Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria
Abstract
:1. Introduction
- Grey hydrogen: Production of hydrogen via steam methane reforming of methane or gasification of coal. Thereby, CO2 emissions are emitted into the atmosphere. Thus, grey hydrogen is not an option for a decarbonised energy supply.
- Blue hydrogen: It uses the same production process as grey hydrogen but includes carbon capture and storage (CCS). This technology raises additional costs for the transport and storage of CO2. However, CCS can only reduce CO2 emissions up to 95% but not eliminates them.
- Turquoise hydrogen: Pyrolysis of methane is used to produce hydrogen and solid carbon black. Storage of solid carbon black is easier than storage of gaseous CO2 (blue hydrogen). Alternatively, carbon could also be used in industry and agriculture as raw materials.
- Pink hydrogen: Use of water electrolysis to produce hydrogen. The required electrical energy is provided by nuclear power plants.
- Green hydrogen: Renewable energy is used to produce hydrogen. Several processes are available. However, the most important process for the production of green hydrogen is the electrolysis of water, supplied by renewable electricity. The electrolysis of water can be implemented as a zero-emissions route. In this work, green hydrogen always refers to this process.
- How will the Austrian green hydrogen potential for negative residual loads develop between 2030 and 2050?
- Which part of this potential can be economically realised? What are the resulting levelised costs of hydrogen (LCOH2)?
- Which share of the national renewable gas demand can be covered by national green hydrogen production? How much renewable gas imports are necessary?
2. Methodology
2.1. National Potential of Green Hydrogen Production
- The national renewable generation/production of various energy carriers.
- The national energy conversion, transportation and distribution system, which connects the first and the third block.
- Different final energy applications for covering all national energy services from all economic sectors. Such energy services might be space heating, process heat, lighting or mobility.
2.1.1. Renewable Generation/Production
2.1.2. Scenario Energy Efficiency
2.1.3. Scenario Sufficiency
2.2. Techno-Economic Assessment of National Green Hydrogen Production
2.3. Performance Indicators
3. Results
3.1. Energy-Based Results
3.2. Results of the Techno-Economic Analysis
3.3. Import Demand of Renewable Gases
3.4. Performance Indicators
4. Discussion
4.1. Techno-Economic Relations
4.2. Overview of Hydrogen Production Cost Trend in the Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature of abbreviations
A | Annuity of total annual payments |
Annuities of capital-related costs | |
Annuities of demand-related costs | |
Annuities of operation-related costs | |
Annuity of proceeds from by-product sales | |
Annuities of other costs | |
Cvar | Demand related variable costs |
CAGR | Compound annual growth rate |
CAPEX | Capital expenditures, investment cost |
CCS | Carbon capture and storage |
CHP | Combined heat and power plant |
CO2 | Carbon dioxide |
EAA | Environmental Agency Austria |
EU | European Union |
Total of exergy losses and exergy destruction, caused by both energy conversion, transportation and distribution systems as well as final energy applications | |
Total exergy used for supplying the national energy system | |
Total useful exergy demand of all national energy services | |
National renewable generation or production of resource i | |
Exergy import of energy carrier j | |
Exergy export of energy carrier k | |
f | Objective function |
GWel | Gigawatt of electrical power |
h | Hours |
H2 | Hydrogen |
HHV | Higher heating value |
ICE | Internal combustion engines |
kWel | Kilowatt of electrical power |
kWhH2 | Kilowatt hour of hydrogen based on LHV |
kWhHHV | Kilowatt hour of hydrogen based on HHV |
LCOE | Levelised cost of electricity |
LCOH2 | Levelised cost of hydrogen |
LHV | Lower Heating Value |
m3H2O | Cubic meter water |
MWel | Megawatt of electrical power |
MWhel | Megawatt hour of electrical energy |
MWhth | Megawatt hour of thermal energy |
OPEX | Operational expenditures |
p.a. | Per anno |
PH2,y | Annual hydrogen production |
PV | Photovoltaic |
tO2 | Tons of oxygen |
tCO2 | Tons of carbon dioxide |
TWh | Terawatt hour (independent of the type of energy) |
TWhel | Terawatt hour of electrical energy |
TWhH2 | Terawatt hour of hydrogen based on LHV |
TWhHHV | Terawatt hour of hydrogen based on HHV |
TWhSM | Terawatt hour of sustainable methane |
TWhWG | Terawatt hour of wood gas |
USD | United States Dollar |
WAMplus | With Additional Measures Plus |
€ | Euro |
€ct | Eurocent |
/a | Per annum |
Appendix A
Appendix A.1. Additional Information of Scenario Energy Efficiency
Type | Exergy Demand 2030 in TWh/a | Exergy Demand 2040 in TWh/a | Exergy Demand 2050 in TWh/a | Used Profile |
---|---|---|---|---|
Transport Demand Cars and Trucks | 29.9 | 29.6 | 29.3 | Cars [75,76] 2; Trucks [77,78,79] 2 |
Transport Demand Others | 5.1 | 5.1 | 5.0 | Aviation: Austrian Transport Report 2017 [80]; navigation: assumed as constant between 5 and 22 o’clock on working days and constant between 5 and 15 o’clock on Saturdays; railways: measured values of Austrian Railways [81]; pipelines: assumed as constant |
Heat Demand (up to 100 °C) | 19.0 | 18.9 | 18.7 | FfE SigLinDe [82], combined industrial load profile [83] 1, synthetic load profiles [84] 1 |
