. 2020, 10, 8464. [Google Scholar] [CrossRef]
- PN-EN 12341: 2014-07 Atmospheric Air—Standard Gravimetric Measurement Method for Determining the Mass Concentrations of PM10 or PM2.5 Suspended Dust; Polski Komitet Normalizacyjny: Warszawa, Poland, 2014.
- ISO 16000-34:2018. Indoor Air—Part 34: Strategies for the Measurement of Airborne Particles; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- ISO 16000-37:2019. Indoor Air—Part 37: Measurement of PM2.5 Mass Concentrations Describes the Strategies and Procedures for Measuring the Mass Concentration of PM2.5 Indoors; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Diapouli, E.; Chaloulakou, A.; Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: A review. J. Air Waste Manag. Assoc. 2013, 63, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B.; Weschler, C.J. Assessing the Influence of Indoor Exposure to “Outdoor Ozone” on the Relationship between Ozone and Short-term Mortality in U.S. Communities. Environ. Health Perspect. 2012, 120, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Chatoutsidou, S.E.; Mašková, L.; Ondráčková, L.; Ondráček, J.; Lazaridis, M.; Smolík, J. Modeling of the aerosol infiltration characteristics in a cultural heritage building: The Baroque Library Hall in Prague. Build Environ. 2015, 89, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Chatoutsidou, S.E.; Ondráček, J.; Tesar, O.; Tørseth, K.; Ždímal, V.; Lazaridis, M. Indoor/outdoor particulate matter number and mass concentration in modern offices. Build. Environ. 2015, 92, 462–474. [Google Scholar] [CrossRef] [Green Version]
- Kopanakis, I.; Chatoutsidou, S.; Torseth, K.; Glytsos, T.; Lazaridis, M. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles. Atmos. Environ. 2013, 77, 790–802. [Google Scholar] [CrossRef]
- Bennett, D.; Koutrakis, P. Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. J. Aer. Sci. 2006, 37, 766–785. [Google Scholar] [CrossRef]
- Long, C.M.; Sarnat, J.A. Indoor outdoor relationships and infiltrationbehavior of elemental components of outdoor PM2.5 for Boston-area homes. Aer. Sci. Technol. 2004, 38, 91–104. [Google Scholar] [CrossRef]
- Chen, C. A methodology for predicting PM2.5 penetration and deposition based on the air infiltration through the window gaps. Healthy Housing 2016. In Proceedings of the 7th International Conference on Energy and Environment of Residential Buildings, Queensland University of Technology, Brisbane, Australia, 20–24 November 2016. [Google Scholar] [CrossRef]
- Nowak-Dzieszko, K.; Kisilewicz, T. Internal particulate matter pollution in educational building. In Proceedings of the E3S Web Conference, 12th Nordic Symposium on Building Physics (NSB 2020), Tallinn, Estonia, 7–9 September 2020; Volume 172, p. 06008. [Google Scholar] [CrossRef]
- Abadie, M.; Limam, K.; Allard, F. Indoor particle pollution: Effect of wall textures on particle deposition. Build. Environ. 2001, 36, 821–827. [Google Scholar] [CrossRef]
- Chao, Y.H.C.; Wan, M.P.; Cheng, E.C. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmos. Environ. 2003, 37, 4233–4241. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B.; Zhou, W.; Jiang, X.; Tan, Z. A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Build. Environ. 2012, 47, 339–348. [Google Scholar] [CrossRef]
- ISO 16000-26:2012(E). Indoor Air—Part 26: Sampling Strategy for Carbon Dioxide (CO2); International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Thatcher, T.L.; Lai, C.K.A.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.K.; Suh, H.H.; Paciorek, C.J.; Clougherty, J.E.; Levy, J.I. Predicting infiltration Factors in Urban Residences for a Cohort Study. In Proceedings of the 8th International Conference and Exhibition on Healthy Buildings, Lisboa, Portugal, 4–8 June 2006; p. 194. [Google Scholar]
