Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Material
2.1.2. Yeast Culture
2.2. Processes Description
2.2.1. Advanced Solid-State Fermentation
2.2.2. Continuous Solid-State Distillation
2.2.3. Dual Vapor Permeation
2.2.4. One Phase Transition Separation
2.3. Simulation Methods
2.4. Process Economics
2.4.1. Purchased Equipment Cost
2.4.2. Fixed Capital Investment
3. Results and Discussion
3.1. Processes Analysis
3.2. Techno-Economic Evaluation
3.2.1. Construction Investment Estimation
3.2.2. Operating Income
3.2.3. Total Cost Expenses
3.2.4. Financial Evaluation
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eder, L.V.; Provornaya, I.V.; Filimonova, I.V.; Kozhevin, V.D.; Komarova, A.V. World energy market in the conditions of low oil prices, the role of renewable energy sources. In Proceedings of the 5th International Conference on Energy and Environment Research, Prague, Czech Republic, 23–27 July 2018; Volume 153, pp. 112–117. [Google Scholar]
- Fuel Ethanol Production Worldwide in 2020. 2021. Available online: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/ (accessed on 27 August 2021).
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A. Environmental implications of higher ethanol production and use in the US: A literature review. Part II—Biodiversity, land use change, GHG emissions, and sustainability. Renew. Sust. Energ. Rev. 2018, 81, 3159–3177. [Google Scholar] [CrossRef]
- Jiao, J.L.; Li, J.J.; Bai, Y. Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure. J. Clean. Prod. 2018, 180, 832–845. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Kazi, S.N.; Badarudin, A.; Togun, H.; Zubir, M.N.M.; Oon, C.S.; Gharehkhani, S. Sustainability and environmental impact of ethanol as a biofuel. Rev. Chem. Eng. 2014, 30, 51–72. [Google Scholar] [CrossRef]
- Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.Q.; Tan, T.W. Challenges and opportunities in improving the production of bio-ethanol. Prog. Energy Combust. Sci. 2015, 47, 60–88. [Google Scholar] [CrossRef]
- Jansson, C.; Westerbergh, A.; Zhang, J.M.; Hu, X.W.; Sun, C.X. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl. Energy 2009, 86, S95–S99. [Google Scholar] [CrossRef]
- Calvino, M.; Messing, J. Sweet sorghum as a model system for bioenergy crops. Curr. Opin. Biotechnol. 2012, 23, 323–329. [Google Scholar] [CrossRef]
- Laopaiboon, L.; Nuanpeng, S.; Srinophakun, P.; Klanrit, P.; Laopaiboon, P. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 2009, 100, 4176–4182. [Google Scholar] [CrossRef]
- Rahman, S.; Sabnis, M.; Kuusisto, L.M.; Sattler, M.; Chen, V. Models for organics removal from vinasse from ethanol production. Clean Technol. Environ. Policy 2018, 20, 803–812. [Google Scholar] [CrossRef]
- Li, S.Z.; Li, G.M.; Zhang, L.; Zhou, Z.X.; Han, B.; Hou, W.H.; Wang, J.B.; Li, T.C. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl. Energy 2013, 102, 260–265. [Google Scholar] [CrossRef]
- Tian, Y.; Li, S.; Zhao, L.; Meng, H.; Huo, L. Life Cycle Assessment on Fuel Ethanol Producing from Sweet Sorghum Stalks. Trans. Chin. Soc. Agric. Mach. 2011, 42, 132–137. [Google Scholar]
- Zhang, L.; Zu, X.; Fu, J.; Li, J.; Li, S. A novel combined ethanol and power model of microgrid driven by sweet sorghum stalks using ASSF. In Renewable Energy Integration with Mini/Microgrid; Yan, J., Zhai, Y., Wijayatunga, P., Mohamed, A.M., Campana, P.E., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2016; Volume 103, pp. 244–249. [Google Scholar]