Heat Demand (100 to 400 °C) | 11.7 | 11.6 | 11.5 | Combined industrial load profile [83] 1, synthetic load profiles [84] 1 |
Heat Demand (above 400 °C) | 15.3 | 15.2 | 15.1 | Combined industrial load profile [83] |
Industrial Processes (Iron- and Steelmaking, Electrochemical Demand, Non-Energy Use) | 29.1 | 28.8 | 28.5 | Iron- and steelmaking assumed as constant; rest: combined industrial load profile [83] 1 |
Stationary Engine Demand | 16.3 | 16.1 | 15.9 | Combined industrial load profile [83] 1, synthetic load profiles [84] 1 |
Lighting and ICT Demand | 4.3 | 4.3 | 4.2 | Combined industrial load profile [83], synthetic load profiles [84] |
Type | Exergy Efficiency of Electricity | Exergy Efficiency of Usable Excess Heat | Exergy Destruction | Exergy Losses |
---|---|---|---|---|
Woody biomass fired CHP (Clausius–Rankine-cycle) | 0.270 | 0.130 | 0.566 | 0.034 |
Wood gas fired CHP (ICE) | 0.300 | 0.124 | 0.543 | 0.034 |
Fuel cell CHP (PEM) | 0.639–0.659 [85] | 0.064–0.065 | 0.310 | 0.045 |
Sustainable methane fired CHP (combined cycle) | 0.590–0.630 [85] | 0.049–0.058 | 0.310 | 0.034 |
Type | Exergy Efficiency of Conversion | Exergy Efficiency of Usable Excess Heat | Exergy Destruction | Exergy Losses |
---|---|---|---|---|
Water Electrolysis (PEM) | 0.651–0.702 [85] | 0.033–0.045 | 0.233 | 0.034 |
Methanation of Hydrogen to Sustainable Methane | 0.800 | 0.011 | 0.155 | 0.034 |
Gasification of Woody Biomass to Wood Gas plus Methanation to Sustainable Methane | 0.560 | 0.065 | 0.341 | 0.034 |
Gasification of Woody Biomass to Wood Gas | 0.700 | 0.034 | 0.233 | 0.034 |
Production of Kerosene or Diesel from Hydrogen via Fischer–Tropsch-Synthesis | 0.769 | - | 0.185 | 0.046 |
Production of Kerosene or Diesel from Sustainable Methane via Reforming and Fischer–Tropsch-Synthesis | 0.650 | - | 0.281 | 0.069 |
Type | Exergy Efficiency of Transport | Exergy Destruction | Exergy Losses |
---|---|---|---|
Electricity Grid | 0.953 | 0.038 | 0.009 |
District Heating Grid (92 to 90 °C; return at 30 °C) | 0.949 | 0.050 | 0.000 |
District Heating Grid (85 to 80 °C; return at 31 °C) | 0.859 | 0.140 | 0.001 |
District Heating Grid (34 to 32.5 °C; return at 15 °C) | 0.868 | 0.132 | 0.001 |
District Heating Grid (31 to 27.5 °C; return at 15 °C) | 0.659 | 0.340 | 0.002 |
Type | Overall Exergy Efficiency | Overall Exergy Destruction | Overall Exergy Losses |
---|---|---|---|
District Heating Application at 25 °C | 0.254 | 0.746 | 0.000 |
District Heating Application at 65 °C | 0.821 | 0.179 | 0.000 |
District Heating Application at 25 °C | 0.864 | 0.136 | 0.000 |
Heat Pump (31 to 90 °C) | 0.593 | 0.407 | 0.000 |
Heat Pump (80 to 100 °C) | 0.849 | 0.151 | 0.000 |
Heat Pump (80 to 150 °C) | 0.714 | 0.286 | 0.000 |
Heat Pump (between ambient and from 25 up to 150 °C) | 0.500 | 0.500 | 0.000 |
Heat Supply at 25 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas, Woody Biomass) or Electric Direct Heating | 0.0428 | 0.9076 | 0.0496 |
Heat Supply at 65 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas, Woody Biomass) or Electric Direct Heating | 0.1383 | 0.8120 | 0.0496 |
Heat Supply at 100 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas, Woody Biomass) or Electric Direct Heating | 0.2051 | 0.7453 | 0.0496 |
Heat Supply at 150 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas, Woody Biomass) or Electric Direct Heating | 0.2813 | 0.6690 | 0.0496 |
Heat Supply at 250 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas, Woody Biomass) or Electric Direct Heating | 0.3901 | 0.5497 | 0.0603 |
Heat Supply at 400 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas) or Electric Direct Heating | 0.4926 | 0.4472 | 0.0603 |
Heat Supply at 750 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas) or Electric Direct Heating | 0.6149 | 0.3249 | 0.0603 |
Heat Supply at 1500 °C by Incineration of Chemical Energy (Hydrogen, Sustainable Methane, Wood Gas) or Electric Direct Heating | 0.7143 | 0.2098 | 0.0759 |
Type | Overall Exergy Efficiency for Movement | Overall Exergy Destruction | Overall Exergy Losses |
---|---|---|---|
BEV—Cars and Light Duty Trucks | 0.741 | 0.229 | 0.030 |
BEV—Heavy Duty Trucks | 0.734 | 0.236 | 0.030 |
Electric Locomotives | 0.871 | 0.111 | 0.018 |
FC—Locomotives | 0.491 | 0.406 | 0.103 |
FC—Cars and Light Duty Trucks | 0.434 | 0.451 | 0.115 |
FC—Heavy Duty Truck (long-distances) | 0.484 | 0.413 | 0.103 |
FC—Ship | 0.276 | 0.621 | 0.103 |
Airplanes | 0.276 | 0.225 | 0.499 |
ICE—Cars and Light Duty Trucks | 0.268 | 0.459 | 0.274 |
ICE—Heavy Duty Truck | 0.291 | 0.446 | 0.263 |
ICE—Ship | 0.168 | 0.569 | 0.263 |
ICE—Locomotive | 0.299 | 0.438 | 0.263 |
Type | Overall Exergy Efficiency | Overall Exergy Destruction | Overall Exergy Losses |
---|---|---|---|
LED Light | 0.131 [86] | 0.76 | 0.11 |
Electric Compressor for Gas Pipelines | 0.840 | 0.16 | 0.00 |
Variable-Frequency Drive (Electric Engine) | 0.880 | 0.08 | 0.04 |
Type | Exergy Efficiency of Provision of Shaft Work | Exergy Efficiency of Usable Excess Heat | Overall Exergy Destruction | Overall Exergy Losses |
---|---|---|---|---|
Methane fired Stationary Engine (ICE) with direct Excess Heat Usage at 25 °C | 0.500 | 0.018 | 0.422 | 0.060 |
Methane fired Stationary Engine (ICE) with direct Excess Heat Usage at 65 °C | 0.500 | 0.057 | 0.383 | 0.060 |
Methane fired Stationary Engine (ICE) with direct Excess Heat Usage at 100 °C | 0.500 | 0.084 | 0.355 | 0.060 |
Methane fired Stationary Engine (ICE) with direct Excess Heat Usage at 150 °C | 0.500 | 0.116 | 0.324 | 0.060 |
