Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam
Abstract
:1. Introduction
2. New Model Rationale and Development
- Conduction Equivalency Condition and First Modelling Relation:
- Convection Equivalency Condition and Second Modelling Relation:
- Staggering Option and Closing Set of Modelling Relations:
- (a)
- Start with metal foam with known porosity and surface area density, in which heat transfer and pressure drop are of interest;
- (b)
- use these two known morphological properties of the foam, and find the geometrical properties of the tube bank (EPS) that would produce the same heat transfer and pressure drop for this foam. The geometrical properties of the tube bank are obtained using Equations (5)–(9);
- (c)
- construct this tube bank geometry (EPS) in a numerical package, e.g., ANSYS;
- (d)
- investigate (solve the momentum and energy governing equations) over this tube bank in the numerical package. The resulting heat transfer and pressure drop of this step will be the same as those of the foam.
3. Example and Numerical Solution on EPS
4. Numerical Predictions of the EPS Model
5. Experimental Validation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
contact area | |
c | specific heat of fluid |
C | form drag coefficient (m−1) |
D | diameter (mm) |
EPS | equivalent parallel strands |
H | height of model or foam (cm) |
k | thermal conductivity (W/m K) |
K | permeability (m2) |
L | length of model or foam in flow direction (cm) |
n | the number of cylinders in EPS |
ppi | pore per inch |
heat flux (W/m2) | |
diagonal pitch (mm) | |
longitudinal pitch (mm) | |
transverse pitch (mm) | |
T | temperature (K) |
velocity in x-direction | |
V | Darcian velocity (m/s) |
velocity in y-direction | |
W | width of model or foam (cm) |
x | axial coordinate along the flow direction |
y | coordinate perpendicular to flow direction |
pressure drop (Pa) | |
density of fluid (kg/m3) | |
porosity | |
surface area density (m2/m3) | |
viscosity (kg/m s) | |
foam | |
model |
References
- Ranut, P.; Nobile, E.; Mancini, L. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams. Exp. Therm. Fluid Sci. 2015, 67, 30–36. [Google Scholar] [CrossRef]
- Magnico, P. Analysis of permeability and effective viscosity by CFD on isotropic and anisotropic metallic foams. Chem. Eng. Sci. 2009, 64, 3564–3575. [Google Scholar] [CrossRef]
- Ashby, F. Metal Foam, A Design Guide; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Leong, K.C.; Jin, L.W. Characteristics of oscillating flow through a channel filled with open-cell metal foam. Int. J. Heat Fluid Flow 2006, 27, 144–153. [Google Scholar] [CrossRef]
- Inayat, A.; Schwerdtfeger, J.; Freund, H.; Körner, C.; Singer, R.F.; Schwieger, W. Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing. Chem. Eng. Sci. 2011, 66, 2758–2763. [Google Scholar] [CrossRef]
- Antohe, B.; Lage, J.L.; Price, D.C.; Weber, R.M. Experimental determination of the permeability and inertial coefficients of mechanically compressed aluminum metal layers. J. Fluids Eng. 1997, 11, 404–412. [Google Scholar] [CrossRef]
- Bonnet, J.-P.; Topin, F.; Tadrist, L. Flow laws in metal foams: Compressibility and pore size effect. Transp. Porous Media 2008, 73, 233–254. [Google Scholar] [CrossRef]
- Mancin, S.; Zilio, C.; Cavallini, A.; Rossetto, L. Pressure drop during air flow in aluminum foam. Int. J. Heat Mass Transf. 2010, 53, 3121–3130. [Google Scholar] [CrossRef]
- Depois, J.-F.; Mortensen, A. Permeability of open-pore microcellular materials. Acta Mater. 2005, 53, 1381–1388. [Google Scholar] [CrossRef] [Green Version]
- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater. 2003, 35, 1161–1176. [Google Scholar] [CrossRef]
- Tadrist, L.; Miscevic, M.; Rahli, O.; Topin, F. About the use of fibrous materials in compact heat exchangers. Exp. Therm. Fluid Sci. 2004, 28, 193–196. [Google Scholar] [CrossRef]