- Mei, X.; Liu, R.; Cao, W. Energy consumption analysis on pilot-scale plant of fuel ethanol production from sweet sorghum stalk by solid state fermentation. Trans. Chin. Soc. Agric. Eng. 2012, 28, 194–198. [Google Scholar]
- Ebrahimiaqda, E.; Ogden, K.L. Simulation and Cost Analysis of Distillation and Purification Step in Production of Anhydrous Ethanol from Sweet Sorghum. ACS Sustain. Chem. Eng. 2017, 5, 6854–6862. [Google Scholar] [CrossRef]
- Zentou, H.; Abidin, Z.Z.; Yunus, R.; Biak, D.R.A.; Korelskiy, D. Overview of Alternative Ethanol Removal Techniques for Enhancing Bioethanol Recovery from Fermentation Broth. Processes 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Li, H.S.; Li, S.Z. Optimization of Continuous Solid-State Distillation Process for Cost-Effective Bioethanol Production. Energies 2020, 13, 854. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, G. Continuous Solid-State Separation Device and Process for Producing Fuel Ethanol. U.S. Patent 10239806, 26 March 2019. [Google Scholar]
- Phukoetphim, N.; Chanutit, P.; Laopaiboon, P.; Laopaiboon, L. Improvement of Bioethanol Production from Sweet Sorghum Juice under Very High Gravity Fermentation: Effect of Nitrogen, Osmoprotectant, and Aeration. Energies 2019, 12, 3620. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, S. Advances in research and application of vapor permeation for biofuel ethanol production. Chem. Ind. Eng. Prog. 2020, 39, 1620–1631. [Google Scholar]
- Gozan, M.; Setiawan, M.S.; Lischer, K. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant. Makara J. Technol. 2017, 21, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Vane, L.M. Review: Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. J. Chem. Technol. Biotechnol. 2019, 94, 343–365. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, H.; Li, Y.; Nan, J.; Shi, C.; Li, S. Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production. Energies 2021, 14, 2266. [Google Scholar] [CrossRef]
- Jiang, D.; Hao, M.M.; Fu, J.Y.; Liu, K.; Yan, X.X. Potential bioethanol production from sweet sorghum on marginal land in China. J. Clean. Prod. 2019, 220, 225–234. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sust. Energ. Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Mao, Y.; Li, J.; Li, S.; Chang, S.; Zhao, G. The mass transfer of sugar in sweet sorghum stalks for solid-state fermentation process. Fuel 2015, 144, 90–95. [Google Scholar] [CrossRef]
- Li, H.; Han, X.; Liu, H.; Hao, J.; Jiang, W.; Li, S. Silage Fermentation on Sweet Sorghum Whole Plant for Fen-Flavor Baijiu. Foods 2021, 10, 1477. [Google Scholar] [CrossRef]
- Han, B.; Fan, G.; Li, S.; Wang, L.; Li, T. Comparison of ethanol production from different sugar feedstocks by solid state fermentation with two yeast strains. Trans. Chin. Soc. Agric. Eng. 2012, 28, 201–206. [Google Scholar]
- Du, R.; Yan, J.; Feng, Q.; Li, P.; Zhang, L.; Chang, S.; Li, S. A Novel Wild-Type Saccharomyces cerevisiae Strain TSH1 in Scaling-Up of Solid-State Fermentation of Ethanol from Sweet Sorghum Stalks. PLoS ONE 2014, 9, e94480. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, P.; Zhang, L.; Li, S. RNA-Seq-based transcriptomic analysis of Saccharomyces cerevisiae during solid-state fermentation of crushed sweet sorghum stalks. Process Biochem. 2018, 68, 53–63. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Cao, B. Design of supporting system on rotary drum bioreactor for solid-state fermentation and finite element analysis. Trans. Chin. Soc. Agric. Eng. 2019, 35, 141–147. [Google Scholar]
