Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Data and Study Areas Description
2.2. Methodology Description
2.2.1. Embodied GHG Emissions from Non-Renewable Fuels Energy Consumption
2.2.2. Decoupling Index of GHG and Per Capita Income Growth
2.2.3. GHG Emissions Pollution in EWF Resources
2.3. Decoupling Approach Description
3. Results
3.1. The Decoupling between CO2 Eq of GHG Sectors and Economic Growth
3.2. Decoupling GHGs Share in EWF Resources
3.2.1. EWF’s GHG Footprint—Water GHG Footprint
3.2.2. EWF’s GHG Footprint—Food GHG Footprint
3.2.3. EWF’s GHG Footprint-Energy’s GHG Footprint
3.3. Tracing Energy Water Food Inter-Dependence in GHG Emissions
4. Discussion
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Country Name | Areas Km2 | Population/2020 | Population Growth % | Urbanization % | REC Per Capita (2019) | GHG (Mt CO2 e) 1990–2018 | CCI 2000–2019 | Employment Rate in Agriculture 2019 (%) |
---|---|---|---|---|---|---|---|---|
Algeria | 2,381,741 | 43,851,044 | 0.56 | 72.9 | 15.9 | 149.9 | 92.8 | 9.6 |
Angola | 227,540 | 31,735,462 | 0.4 | 56.7 | 86.8 | 107.1 | 84 | 50.7 |
Benin | 112,760 | 12,123,200 | 0.16 | 48.4 | 0.3 | 22.9 | 139.8 | 38.2 |
Cameroon | 472,710 | 26,545,863 | 0.34 | 56.3 | 28.8 | 123.5 | 128 | 43.4 |
Congo Rep | 341,500 | 5,518,087 | 0.07 | 69.9 | 39.9 | 17.8 | 148.6 | 33.5 |
Egypt | 995,450 | 102,334,404 | 1.31 | 43 | 59.5 | 228.3 | 142 | 20.6 |
Ghana | 227,540 | 31,072,940 | 0.4 | 56.7 | 54.4 | 50.4 | 101.3 | 29.7 |
Kenya | 569,140 | 53,771,296 | 0.69 | 27.8 | 41.4 | 57.6 | 52 | 54.3 |
Morocco | 446,300 | 36,910,560 | 0.47 | 63.8 | 89.6 | 61.7 | 96 | 33.2 |
Nigeria | 910,770 | 206,139,589 | 2.64 | 52 | 10.7 | 289.0 | 104.3 | 34.9 |
Senegal | 192,530 | 16,743,927 | 0.21 | 49.4 | 12.8 | 27.6 | 123 | 30.1 |
South Africa | 1,213,090 | 59,308,690 | 0.76 | 66.7 | N/A | 437.8 | 76 | 5.2 |
Tanzania | 885,800 | 59,734,218 | 0.77 | 37 | 11.7 | 129.6 | 111.3 | 65 |
Tunisia | 155,360 | 11,818,619 | 0.15 | 70.1 | 31.9 | 32.1 | 114.5 | 13.8 |
Zimbabwe | 386,850 | 14,862,924 | 0.19 | 38.4 | 81.5 | 47.8 | 37.3 | 66.1 |
Total | 7,566,561 | 506,331,234 | 1783.2 | |||||
Share % at continent | 24.4 | 37.7 | 48.1% |