- Piasecki, M.; Kostyrko, K.B. Combined Model for IAQ Assessment: Part 1—Morphology of the Model and Selection of Substantial Air Quality Impact Sub-Models. Appl. Sci. 2019, 9, 3918. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kostyrko, K. Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method. Energies 2020, 13, 3120. [Google Scholar] [CrossRef]
Sources | Contaminants | |
---|---|---|
Bedroom | Office | |
Furniture | Formaldehyde, VOC, allergens, mites, mould, particulate matter (sink effect) | Formaldehyde, VOC, allergens, mites, mould particulate matter (sink effect) |
Walls, floorsand ceilings | Asbestos, formaldehyde, VOC, bacteria, mould, radon, particulate matter (sink effect) | Asbestos, formaldehyde, VOC, bacteria, mould, radon, particulate matter (sink effect) |
Environmental tobacco smoke | CO, NO, benzene, formaldehyde, PAH, VOC, particulate matter etc. | CO, NO, benzene, formaldehyde, PAH, VOC, particulate matter etc. |
Tapestry | Mites, mould, bacteria, formaldehyde, VOC, particulate matter | Mites, mould, bacteria, formaldehyde, VOC, particulate matter |
Clothes (laundry) | Formaldehyde, VOC, PAH, mites, particulate matter | Formaldehyde, VOC, PAH, mites, particulate matter |
Air conditioning | Mites, mould, allergens, particulate matter | Mites, mould, allergens, particulate matter |
Candles, incenses and deodorants | CO, NO2, SO2, particulate matter, benzene, formaldehyde, PAH, VOC | |
Personal care products (hairspray) | Aliphatic hydrocarbons, formaldehyde, VOC, acetone, benzene, particulate matter | |
Cleaning products | Acetone, terpenes, aldehydes, 1-butanol, hexanal, ultrafine particulate matter | Acetone, terpenes, aldehydes, 1-butanol, hexanal, particulate matter |
Cooking, boiling, frying, ovens, toasters * | Aldehydes, terpenes, xylenes, benzene, toluene, nonane, limonene | |
Building products | Octanal, formaldehyde, acetaldehyde, benzaldehyde, particulate matter | Octanal, formaldehyde, acetaldehyde, benzaldehyde, particulate matter |
Laserprint | O3, formaldehyde, VOC, breathable particulate matter | O3, formaldehyde, VOC, breathable particulate matter |
Photocopiers | O3, formaldehyde, VOC, carbon black, benzene, particulate matter | |
Pets | Allergens, mites, bacteria, fungi | |
Outdoor environment | CO, NO2, SO2, particulate matter, O3, pesti-cides, benzene, PAH, pollen, asbestos, noise, electromagnetic fields, radon | CO, NO2, SO2, particulate matter, O3, pesti-cides, benzene, PAH, pollen, asbestos, noise, electromagnetic fields, radon |
Air Pollution [µg/m3] | NO2 | SO2 | PM10 | PM2.5 | O3 | |
---|---|---|---|---|---|---|
Time of Exposure | ||||||
Short-term | 200 (1 h) | 500 (10min) | 50 (24 h) | 25 (24 h) | 100 (8 h) | |
Long-term | 40 (1 year) | 20 (24h) | 20 (1 year) | 10 (1 year) | - |
Warsaw (Juda–Rezler et al. [40]) | Kraków (Samek et al. [36]) | ||||
---|---|---|---|---|---|
Sources | Percentage % | Concentration µg/m3 | Sources | Percentage % | Concentration µg/m3 |
Residential combustion (fresh andaged aerosols) | 45.6 | 6.7 | Combustion | 22.9 | 27.3 |
Secondary nitrate | 17.1 | 11.4 | |||
Secondary sulphate | 19.3 | 10.5 | |||
Exhaust traffic emissions from gasoline and diesel engines | 21.1 | 3.1 | Traffic | 8.3 | 1.6–4.0 |
Non-exhaust traffic emissions from abrasion of road, brake pads and tyres | 10.2 | 1.5 | |||
Mineral dust/construction works | 12.2 | 1.8 | Biomass burning | 15.6 | 10.0 |
High temperature industrial processes–ferrous and non-ferrous metal processing | 8.2 | 1.2 | Industry and/or soil | 2.5 | 0.5–1.2 |
Steel processing | 2.7 | 0.4 | |||
Unidentified | 14.3 |
Type of Measuring Device | Measured Quantities | Units | Resolution | Measurement Range | Accuracy | |
---|---|---|---|---|---|---|
TSI QUEST EVM-7 | Mass concentration of particles | µg/m3 | 1 | 0–20,000 | ±15% | |