Methane fired Stationary Engine (ICE) with direct Excess Heat Usage at 250 °C | 0.500 | 0.161 | 0.279 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 25 °C | 0.300 | 0.028 | 0.612 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 65 °C | 0.300 | 0.089 | 0.550 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 80 °C | 0.300 | 0.109 | 0.531 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 100 °C | 0.300 | 0.133 | 0.507 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 150 °C | 0.300 | 0.182 | 0.458 | 0.060 |
Wood Gas fired Stationary Engine (ICE) with direct Excess Heat Usage at 250 °C | 0.300 | 0.252 | 0.387 | 0.060 |
Type | Capacity in GWhel | Max. Charging Power in GWel | Max. Discharging Power in GWel | Cycle Exergy Efficiency | Exergy Losses and Destruction over Time |
---|---|---|---|---|---|
Thermal Storage (low temperature) | unlimited 1 | unlimited 1 | unlimited 1 | 0.951 | 3%/day |
Thermal Storage (low medium) | unlimited 1 | unlimited 1 | unlimited 1 | 0.938 | 5%/day |
Waste Storage, Woody Biomass Storage | unlimited 1 | unlimited 1 | unlimited 1 | 1 | 0 2 |
Wood Gas Storage, Sustainable Methane Storage, Kerosene Storage, Gasoline/Diesel Stroage | unlimited 1 | unlimited 1 | unlimited 1 | 0.98 | 0 2 |
Hydrogen Storage | unlimited 1 | unlimited 1 | unlimited 1 | 0.95 | 0 2 |
Battery Storages | 2.1–11.8 3,4 | 1.1–5.9 4,5 | 1.1–5.9 4,5 | 0.9 | 0 6 |
Pumped Storages | 160 [37] | 1.2–3.6 4,7 | 1.4–4.3 4,7 | 0.8 | 0 6 |
Appendix A.2. Additional Information of Scenario Sufficiency
Type | Energy Consumption 2030 in TWh/a | Energy Consumption 2040 in TWh/a | Energy Consumption 2050 in TWh/a | Used Profile |
---|---|---|---|---|
Transport Cars and Trucks | 58.7 | 48.1 | 36.7 | Cars [75,76] 2; Trucks [77,78,79] 2 |
Transport Others | 14.8 | 15.6 | 15.8 | Aviation: Austrian Transport Report 2017 [80]; navigation: assumed as constant between 5 and 22 o’clock on working days and constant between 5 and 15 o’clock on Saturdays; railways: measured values of Austrian Railways [81]; pipelines: assumed as constant |
Residential Sector | 56.2 | 46.4 | 39.3 | FfE SigLinDe [82], synthetic load profiles [84] 1 |
Private and Public Services | 28.3 | 22.3 | 18.3 | FfE SigLinDe [82], synthetic load profiles [84] 1 |
Agriculture | 3.2 | 3.2 | 3.2 | FfE SigLinDe [82], synthetic load profiles [84] 1 |
Industry | 102.0 | 94.5 | 86.4 | FfE SigLinDe [82], combined industrial load profile [83] 1 |
Type | Energy Consumption 2030 in TWh/a | Energy Consumption 2040 in TWh/a | Energy Consumption 2050 in TWh/a | Used Profile |
---|---|---|---|---|
Transformation Losses | 17.1 | 18.5 | 21.5 | According to consumption |
Transport Losses | 6.7 | 6.9 | 6.9 | Assumed as proportional according to generation and consumption |
Consumption of Sector Energy | 17.2 | 16.1 | 13.3 | Assumed as constant |
Non Energy Use | 21.5 | 20.0 | 18.6 | Combined industrial load profile [83] 1 |
Type | Capacity in GWhel | Max. Charging Power in GWel | Max. Discharging Power in GWel | Cycle Efficiency | Losses over Time |
---|---|---|---|---|---|
Battery Storage | 2.1–11.8 1,2 | 1.1–5.9 2,3 | 1.1–5.9 2,3 | 0.9 | 0 4 |
Pumped Storage | 160 [37] | 1.2–3.6 2,5 | 1.4–4.3 2,5 | 0.8 | 0 4 |
Conversion Unit. | Energy Efficiency |
---|---|
Fuels from hydrogen | η = 0.77 [89,90,91,92] |
Gas fired power plant | η = 0.60 [93,94] |
Biomass fired CHP | ηel = 0.28, ηth = 0.57 [37] |
Electrolysis | η = 0.65–0.70 1 [85] |
Type | Internal Combustion Engine Drive in kWh/100 km | Battery Electric Drive in kWh/100 km | Fuel Cell Drive in kWh/100 km |
---|---|---|---|
Cars | 68.8 | 21.7 | 36.5 |
Light-Duty Trucks | 85.5 | 24.1 | 40.6 |
Medium-Duty Trucks | 192.5 | 85.3 | 125.3 |
Heavy-Duty Trucks | 337.9 | 169.4 | 248.9 |
References
- European Commission. The European Green Deal COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. An EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future COM(2020) 741 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration COM(2020) 299 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- International Renewable Energy Agency. Accelerating the Energy Transition through Innovation; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- International Renewable Energy Agency. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Hanley, E.S.; Deane, J.P.; Gallachóir, B.Ó.P. The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Rose, P.K.; Neumann, F. Hydrogen refueling station networks for heavy-duty vehicles in future power systems. Transp. Res. Part D Transp. Environ. 2020, 83, 102358. [Google Scholar] [CrossRef]
- Emonts, B.; Reuß, M.; Stenzel, P.; Welder, L.; Knicker, F.; Grube, T.; Görner, K.; Robinius, M.; Stolten, D. Flexible sector coupling with hydrogen: A climate-friendly fuel supply for road transport. Int. J. Hydrog. Energy 2019, 44, 12918–12930. [Google Scholar] [CrossRef]
- Otto, A.; Robinius, M.; Grube, T.; Schiebahn, S.; Praktiknjo, A.; Stolten, D. Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry. Energies 2017, 10, 451. [Google Scholar] [CrossRef] [Green Version]
- Brey, J.J. Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030. Int. J. Hydrog. Energy 2021, 46, 17447–17457. [Google Scholar] [CrossRef]
- Kharel, S.; Shabani, B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies 2018, 11, 2825. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities. 2019. Available online: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf (accessed on 27 May 2021).