- Chumpia, A.; Hooman, K. Performance evaluation of single tubular aluminum foam heat exchanges. Appl. Therm. Eng. 2014, 66, 266–273. [Google Scholar] [CrossRef]
- Tamayol, A.; Hooman, K. Thermal assessment of forced convection through metal foam heat exchangers. J. Heat Transf. 2011, 133, 111801-1–111801-7. [Google Scholar] [CrossRef]
- Mahjoob, S.; Vafai, K. A Synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 2008, 51, 3701–3711. [Google Scholar] [CrossRef]
- Odabaee, M.; Mancin, S.; Hooman, K. Metal foam heat exchangers for thermal management of fuel cell systems- an experimental study. Exp. Therm. Fluid Sci. 2013, 51, 214–219. [Google Scholar] [CrossRef]
- Hossain, M.S.; Shabani, B. Metal foams application to enhance cooling for open cathode polymer electrolyte membrane fuel cells. J. Power Sources 2015, 295, 275–291. [Google Scholar] [CrossRef]
- Sullines, D.; Daryabeige, K. Effective thermal conductivity of high porosity open cell nickel foam. In Proceedings of the 35th AIAA Thermophysics Conference, Anaheim, CA, USA, 11–14 June 2001; Volume 12, p. 2819. [Google Scholar]
- Khatee, S.A.; Amiuddin, S.; Farid, M.; Selman, J.R.; Al-Hallaj, S. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation. J. Power Sources 2005, 142, 345–353. [Google Scholar] [CrossRef]
- Alawadhi, E.M.; Amon, C.H. PCM thermal control unit for portable electronic devices: Experimental and numerical studies. IEEE Trans. Compon. Packag. Technol. 2003, 26, 116–125. [Google Scholar] [CrossRef]
- Vesligaj, M.J.; Amon, C.H. Transient thermal management of temperature fluctuations during time varying workloads on portable electronic. IEEE Trans. Compon. Packag. Technol. 1999, 22, 541–550. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Mahajan, R.L. Finned metal foam heat sinks for electronics cooling in forced convection. J. Electron. Packag. 2002, 124, 155–163. [Google Scholar] [CrossRef]
- Zhang, Y.C.L.W.; Xie, H.; Mahajan, R.L. Cooling of a FCHIP pakage with 100 W, 1 cm2 chip. In Proceedings of the 1993 ASME International Electronic Packaging Conference, San Diego, CA, USA, 12–15 September 1993; Volume 1, pp. 419–423. [Google Scholar]
- Laurencelle, F.; Goyette, J. Simulation of heat transfer in a metal hydride reactor with aluminum foam. Int. J. Hydrogen Energy 2007, 32, 2957–2964. [Google Scholar] [CrossRef]
- Horneber, T.; Rauh, C.; Delgado, A. Fluid dynamic characterization of porous solid in catalytic fixed-bed reactors. Microporous Mesoporous Mater. 2012, 154, 170–174. [Google Scholar] [CrossRef]
- Azzi, W.; Roberts, W.L.; Rabiei, A. A study on pressure drop and heat transfer in open cell metal foam for jet engine applications. Mater. Des. 2007, 28, 569–574. [Google Scholar] [CrossRef]
- Ejlali, A.; Ejlali, A.; Hooman, K.; Gurgenci, H. Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems. Int. Commun. Heat Mass Transf. 2009, 36, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Kopanidis, A.; Theodorakakos, E.; Gavaises, D. Bouris, 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 2010, 53, 2539–2550. [Google Scholar] [CrossRef]
- Brun, E. De l‘imagérie 3D Des Structures a L‘étude Des Mécanismes De Transport En Milieux Cellulaires. Ph.D. Thesis, Aix Marseille Université, Marseille, France, 2009. [Google Scholar]
- Taheri, M. Analytical and Numerical Modeling of Fluid Flow and Heat Transfer Through Open-Cell Metal Foam Heat Exchangers. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2015. [Google Scholar]
- Feng, S.; Shi, M.; Li, Y.; Lu, T.J. Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam. Int. J. Heat Mass Transf. 2015, 90, 838–847. [Google Scholar] [CrossRef]
- De Schampheleire, S.; De Jaeger, P.; De Kerpel, K.; Ameel, B.; Huisseune, H.; De Paepe, M. How to study thermal applications of open-cell metal foam: Experiments and computational fluid dynamics. Materials 2016, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Vafai, K.; Tien, C.L. Boundary and inertia effects of flow and heat transfer in porous media. Int. J. Heat Mass Transf. 1981, 34, 195–203. [Google Scholar] [CrossRef]