- Yerradoddi, R.R.; Khan, A.A.; Mallampalli, S.R.; Devulapalli, R.; Kodukula, P.; Blummel, M. Effect of protein and energy levels in sweet sorghum bagasse leaf residue-based diets on the performance of growing Deccani lambs. Trop. Anim. Health Prod. 2015, 47, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Sander, U.; Janssen, H. Industrial application of vapor permeation. J. Membr. Sci. 1991, 61, 113–129. [Google Scholar] [CrossRef]
- Khalid, A.; Aslam, M.; Qyyum, M.A.; Faisal, A.; Khan, A.L.; Ahmed, F.; Lee, M.; Kim, J.; Jang, N.; Chang, I.S.; et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew. Sust. Energ. Rev. 2019, 105, 427–443. [Google Scholar] [CrossRef]
- Makertihartha, I.G.B.N.; Dharmawijaya, P.T.; Wenten, I.G. Recent Advances on Bioethanol Dehydration using Zeolite Membrane. In International Conference on Energy Sciences; Waris, A., Shin, B., Kondo, M., Buys, Y.F., Irwanto, D., Pramuditya, S., Eds.; IOP Publishing Ltd.: Bristol, UK, 2017; Volume 877. [Google Scholar]
- Vane, L.M.; Alvarez, F.R. Effect of membrane and process characteristics on cost and energy usage for separating alcohol-water mixtures using a hybrid vapor stripping-vapor permeation process. J. Chem. Technol. Biotechnol. 2015, 90, 1380–1390. [Google Scholar] [CrossRef]
- Han, B.; Wang, L.; Li, S.; Wang, E.; Zhang, L.; Li, T. Ethanol production from sweet sorghum stalks by advanced solid state fermentation (ASSF) technology. Sheng Wu Gong Cheng Xue Bao Chin. J. Biotechnol. 2010, 26, 966–973. [Google Scholar]
- MySteel Price Index of China. 2021. Available online: https://www.mysteel.com/ (accessed on 27 August 2021).
- Laopaiboon, L.; Thanonkeo, P.; Jaisil, P.; Laopaiboon, P. Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2007, 23, 1497–1501. [Google Scholar] [CrossRef]
- Retail Energy Price Data. 2021. Available online: https://www.globalpetrolprices.com/ (accessed on 27 August 2021).
- Yang, X.L.; Li, M.; Liu, H.H.; Ren, L.T.; Xie, G.H. Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China. Sustainability 2018, 10, 731. [Google Scholar] [CrossRef] [Green Version]
- Beal, C.M.; Gerber, L.N.; Sills, D.L.; Huntley, M.E.; Machesky, S.C.; Walsh, M.J.; Tester, J.W.; Archibald, I.; Granados, J.; Greene, C.H. Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Res. Biomass Biofuels Bioprod. 2015, 10, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, J.X.; Zhan, X.; Fang, M.Q.; Wang, T.; Li, J.D. Preparation and characterization of ZSM-5/PDMS hybrid pervaporation membranes: Laboratory results and pilot-scale performance. Sep. Purif. Technol. 2015, 150, 257–267. [Google Scholar] [CrossRef]
Item | Cost |
---|---|
Direct plant costs (DPC) | |
Purchased equipment cost (PEC) | |
Piping | 11% of PEC |
Instrumentation | 15% of PEC |
Electrical | 12% of PEC |
Civil engineering | 16% of PEC |
Equipment installation | 15% of PEC |
Others | 8% of PEC |
Indirect plant costs (IPC) | 20% of DPC |
Fixed capital investment (FCI) | DPC + IPC |
Intangible asset costs (IAC) | 3% of FCI |
Current funds (CF) | 5% of (FCI + IAI) |
Total construction investment (TCI) | FCI + IAC + CF |
Process | Feedstock | |||
---|---|---|---|---|
Input (ton) | Output (ton) | |||
Pulverization | Sweet Sorghum stalks | 16.4 | Pulverizing stalks | 16.4 |
Seed culture | Water | 1.41 | Seed liquid | 1.59 |
Corn starch | 0.15 | |||
Yeast & Enzymes | 0.03 | |||
ASSF | Pulverizing stalks | 16.4 | FSSB | 16.98 |
Seed liquid | 1.59 | Carbon dioxide | 1.01 | |