- Ravikumar Bhagwat, S.; Olczak, M. Green Hydrogen: Bridging the Energy Transition in Africa and Europe; EUI: Florence, Italy, 2020; ISBN 978-92-9084-931-5. [Google Scholar]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrog. Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Bhavnagri, K.; Henbest, S.; Izadi-Najafabadi, A.; Wang, X.; Tengler, M.; Callens, J.; Jain, A.; Brandily, T.; Tan, W. Hydrogen Economic Outlook: Key Messages; Bloomberg Finance L.P.: New York, NY, USA, 2020. [Google Scholar]
- Hydrogen Council. Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition; Hydrogen Council: Brussels, Belgium, 2017. [Google Scholar]
- International Renewable Energy Agency. Green Hydrogen: A Guide to Policy Making; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Gas Connect Austria GmbH. The Colours of Hydrogen. Available online: https://www.gasconnect.at/en/news/news-press/news/detail/News/die-farben-des-wasserstoffs (accessed on 11 August 2021).
- Zimmerle, D.J.; Williams, L.L.; Vaughn, T.L.; Quinn, C.; Subramanian, R.; Duggan, G.P.; Willson, B.; Opsomer, J.D.; Marchese, A.J.; Martinez, D.M.; et al. Methane Emissions from the Natural Gas Transmission and Storage System in the United States. Environ. Sci. Technol. 2015, 49, 9374–9383. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Lux, B.; Pfluger, B. A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050. Appl. Energy 2020, 269, 115011. [Google Scholar] [CrossRef]
- European Commission. In-Depth Analysis in Support of the Comission Communication Com(2018) 773; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Wietschel, M.; Bekk, A.; Breitschopf, B.; Boie, I.; Edler, J.; Eichhammer, W.; Klobasa, M.; Marscheider-Weidemann, F.; Plötz, P.; Sensfuß, F.; et al. Opportunities and Challenges When Importing Green Hydrogen and Synthesis Products; Fraunhofer Inistitut for System and Innovation Research ISI: Karlsruhe, Germany, 2020. [Google Scholar]
- Sejkora, C.; Kühberger, L.; Radner, F.; Trattner, A.; Kienberger, T. Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential. Energies 2020, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Agora Verkehrswende, Agora Energiewende and Frontier Economics. The Future Cost of Electricity-Based Synthetic Fuels; Agora Verkehrswende, Agora Energiewende and Frontier Economics: Berlin, Germany, 2018. [Google Scholar]
- Agora Energiewende. PtG/PtL Calculator. Available online: https://www.agora-energiewende.de/en/publications/ptg-ptl-calculator/ (accessed on 27 May 2021).
- Guandalini, G.; Robinius, M.; Grube, T.; Campanari, S.; Stolten, D. Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. Int. J. Hydrog. Energy 2017, 42, 13389–13406. [Google Scholar] [CrossRef]
- Bundeskanzleramt Österreich. Aus Verantwortung für Österreich. Regierungsprogramm 2020–2024; Bundeskanzleramt Österreich: Wien, Austria, 2020. [Google Scholar]
- Lund, H.; Thellufsen, J.Z.; Østergaard, P.A.; Sorknæs, P.; Skov, I.R.; Mathiesen, B.V. EnergyPLAN–Advanced analysis of smart energy systems. Smart Energy 2021, 1, 100007. [Google Scholar] [CrossRef]
- Hansen, K.; Mathiesen, B.V.; Skov, I.R. Full energy system transition towards 100% renewable energy in Germany in 2050. Renew. Sustain. Energy Rev. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Hansen, K.; Ridjan, I.; Djørup, S.R.; Nielsen, S.; Sorknæs, P.; Thellufsen, J.Z.; Grundahl, L.; Lund, R.S.; et al. IDA’s Energy Vision 2050: A Smart Energy System Strategy for 100% Renewable Denmark; Department of Development and Planning, Aalborg University: Aalborg, Denmark, 2015. [Google Scholar]
- Vaillancourt, K.; Bahn, O.; Frenette, E.; Sigvaldason, O. Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework. Appl. Energy 2017, 195, 774–785. [Google Scholar] [CrossRef]
- Brandes, J.; Haun, M.; Senkpiel, C.; Kost, C.; Bett, A.; Henning, H.-M. Wege zu Einem Klimaneutralen Energiesystem-Die Deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen-Update unter Einer Zielvorgabe von 65% CO2-Reduktion in 2030 und 100% in 2050; Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2020. [Google Scholar]
- Colbertaldo, P.; Guandalini, G.; Campanari, S. Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy. Energy 2018, 154, 592–601. [Google Scholar] [CrossRef]
- Kriechbaum, L.; Scheiber, G.; Kienberger, T. Grid-based multi-energy systems—modelling, assessment, open source modelling frameworks and challenges. Energ. Sustain. Soc. 2018, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Moser, S.; Goers, S.; de Bruyn, K.; Steinmüller, H.; Hofmann, R.; Panuschka, S.; Kienberger, T.; Sejkora, C.; Haider, M.; Werner, A.; et al. Renewables4Industry: Abstimmung des Energiebedarfs von Industriellen Anlagen und der Energieversorgung aus Fluktuierenden Erneuerbaren. Diskussionspapier (Endberichtsteil 2 von 3); Energieinstitut an der JKU Linz: Linz, Austria, 2018. [Google Scholar]
- Statistics Austria. Energy Balances. Available online: http://pic.statistik.at/web_en/statistics/EnergyEnvironmentInnovationMobility/energy_environment/energy/energy_balances/index.html (accessed on 22 January 2021).
- Rosenfeld, D.C.; Lindorfer, J.; Ellersdorfer, M. Valorization of organic waste fractions: A theoretical study on biomethane production potential and the recovery of N and P in Austria. Energ. Sustain. Soc. 2020, 10, 39. [Google Scholar] [CrossRef]
- Krutzler, T.; Kellner, M.; Heller, C.; Gallauner, T.; Stranner, G.; Wiesenberger, H.; Storch, A.; Gössl, M.; Ibesich, N.; Winter, R.; et al. Energiewirtschaftliche Szenarien im Hinblick auf die Klimaziele 2030 und 2050: Szenario WAM Plus: Synthesebericht 2015; Perspektiven für Umwelt und Gesellschaft: Wien, Austria, 2015. [Google Scholar]
- Austrian Power Grid, A.G. Generation Per Type. Available online: https://www.apg.at/en/markt/Markttransparenz/generation/Erzeugung%20pro%20Typ (accessed on 14 February 2021).