- Nield, D.; Bejan, A. Convection in Porous Media, 2nd ed.; Springer: New York, NY, USA, 1999; p. 73. [Google Scholar]
- Bağcı, Ö.; Dukhan, N.; Özdemir, M. Flow regimes in packed beds of spheres from pre-Darcy to turbulent. Transp. Porous Media 2014, 104, 501–520. [Google Scholar] [CrossRef]
- Dukhan, N.; Bağcı, Ö.; Özdemir, M. Metal foam hydrodynamics: Flow regimes from pre-Darcy to turbulent. Int. J. Heat Mass Transf. 2014, 77, 114–123. [Google Scholar] [CrossRef]
- Dukhan, N.; Suleiman, A.S. Simulation of entry-region flow in open-cell metal foam and experimental validation. Transp. Porous Media 2014, 101, 229–246. [Google Scholar] [CrossRef]
- Sachan, S.; Kumar, S.; Krishnan, S.; Ramamoorthy, S. Impact of entry–exit loss on the measurement of flow resistivity of porous materials. AIP Adv. 2020, 10, 105031. [Google Scholar] [CrossRef]
- Otaru, A.J.; Morvan, H.P.; Kennedy, A.R. Measurement and simulation of pressure drop across replicated porous aluminium in the Darcy-Forchheimer regime. Acta Mater. 2018, 149, 265–273. [Google Scholar] [CrossRef]
- Tabor, G.; Yeo, O.; Young, P. CFD simulation of flow through an open cell foam. Int. J. Mod. Phys. C 2008, 19, 703–715. [Google Scholar] [CrossRef]
- Ranut, P.; Nobile, E.; Mancini, L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl. Therm. Eng. 2014, 69, 230–240. [Google Scholar] [CrossRef]
- Bianchi, E.; Heidig, T.; Visconti, C.G.; Groppi, G.; Freund, H.; Tronconi, E. An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo thermic catalytic processes in tubular reactors. Chem. Eng. J. 2012, 198, 512–528. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Q.N.; Qu, Z.G.; Yang, R.Z. Simulation and analytical validation of forced convection in open-cell metal foams. Int. J. Therm. Sci. 2017, 111, 234–245. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, H.; Yang, Z.; Zhang, J. Numerical investigation on the flow characterizations and permeability of three-dimensional reticulated foam materials. Chem. Eng. J. 2008, 140, 562–569. [Google Scholar] [CrossRef]
- Zhaodong, C.; Kuncan, Z.; Xiao, W.; Fuling, H.; Chong, G.; Juanjuan, B. Derivation and validation of a new porous media resistance formula based on a tube-sphere model. Ind. Eng. Chem. Res. 2020, 59, 18170–18179. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Yang, Y.; Chen, D.; Zhu, Y. Effective thermal conductivity of high porosity open-cell metal foams. Int. J. Heat Mass Transf. 2020, 147, 118974. [Google Scholar] [CrossRef]
- Nie, Y.; Lin, Q.; Tong, Q. Modeling structures of open cell foams. Comput. Mater. Sci. 2017, 131, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Sun, M.; Xie, Z.; Yang, L.; Song, Y.; Tang, D.; Zhao, J. Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications. Appl. Therm. Eng. 2020, 80, 115845. [Google Scholar] [CrossRef]
- Jobic, Y.; Kumar, P.; Topin, F. Transport properties of solid foams having circular strut cross section using pore scale numerical simulations. Heat Mass Transf. 2018, 54, 2351–2370. [Google Scholar] [CrossRef]
- Nie, Z.; Lin, Y.; Tong, Q. Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model. Int. J. Heat Mass Transf. 2017, 113, 819–839. [Google Scholar] [CrossRef]
- Kumar, P.; Topin, F.; Tadrist, L. Geometrical characterization of Kelvin-like metal foams for different strut shapes and porosity. J. Porous Media 2015, 18, 637–652. [Google Scholar] [CrossRef]
- Jafarizade, A.; Panjepour, M.; Meratain, M.; Emami, M.D. Numerical simulation of gas/solid heat transfer in metallic foams: A general correlation for different porosities and pore sizes. Trans. Porous Media 2018. [Google Scholar] [CrossRef]
- Calmidi, V.V.; Mahajan, R.L. The effective thermal conductivity of high porosity fibrous metal foam. J. Heat Transf. 1999, 121, 466–471. [Google Scholar] [CrossRef]