Particle sizing | µm | N/A | 0.1–10 | ±2.5% | ||
CO2 concentration | ppm | 1 | 0–5000 | ±100 ppm | ||
AEROCET 831 | Selective mass concentration of particles | µg/m3 | 0.1 | 0–1000 | ±10% | |
ALMEMO 2690-8AKSU (for microclimate parameters) | FHAD46C sensor | Temperature | °C | 0.1 K | −20–+80 °C | ±2K |
Relative Humidity (RH) | % RH | 1 | 5–98 | ±2% RH at 23 °C | ||
Atm. Pressure | hPa | 0.1 | 300–1100 | ±2.5 hPa at 23 °C | ||
FV A605-TA1 Thermo- anemometer | Air flow | m/s | 0.001 | 0.001–1 | ± 3 % |
Temp (°C) | Atm (hPa) | Wind (km/h) | RH (%) | Precipitation (mm) | |
---|---|---|---|---|---|
Day 1 (27 January 2020) | 3.0 | 1013.75 | 12.5 | 87.1 | 0.0 |
Day 2 (28 January 2020) | 1.0 | 1002.50 | 15.0 | 93.1 | 0.0 |
Day 3 (10 March 2020) | 9.0 | 1008.75 | 16.0 | 75.0 | 0.0 |
Room 1; One Window | Room 3; Three Windows | ||
---|---|---|---|
Initial measurement | Final measurement | Initial measurement | Final measurement |
1600 ppm | 3400 ppm | 1000 ppm | 1400 ppm |
Station | Hour Interval | PM10 (µg/m3) | PM2.5 (µg/m3) | NO2 (µg/m3) | CO (µg/m3) | Benzene (µg/m3) | |
---|---|---|---|---|---|---|---|
Day 1 (27 January 2020) | Wokalna | 9:00–10:00 | 60.8 | 46.2 | 33.0 | - | - |
10:00–11:00 | 61.0 | 45.9 | - | - | - | ||
11:00–12:00 | 58.8 | 44.0 | - | - | - | ||
12:00–13:00 | 55.1 | 40.4 | 30.7 | - | - | ||
13:00–14:00 | 48.6 | 33.8 | 34.8 | - | - | ||
Niepodległości | 9:00–10:00 | 65.6 | 62.5 | 66.9 | 1.5 | 3.0 | |
10:00–11:00 | 65.1 | 60.9 | - | - | - | ||
11:00–12:00 | 68.8 | 61.2 | - | - | - | ||
12:00–13:00 | 82.0 | 62.6 | 47.0 | 1.1 | 2.4 | ||
13:00–14:00 | 87.6 | 54.8 | 58.2 | 1.1 | 2.1 | ||
Day 2 (28 January 2020) | Wokalna | 8:00–9:00 | 58.9 | 43.5 | 35.6 | - | - |
9:00–10:00 | 58.7 | 42.8 | 37.9 | - | - | ||
10:00–11:00 | 51.3 | 36.6 | 34.3 | - | - | ||
11:00–12:00 | 40.5 | 29.2 | 28.3 | - | - | ||
Niepodległości | 8:00–9:00 | 64.3 | 58.1 | 55.7 | 1.3 | 2.9 | |
9:00–10:00 | 64.2 | 59.6 | 51.7 | 1.1 | 2.7 | ||
10:00–11:00 | 60.6 | 54.5 | 59.6 | 1.2 | 2.7 | ||
11:00–12:00 | 52.3 | 44.0 | 60.5 | 1.1 | 2.5 | ||
Day 3 (10 March 2020) | Wokalna | 6:00–7:00 | 41.5 | 37.1 | 36.7 | - | - |
7:00–8:00 | 51,3 | 36.6 | 34.3 | - | - | ||
8:00–9:00 | 31.7 | 28.9 | 39.1 | - | - | ||
9:00–10:00 | 30.4 | 28.1 | 38.7 | - | - | ||
Niepodległości | 6:00–7:00 | 51.8 | 44.0 | 47.2 | 0.3 | 2.0 | |
7:00–8:00 | 60.6 | 54.5 | 59.7 | 1.2 | 2.7 | ||
8:00–9:00 | 43.6 | 41.0 | 67.4 | 0.6 | 1.6 | ||
9:00–10:00 | 40.7 | 39.9 | 84.5 | 0.8 | 1.9 |
cout = 500 ppm | Room 1 (one window) |
c0 = 1600 ppm | ct = 3400 ppm |
c0–cout = 1100 ppm | ct–cout = 2900 ppm |
ln 2.64 = 0.97 | a = 0.28 h−1 |
Cin0 = 3.8 µg/m−3 = 4.5 × 103 p/cm−3 in time t = 0 h | Cin,t = 26 µg/m−3 = 30.7 × 103 p cm−3 in time t = 1 h |
ln(4.5/30.7) = ln(0.15) = (−1.90) (−1.90) = −(a + k) × 1 | |
1.90 = (a + k) | |
a = 0.28 | k = 1.62 h−1 |
Cin0 = 3.8 µg/m−3 = 4.5 × 103 p/cm−3 | Cout = 44 µg/m−3 = 52 × 103 p/cm−3 |
[(a + k)/a] [4.5/52] = (1.90/0.28) (4.5/52) = 0.61 | |
P = 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekierski, D.; Kostyrko, K.B. The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method. Energies 2021, 14, 6230. https://doi.org/10.3390/en14196230
Bekierski D, Kostyrko KB. The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method. Energies. 2021; 14(19):6230. https://doi.org/10.3390/en14196230
Chicago/Turabian StyleBekierski, Dominik, and Krystyna Barbara Kostyrko. 2021. "The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method" Energies 14, no. 19: 6230. https://doi.org/10.3390/en14196230
APA StyleBekierski, D., & Kostyrko, K. B. (2021). The Influence of Outdoor Particulate Matter PM2.5 on Indoor Air Quality: The Implementation of a New Assessment Method. Energies, 14(19), 6230. https://doi.org/10.3390/en14196230