- Wall, G. Exergy: A Useful Concept within Resource Accounting; Institute of Theoretical Physics, Chalmers University of Technology and University of Göteborg: Göteborg, Sweden, 1977. [Google Scholar]
- Dincer, I.; Rosen, M. Exergy: Energy, Environment and Sustainable Development, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2013; ISBN 978-0-08-097089-9. [Google Scholar]
- Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (oemof)-A new approach to facilitate open science in energy system modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Oemof Developer Group. Oemof-Open Energy Modelling Framework (v0.3.2); Developer Group: Berlin, Germany, 2019. [Google Scholar]
- Oemof-Developer-Group. Welcome to Oemof’s Documentation! Available online: https://oemof-solph.readthedocs.io/en/latest/ (accessed on 14 September 2021).
- Sejkora, C.; Kühberger, L.; Radner, F.; Trattner, A.; Kienberger, T. Exergy as Criteria for Efficient Energy Systems–Maximising Energy Efficiency from Resource to Energy Service, an Austrian Case Study. Energy 2021, 13, 122–173. [Google Scholar] [CrossRef]
- Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie; Energie in Österreich: Zahlen, Daten; Fakten: Wien, Germany, 2020.
- Umweltbundesamt GmbH. Energieszenarien. Available online: https://www.umweltbundesamt.at/energie/energieszenarien (accessed on 11 August 2021).
- European Parliament and of the Council. Regulation (EU) No 525/2013 on a Mechanism for Monitoring and Reporting Greenhouse Gas Emissions and for Reporting Other Information at National and Union Level Relevant to Climate Change and Repealing Decision No 280/2004/EC; Official Journal of the European Union: Luxembourg, 2013. [Google Scholar]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Baumann, M.; Fazeni-Fraisl, K.; Kienberger, T.; Nagovnak, P.; Pauritsch, G.; Rosenfeld, D.; Sejkora, C.; Tichler, R. Erneuerbares Gas in Österreich 2040: Quantitative Abschätzung von Nachfrage und Angebot, Wien, Austria. 2021. Available online: https://www.bmk.gv.at/themen/energie/publikationen/erneuerbares-gas-2040.html (accessed on 10 June 2021).
- Verein Deutscher Ingenieure, E.V. Wirtschaftlichkeit Gebäudetechnischer Anlagen-Grundlagen und Kostenberechnung; VDI-Gesellschaft Bauen und Gebäudetechnik: Düsseldorf, Germany, 2012. [Google Scholar]
- Böhm, H.; Zauner, A.; Rosenfeld, D.C.; Tichler, R. Projecting cost development for future large-scale power-to-gas implementations by scaling effects. Appl. Energy 2020, 264, 114780. [Google Scholar] [CrossRef] [Green Version]
- Parra, D.; Zhang, X.; Bauer, C.; Patel, M.K. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Appl. Energy 2017, 193, 440–454. [Google Scholar] [CrossRef]
- Perez-Linkenheil, C. EU Energy Outlook 2050–Wie Entwickelt Sich Europa in den Nächsten 30 Jahren? Available online: https://blog.energybrainpool.com/eu-energy-outlook-2050-wie-entwickelt-sich-europa-in-den-naechsten-30-jahren/ (accessed on 1 July 2021).
- REN21. Renewables 2021: Global Status Report, Paris, France. 2021. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed on 7 July 2021).
- Böhm, H.; Goers, S.; Zauner, A. Estimating future costs of power-to-gas–A component-based approach for technological learning. Int. J. Hydrog. Energy 2019, 44, 30789–30805. [Google Scholar] [CrossRef]
- Bloomberg. Electrolyzer Market Size to Reach USD 0.9 Billion by 2027 at CAGR 24.6%-Valuates Reports. Available online: https://www.bloomberg.com/press-releases/2021-04-12/electrolyzer-market-size-to-reach-usd-0-9-billion-by-2027-at-cagr-24-6-valuates-reports (accessed on 19 August 2021).
- Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective; Hydrogen Council: Brussels, Belgium, 2020. [Google Scholar]
- Guerra, O.J.; Eichman, J.; Kurtz, J.; Hodge, B.-M. Cost Competitiveness of Electrolytic Hydrogen. Joule 2019, 3, 2425–2443. [Google Scholar] [CrossRef]
- Mayyas, A.; Mann, M. Manufacturing competitiveness analysis for hydrogen refueling stations. Int. J. Hydrog. Energy 2019, 44, 9121–9142. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5°C Climate Goal; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Energy Transitions Commission. Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy; Energy Transitions Commission: London, UK, 2021. [Google Scholar]
- Hydrogen Council. Hydrogen Insights: A Perspective on Hydrogen Investment, Market Development and Cost Competitiveness. 2021. Available online: https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf (accessed on 15 June 2021).
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 18 June 2021).
- International Renewable Energy Agency. Hydrogen: A Renewable Energy Perspective, Abu Dhabi. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf (accessed on 15 June 2021).
- The Hydrogen Import Coalition. Shipping Sun and Wind to Belgium is key in Climate Neutral Economy. 2021. Available online: https://www.waterstofnet.eu/_asset/_public/H2Importcoalitie/Waterstofimportcoalitie.pdf (accessed on 21 June 2021).
- Hydrogen Roadmap Europe: A Sustainable Pathway for the European Energy Transition; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9246-331-1.
- Aurora Energy Research. Hydrogen in the Northwest European Energy System. 2020. Available online: https://energeia-binary-external-prod.imgix.net/_MvlFenN-aOC2LmCgEWiyWr1PYk.pdf?dl=Aurora%3A+Hydrogen+in+NW-Europe.pdf (accessed on 12 September 2021).
- International Energy Agency. IEA G20 Hydrogen Report: Assumptions. 2020. Available online: https://iea.blob.core.windows.net/assets/29b027e5-fefc-47df-aed0-456b1bb38844/IEA-The-Future-of-Hydrogen-Assumptions-Annex_CORR.pdf (accessed on 18 June 2021).