- Hu, H.; Lai, Z.; Weng, X.; Ding, G.; Zhuang, D. Numerical model for the dehumidifying process of wet air flow in open-cell metal foam. Appl. Therm. Eng. 2017, 133, 309–321. [Google Scholar] [CrossRef]
- Inayat, A.; Freund, H.; Zeiser, T.; Schwieger, W. Determining the specific surface area of ceramic foams: The Tetradecahedra model revisited. Chem. Eng. Sci. 2011, 266, 1179–1188. [Google Scholar] [CrossRef]
- Miwa, S.; Kane, C.; Revankar, S. Microscopic fluid dynamics simulation of the metal foam using idealized cell structure. Transp. Porous Media 2016, 115, 35–51. [Google Scholar] [CrossRef]
- Iasiello, M.; Cunsolo, S.; Biano, N.; Chiu, W.K.S.; Naso, V. Developing thermal flow in open-cell foam. Int. J. Therm. Sci. 2017, 111, 129–137. [Google Scholar] [CrossRef]
- Krishnan, S.; Murthy, J.Y.; Garimella, S.V. Direct simulation of transport in open-cell metal foam. J. Heat Transf. 2006, 128, 793–799. [Google Scholar] [CrossRef]
- Boomsma, K.; Poulikakos, D.; Ventikos, Y. Simulation of flow through open cell metal foams using an idealized periodic cell structure. Int. J. Heat Fluid Flow 2003, 24, 825–834. [Google Scholar] [CrossRef]
- Iasiello, M.; Cunsolo, S.; Oliviero, M.; Harris, W.M.; Bianco, N.; Chiu, W.K.S.; Naso, V. Numerical analysis of heat transfer and pressure drop in metal foams for different morphological models. J. Heat Transf. 2014, 136, 11260. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Calmidi, V.V.; Mahajan, R.L. Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 2002, 45, 1017–1031. [Google Scholar] [CrossRef]
- Aghaei, P.; Visconti, C.G.; Groppo, G.; Tronconi, E. Development of a heat transport model for open-cell metal foams with high cell densities. Chem. Eng. J. 2017, 321, 432–446. [Google Scholar] [CrossRef]
- De Jaeger, P.; T’Joen, C.; Huisseune, H.; Ameel, B.; De Paepe, M. An experimentally validated and parameterized periodic unit-cell reconstruction of open-cell foams. J. Appl. Phys. 2011, 109. [Google Scholar] [CrossRef] [Green Version]
- Perrot, C.; Pannenton, R.; Olny, X. Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foam. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef] [Green Version]
- Boomsma, K.; Poulikakos, D. The effect of compression and pore size variations on the liquids flow characteristics in metal foam. J. Fluids Eng. 2002, 124, 263–272. [Google Scholar] [CrossRef]
- ERG Materials and Aerospace. Available online: http://ergaerospace.com/ (accessed on 24 March 2021).
- Kececioglu, I.; Jiang, Y. Flow through porous media of packed spheres saturated with water. J. Fluids Eng. 1994, 116, 164–170. [Google Scholar] [CrossRef]
- Dukhan, N.; Chen, K.C. Heat transfer measurements in metal foam subjected to constant heat flux. Exp. Therm. Fluid Sci. 2007, 32, 624–631. [Google Scholar] [CrossRef]
Pore Density, ppi | Porosit, Ɛ (%) | Surface Area Density, σ (m2/m3) |
---|---|---|
20 | 78.2 | 1705 |
D (mm) | |||
---|---|---|---|
0.51 | 1.04 | 0.90 | 1.04 |
Axial Location, x (cm) | Average Error (%) | Maximum Error (%) |
---|---|---|
6.35 | 2.64 | 4.05 |
19.05 | 2.81 | 5.33 |
31.75 | 3.28 | 9.46 |
Axial Location, x (cm) | Average Error (%) | Maximum Error (%) |
---|---|---|
6.35 | 3.05 | 3.85 |
19.05 | 4.05 | 8.38 |
31.75 | 3.55 | 10.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukhan, N. Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam. Energies 2021, 14, 6308. https://doi.org/10.3390/en14196308
Dukhan N. Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam. Energies. 2021; 14(19):6308. https://doi.org/10.3390/en14196308
Chicago/Turabian StyleDukhan, Nihad. 2021. "Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam" Energies 14, no. 19: 6308. https://doi.org/10.3390/en14196308
APA StyleDukhan, N. (2021). Equivalent Parallel Strands Modeling of Highly-Porous Media for Two-Dimensional Heat Transfer: Application to Metal Foam. Energies, 14(19), 6308. https://doi.org/10.3390/en14196308