CSSD | FSSB | 16.98 | Crude ethanol (1) | 5.02 |
Secondary steam | 3.63 | Vinasse | 19.52 | |
Fresh steam | 3.93 | |||
PDMS/PVDF VP | Crude ethanol (1) | 5.02 | Permeate | 1.39 |
Retentate | 3.63 | |||
NaA zeolite VP | Crude ethanol (2) | 1.39 | Permeate | 0.39 |
Fuel ethanol | 1 |
Process | Energy | |||
---|---|---|---|---|
Input (MJ) | Output (MJ) | |||
Pulverization | Electricity | 363.5 | ||
Seed culture | Electricity | 76.4 | ||
Steam | 239.8 | |||
ASSF | Electricity | 279.4 | ||
CSSD | Electricity | 215.7 | Vinasse | 19,210 |
Steam | 9111.2 | |||
PDMS/PVDF VP | Electricity | 1110 | ||
Cooling water | −696 | |||
NaA zeolite VP | Electricity | 167 | Bioethanol | 29,550 |
Cooling water | −1116 |
No. | Equipment | Capacity 1 | Qua. | Unit Price | Total Price |
---|---|---|---|---|---|
(set) | (k USD) | (k USD) | |||
1 | Stalks pretreatment unit | 450 t/h | 1 | 59 | 59 |
2 | Seed liquid culture system | 2 t/h | 1 | 121 | 121 |
3 | ASSF fermenter | 4.1 t/h | 5 | 337 | 1685 |
4 | CSSD coulum | 4.3 t/h | 5 | 146 | 730 |
5 | PDMS/PVDF VP membrane module | A = 506 m2 | 1 | 507 | 507 |
6 | NaA zeolite VP membrane module | A = 154 m2 | 1 | 439 | 439 |
7 | Heat exchangers 2 | At = 13.7 m2 | 1 | 17 | 17 |
8 | Compressors | BHP = 350 kW | 1 | 279 | 279 |
9 | Pumps 2 | BHP = 75 kW | 1 | 30 | 30 |
10 | Vacuum pump | BHP = 37.5 kW | 1 | 26 | 26 |
11 | Vessels 2 | Vt = 75 m3 | 1 | 42 | 42 |
12 | Boiler | 10 t/h | 1 | 79 | 79 |
Total | 4014 |
Products | Annual Output | Unit Price | Total Price |
---|---|---|---|
(ton) | (USD) | (k USD) | |
Fuel ethanol | 10,000 | 1006 | 10,060 |
Cattle feed | 66,400 | 57 | 3794 |
Recovery of residual FCI | 95 | ||
Total income | 13,949 |
Item | Annual Value | Unit | Unit Price | Total Price | |
---|---|---|---|---|---|
(USD) | (k USD) | ||||
Raw material | Sweet sorghum | 164,000 | t | 36 | 5857 |
Preservative | 140 | t | 714 | 100 | |
Seed Liquid | Yeast & Enzyme | 300 | t | 1143 | 343 |
Corn starch | 1500 | t | 343 | 514 | |
Acid & alkali | 30 | t | 429 | 13 | |
Utility | Fresh water | 53,400 | t | 2 | 92 |
Electricity | 6144 | MWh | 114 | 702 | |
Steam | 25,975 | MWh | 38 | 987 | |
Cooling water | 433,500 | t | 0.2 | 68 | |
Labor | 40 | person | 8570 | 343 | |
Depreciation | Membrane | 170 | |||
Rest | 682 | ||||
Amortization | 26 | ||||
Maintenance | 4426 | ||||
Total cost expense | 10,323 |
Item | Unit | Costs |
---|---|---|
Total income | M USD | 13.95 |
Total cost expense | M USD | 10.32 |
Total annual profit | M USD | 3.63 |
Income tax | M USD | 0.91 |
Internal rate of return before tax | % | 37 |
Internal rate of return after tax | % | 26 |
Dynamic payback period before tax | Year | 4.08 |
Dynamic payback period after tax | Year | 5.35 |
Financial net present value before tax | M USD | 10.60 |
Financial net present value after tax | M USD | 5.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, H.; Li, S. Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation. Energies 2021, 14, 6301. https://doi.org/10.3390/en14196301
Li H, Liu H, Li S. Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation. Energies. 2021; 14(19):6301. https://doi.org/10.3390/en14196301
Chicago/Turabian StyleLi, Hongshen, Hongrui Liu, and Shizhong Li. 2021. "Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation" Energies 14, no. 19: 6301. https://doi.org/10.3390/en14196301
APA StyleLi, H., Liu, H., & Li, S. (2021). Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation. Energies, 14(19), 6301. https://doi.org/10.3390/en14196301