- BloombergNEF. Hydrogen Economy Outlook: Key Messages. 2020. Available online: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf (accessed on 15 June 2021).
- Erbach, G.; Jensen, L. EU Hydrogen Policy: Hydrogen as an Energy Carrier for a Climate-Neutral Economy; European Parliamentary Research Service, European Union: Maastricht, The Netherlands, 2021. [Google Scholar]
- Bukold, S.; Huneke, F.; Claußner, M. Grün oder Blau? Wege in die Wasserstoff-Wirtschaft 2020 Bis 2040. 2020. Available online: https://www.greenpeace-energy.de/fileadmin/docs/pressematerial/2020_Studie_Gruen_oder_Blau_final.pdf (accessed on 21 June 2021).
- Kienberger, T.; Hammer, A.; Vopava, J.; Thormann, B.; Kriechbaum, L.; Sejkora, C.; Hermann, R.; Watschka, K.; Bergmann, U.; Frewein, M.; et al. Move2Grid-Final Report: Umsetzung Regionaler Elektromobilitätsversorgung Durch Hybride Kopplung; Bundesministerium für Verkehr, Innovation und Technologie: Vienna, Austria, 2019. [Google Scholar]
- Vopava, J.; Bergmann, U.; Kienberger, T. Synergies between e-Mobility and Photovoltaic Potentials—A Case Study on an Urban Medium Voltage Grid. Energies 2020, 13, 3795. [Google Scholar] [CrossRef]
- Thormann, B.; Puchbauer, P.; Kienberger, T. Analyzing the suitability of flywheel energy storage systems for supplying high-power charging e-mobility use cases. J. Energy Storage 2021, 39, 102615. [Google Scholar] [CrossRef]
- Buchroithner, A. FlyGrid. Available online: https://www.tugraz.at/en/projekte/flygrid/overview/ (accessed on 22 June 2021).
- FFG. FlyGrid: Flywheel Energy Storage for EV Fast Charging and Grid Integration. Available online: https://projekte.ffg.at/projekt/2941003 (accessed on 22 June 2021).
- Karner, T.; Rudlof, M.; Schuster, S.; Weninger, B. Verkehrsstatistik; Statistik Austria: Vienna, Austria, 2018. [Google Scholar]
- Obkircher, C. Bahnsysteme: TBF/LV ÖBB Netz. 2018. Available online: http://fwz.ph-noe.ac.at/fileadmin/fwz/etech/Energiesysteme%20VII/TOP_011_Obkicher_OEBB_OEBB-Netz.pdf (accessed on 14 February 2021).
- BDEW Bundesverband der Energie-und Wasserwirtschaft; Verband Kommunaler Unternehmen; Groupement Européen des Entreprises et Organismes de Distribution d’Énergie; BDEW/VKU/GEODE Leitfaden: Abwicklung von Standardlastprofilen Gas: Berlin, Germany, 2018.
- Gobmaier, T.; Mauch, W.; Beer, M.; von Roon, S.; Schmid, T.; Mezger, T.; Haabermann, J.; Hohlenburger, S. Simulationsgestützte Progrnose des Elektrischen Lastverhaltens; München, Germany. 2012. Available online: https://www.ffe.de/download/article/256/KW21_BY3E_Lastgangprognose_Endbericht.pdf (accessed on 14 February 2021).
- APCS Power Clearing and Settlement AG. Synthetic Load Profiles: Consumption Forecasts Based on Load Profiles. Available online: https://www.apcs.at/en/clearing/physical-clearing/synthetic-load-profiles (accessed on 14 February 2021).
- Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.-M. Wege zu Einem Klimaneutralen Energiesystem: Anhang zur Studie; Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2020. [Google Scholar]
- Heun, M.K.; Marshall, Z.; Aramendia, E.; Brockway, P.E. The Energy and Exergy of Light with Application to Societal Exergy Analysis. Energies 2020, 13, 5489. [Google Scholar] [CrossRef]
- Boeckl, B.; Kienberger, T. Sizing of PV storage systems for different household types. J. Energy Storage 2019, 24, 100763. [Google Scholar] [CrossRef]
- Lazard. Lazard’s Levelized Cost of Storage Analysis-Version 4.0. Available online: https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf (accessed on 22 June 2021).
- Zech, K.; Naumann, K.; Müller-Langer, F.; Schmidt, P.; Weindorf, W.; Mátra, Z.; Grimme, W.; Hepting, M.; Heidt, C. Drop-In-Kraftstoffe für die Luftfahrt: Studie im Rahmen des Auftrags Wissenschaftliche Begleitung, Unterstützung und Beratung des BMVI in den Bereichen Verkehr und Mobilität mit besonderem Fokus auf Kraftstoffe und Antriebstechnologien sowie Energie und Klima für das Bundesministerium für Verkehr und digitale Infrastruktur (BMVI); Deutsches Biomasseforschungszentrum gGmbH (DBFZ); Ludwig-Bölkow-Systemtechnik GmbH (LBST); Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR); Institut für Energie- und Umweltforschung Heidelberg: Heidelberg, Germany, 2014. [Google Scholar]
- Kramer, U.; Ortloff, F.; Stollwerk, S.; Thee, R. Defossilierung des Transportsektors: Optionen und Voraussetzungen in Deutschland; Forschungsvereinigung Verbrennungskraftmaschinen e.V.: Frankfurt am Main, Germany, 2018. [Google Scholar]
- Wagemann, K.; Ausfelder, F. E-Fuels-Mehr Als Eine Option: White Paper; DECHEMA e.V.: Frankfurt am Main, Germany, 2017. [Google Scholar]
- Agora Verkehrswende, Agora Energiewende und Frontier Economics. Die Zukünftigen Kosten Strombasierter Synthetischer Brennstoffe; Agora Verkehrswende, Agora Energiewende und Frontier Economics: Berlin, Germany; Köln, Germany, 2018. [Google Scholar]
- Siemens AG/Power and Gas. One Power Plant-Three World Records; Siemens AG Power and Gas Division: Erlangen, Germany, 2014.
- Posch, C. Energiewirtschaftliche Parameter Konventioneller und Innovativer Kraftwerkstechnologien; Technische Universität Graz: Graz, Austria, 2010. [Google Scholar]
Type | Value 2030 in TWh/a | Value 2040 in TWh/a | Value 2050 in TWh/a | Extrapolated Generation/Production Profile |
---|---|---|---|---|
Photovoltaic Systems | 12.4 | 21.6 | 30.7 | Generation from photovoltaic in Austria 2018 [41] |
Wind Power Stations | 16.0 | 24.3 | 32.7 | Generation from wind in Austria 2018 [41] |
Hydropower Plants | 42.6 | 46.8 | 50.9 | Generation from hydro in Austria 2018 [41] |
Solar Thermal System | 5.7 | 5.7 | 7.3 | Generation from photovoltaic in Austria 2018 [41] |
Woody Biomass Production | 41.9 | 41.9 | 41.9 | Assumed as constant based on current situation |
Sustainable Methane Production | 7.7 | 12.9 | 16.1 | Assumed as constant based on current situation |
Ethanol Fuel/Biodiesel Production | 2.3 | 2.3 | 2.3 | Assumed as constant based on current situation |
Waste | 9.0 | 8.2 | 7.0 | Assumed as constant based on current situation |
Type | Unit | 2020 | 2030 | 2040 | 2050 | |
---|---|---|---|---|---|---|
General | ||||||
Interest | % | 4.0 | 4.0 | 4.0 | 4.0 | |
Life time | Years | 20 | 20 | 20 | 20 | |
Electricity cost 1 | €/MWhel | 50 | 40 | 35 | 30 | |
Electrolysis | ||||||
CAPEX | €/kWel | 944 2–1527 3 | 510 2–983 3 | 572 2–250 3 | 477 2–200 3 | |
El. efficiency (LHV) | % | 60 | 64 | 67 | 68 | |
OPEX | % of CAPEX | 4 | 3 | 2 | 2 | |
Power requirement for auxiliary units | % of nominal power | 1 | 1 | 1 | 1 | |
Cost water | €/m3H₂O | 1.15 | 1.15 | 1.15 | 1.15 | |
Lifetime stack | Hours | 40,000 | 60,000 | 100,000 | 140,000 | |
Lifetime BoP | Years | 30 | 30 | 30 | 30 | |
Usable heat | % of nominal power | 16 | 16 | 16 | 16 | |
Additional costs | ||||||
Insurance | % of CAPEX | 0.5 | 0.5 | 0.5 | 0.5 | |
Management | % of CAPEX | 2 | 2 | 2 | 2 | |
Proceeds | ||||||
Heat | €/MWhth | 55 | 55 | 55 | 55 | |
Oxygen | €/tO2 | 50 | 50 | 50 | 50 |
Performance Indicator | Unit | Description |
---|---|---|
Primary energy consumption | TWh/a | Sum of national renewable generation/production and all energy imports |
Final energy consumption | TWh/a | Sum of all energy flows for finale energy applications |
Renewable energy generation and production | TWh/a | Sum of all renewable energy generation and production (including all renewable sources of Table 1) |
Total negative residual loads | TWhel/a | Total amount of fluctuating renewable electricity generation not required for any other electrical application or any storage facility |
Lower limit for full-load hours of electrolyser plants | h/a | Minimum full-load hours required in order not to exceed the maximum LCOH2 economic limit |
Installed electrolysis capacity | GWel | Total size of the economic electrolysis plants |
Negative residual loads used for electrolysis | TWhel/a | Amount of negative residual loads used for green hydrogen production |
Share of negative residual loads used for electrolysis | % | Share of all technical negative residual loads used for national economic green hydrogen production, based on the techno-economic analysis |
Technical green hydrogen production | TWhH2/a | Technical green hydrogen output from electrolysis, produced exclusively by utilization of negative residual loads |
Economic green hydrogen production | TWhH2/a | Economic green hydrogen output from electrolysis, produced exclusively by utilization of negative residual loads |
Total consumption of renewable gases | TWh/a | Sum of national produced and imported hydrogen as well as sustainable methane |
Required import of renewable gases (based on technical potentials) | TWh/a | Sum of imported hydrogen and sustainable methane (considers the national technical potentials) |
Required import of renewable gases (based on economic potentials) | TWh/a | Sum of imported hydrogen and sustainable methane (considers the national economic potentials) |
Share of technical national renewable gas production | % | Ratio of the national green hydrogen and sustainable methane production to the total consumption of renewable gases |
Averaged levelised cost of national produced green hydrogen | €ct/kWhHHV | Levelised cost for hydrogen production averaged over the entire annual hydrogen production volume |
Minimal levelised cost of national produced green hydrogen | €ct/kWhHHV | Minimal levelised cost for hydrogen production per year (large plant with high number of full-load hours) |
Maximal levelised cost of national produced green hydrogen | €ct/kWhHHV | Maximal levelised cost for hydrogen production per year (small plant with low number of full-load hours) |
Full-Load Hours in h/a | LCOH2 in €ct/kWhHHV | ||||||||
---|---|---|---|---|---|---|---|---|---|
Small Plants A 2030 | Medium Plants B 2030 | Large Plants C 2030 | Small Plants A 2040 | Medium Plants B 2040 | Large Plants C 2040 | Small Plants A 2050 | Medium Plants B 2050 | Large Plants C 2050 | |
8000 | 7.1 | 6.8 | 6.7 | 5.0 | 4.8 | 4.7 | 3.9 | 3.8 | 3.7 |
7500 | 7.4 | 7.0 | 6.9 | 5.1 | 4.9 | 4.9 | 4.1 | 3.9 | 3.8 |
7000 | 7.6 | 7.3 | 7.1 | 5.3 | 5.1 | 5.0 | 4.2 | 4.1 | 4.0 |
6500 | 7.9 | 7.5 | 7.4 | 5.6 | 5.3 | 5.2 | 4.5 | 4.3 | 4.2 |
6000 | 8.2 | 7.8 | 7.7 | 5.8 | 5.6 | 5.5 | 4.7 | 4.5 | 4.4 |
5500 | 8.7 | 8.2 | 8.0 | 6.1 | 5.8 | 5.7 | 5.0 | 4.7 | 4.7 |
5000 | 9.1 | 8.6 | 8.4 | 6.5 | 6.2 | 6.1 | 5.3 | 5.1 | 5.0 |
4500 | 9.7 | 9.2 | 9.0 | 7.0 | 6.6 | 6.5 | 5.7 | 5.4 | 5.3 |
4000 | 10.5 | 9.8 | 9.6 | 7.5 | 7.1 | 7.0 | 6.2 | 5.9 | 5.8 |
3500 | 11.4 | 10.7 | 10.4 | 8.3 | 7.8 | 7.6 | 6.9 | 6.6 | 6.4 |
3000 | 12.6 | 11.8 | 11.5 | 9.3 | 8.7 | 8.5 | 7.8 | 7.4 | 7.2 |
2500 | 14.5 | 13.5 | 13.1 | 10.7 | 10.0 | 9.8 | 9.0 | 8.5 | 8.4 |
2000 | 17.4 | 16.1 | 15.6 | 12.7 | 11.9 | 11.6 | 10.9 | 10.3 | 10.0 |
1500 | 22.1 | 20.4 | 19.8 | 16.2 | 15.1 | 14.7 | 14.0 | 13.1 | 12.8 |
1000 | 31.6 | 29.0 | 28.1 | 23.1 | 21.5 | 20.9 | 20.2 | 18.9 | 18.4 |
500 | 60.0 | 54.8 | 52.9 | 43.8 | 40.6 | 39.4 | 38.7 | 36.1 | 35.2 |
Performance Indicator | Scenario Energy Efficiency | Scenario Sufficiency | ||||
---|---|---|---|---|---|---|
2030 | 2040 | 2050 | 2030 | 2040 | 2050 | |
Primary energy consumption in TWh/a | 236 | 232 | 233 | 320 | 285 | 252 |
Final energy consumption in TWh/a | 231 | 227 | 206 | 259 | 225 | 194 |
Renewable energy generation and production in TWh/a | 138 | 163 | 189 | 138 | 163 | 189 |
Total negative residual loads in TWhel/a | 1 | 7 | 20 | 11 | 30 | 53 |
Lower limit for full-load hours of electrolyser plants in h/a 1 | 2200 | 2000 | 1500 | 2200 | 2000 | 1500 |
Installed electrolysis capacity in GWel | 0.0 | 0.0 | 5.9 | 2.1 | 5.9 | 11.0 |
Negative residual loads used for electrolysis in TWhel/a | 0 | 0 | 13 | 6 | 24 | 47 |
Share of negative residual loads used for electrolysis in % | 0 | 0 | 67 | 57 | 80 | 89 |
Technical green hydrogen production in TWhH2/a | 0 | 5 | 14 | 7 | 20 | 37 |
Economic green hydrogen production in TWhH2/a | 0 | 0 | 9 | 4 | 17 | 34 |
Total consumption of renewable gases in TWh/a | 128 | 109 | 99 | 195 | 159 | 125 |
Required import of renewable gases (based on technical potentials) in TWh/a | 91 | 64 | 41 | 180 | 127 | 71 |
Required import of renewable gases (based on economic potentials) in TWh/a | - 3 | - 3 | - 3 | 183 | 131 | 76 |
Share of technical national renewable gas production in % | 28 2 | 41 2 | 59 2 | 8 | 20 | 43 |
Averaged levelised cost of national produced green hydrogen in €ct/kWhHHV | - 3 | - 3 | - 3 | 12.1 | 7.5 | 6.3 |
Minimal levelised cost of national produced green hydrogen in €ct/kWhHHV | - 3 | - 3 | - 3 | 9.6 | 5.0 | 3.7 |
Maximal levelised cost of national produced green hydrogen in €ct/kWhHHV | - 3 | - 3 | - 3 | 14.5 | 12.7 | 13.9 |
Type | Hydrogen Price (€ct/kWhHHV) | |||
---|---|---|---|---|
Current | 2030 | 2040 | 2050 | |
Production of Grey | Including CO2 emission costs | |||
2.4–3.8 3 2.0–7.1 4 | 2.6–4.0 3 | 4.6–6.0 3 | 7.3–8.6 3 | |
Excluding CO2 emission costs | ||||
4.0 1 1.8–3.1 3 1.5–4.9 7 3.8 8 | 1.8–3.1 3 | 1.8–3.1 3 | 1.8–3.1 3 | |
Production of Blue | Including CO2 emission costs | |||
3.3–6.4 4 2.9–5.5 6 | 5.0 1 2.2–3.5 3 2.9–5.7 6 5.5–8.5 10 | 4.8 1 2.2–3.5 3 3.1–6.0 6 | 2.2–3.5 3 3.3–6.4 6 6.6–9.6 10 | |
Excluding CO2 emission costs | ||||
4.9 1 3.1–7.5 5 2.9–6.4 7 5.1 8 | 3.0–7.5 5 | 3.0–6.6 5 | ||
Production of Green | 8.0 1 8.8–12.1 3 6.6–16.6 4 5.5–10.2 5 5.7–14.8 6 5.7–9.9 7 6.3–14.0 8 | 6.0 1 2.9–5.1 3 2.6–6.0 5 3.5–7.1 6 4.4–7.2 10 | 5.2 1 2.2–4.2 3 2.6–5.5 6 0.7–8.3 10 | 1.8–3.3 3 1.6–3.5 5 2.0–4.2 6 |
Production and Import of Green (incl. transport cost) | 25.0–27.5 2 | 16.0–22.0 2 6.5–9.0 9 7.5 11 | 14.0–17.5 2 | 12.0–13.0 2 5.5–7.5 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejkora, C.; Lindorfer, J.; Kühberger, L.; Kienberger, T. Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria. Energies 2021, 14, 6289. https://doi.org/10.3390/en14196289
Sejkora C, Lindorfer J, Kühberger L, Kienberger T. Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria. Energies. 2021; 14(19):6289. https://doi.org/10.3390/en14196289
Chicago/Turabian StyleSejkora, Christoph, Johannes Lindorfer, Lisa Kühberger, and Thomas Kienberger. 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria" Energies 14, no. 19: 6289. https://doi.org/10.3390/en14196289
APA StyleSejkora, C., Lindorfer, J., Kühberger, L., & Kienberger, T. (2021). Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria. Energies, 14(19), 6289. https://doi.org/10.3390/en14196289