TEC/ TJ | ALG | ANG | BEN | CAM | CD | EG | GH | KEN | MOR | NIG | SEN | SA | TZD | TUN | ZIM | Tot % ∆ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year range | LPG | Country% | |||||||||||||||
1990–1999 | 230187 | 31.7 | 0.69 | 0.02 | 0.5 | 0.08 | 31.7 | 0.55 | 0.671 | 18.2 | 1.957 | 1.09 | 6 | 0.12 | 6.5 | 0.2 | |
2000–2009 | 404610 | 22.2 | 1.28 | 0.1 | 0.54 | 0.07 | 43.2 | 1.03 | 0.582 | 18.6 | 0.948 | 1.51 | 4.2 | 0.07 | 5.6 | 0 | 76.0 |
2000–2017 | 522493 | 19.8 | 2.17 | 0.14 | 0.78 | 0.09 | 41.1 | 2.4 | 1.24 | 21.9 | 0.4 | 1.12 | 3.2 | 0.63 | 4.9 | 0.2 | 127.0 |
1990–1999 | Gasoline 830984 | 10.9 | 0.48 | 0.77 | 1.64 | 0.44 | 11.7 | 1.79 | 1.988 | 2.22 | 22.67 | 0.6 | 40 | 1.71 | 0.6 | 1.9 | |
2000–2009 | 1227026 | 7.43 | 1.34 | 1.41 | 1.21 | 0.26 | 23.6 | 2.24 | 1.411 | 1.57 | 24.99 | 0.42 | 31 | 1.6 | 0.7 | 0.8 | 47.6 |
2000–2017 | 1655462 | 10.7 | 2.61 | 2.26 | 1.23 | 0.44 | 17.5 | 2.95 | 2.526 | 1.71 | 29.94 | 0.34 | 24 | 1.51 | 1.8 | 1 | 99.2 |
Kerosene | |||||||||||||||||
1990–1999 | 102084 | 0.67 | 0.21 | 0.24 | 0.66 | 0.21 | 7.17 | 0.55 | 0.976 | 0.26 | 85 | 0.06 | 2.8 | 0.7 | 0.3 | 0.2 | |
2000–2009 | 17380 | 0.21 | 2.5 | 6.81 | 3.16 | 0.47 | 12.5 | 2.57 | 7.465 | 1.39 | 39.02 | 0.36 | 15 | 4.12 | 3.6 | 1.2 | −83 |
2000–2017 | 140543 | 0.22 | 1.75 | 4.06 | 2.77 | 0.63 | 1.21 | 1.5 | 11.08 | 0 | 56.84 | 0.08 | 15 | 1.59 | 2.2 | 1.4 | −86 |
Fuel oil | |||||||||||||||||
1990–1999 | 723010 | 15.2 | 1.98 | 0.05 | 1.67 | 0.53 | 35.6 | 1.51 | 2.237 | 7.75 | 8.754 | 1.26 | 19 | 1 | 3.6 | 0.2 | |
2000–2009 | 1141840 | 19.9 | 2.16 | 0.09 | 1.24 | 1.09 | 37.2 | 0.62 | 1.953 | 7.51 | 7.46 | 0.84 | 17 | 0.65 | 2.2 | 0.1 | 57.9 |
2000–2017 | 938680 | 26.1 | 3.3 | 0.12 | 1.18 | 1.24 | 36.8 | 0.27 | 1.308 | 6.79 | 4.235 | 0.79 | 15 | 0.87 | 1.9 | 0.1 | 29.8 |
Natural gas | |||||||||||||||||
1990–1999 | 2204058 | 35.9 | 0.98 | 0 | 0 | 0.22 | 39 | 0 | 0 | 0.06 | 17.17 | 0.06 | 3 | 0 | 3.6 | 0 | |
2000–2009 | 3031035 | 31.7 | 0.78 | 0 | 0.03 | 0.27 | 42.1 | 0 | 0 | 0.44 | 11 | 0.06 | 8.2 | 0.36 | 5.1 | 0 | 37.5 |
2000–2017 | 4317429 | 33.25 | 0.60 | 0.04 | 0.42 | 1.21 | 40.17 | 0.66 | 0.00 | 1.00 | 14.20 | 0.04 | 4.28 | 0.75 | 3.37 | 0 | 96 |
Coal | |||||||||||||||||
1990–1999 | 6459313.8 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 0.0 | 0.5 | 3.0 | 0.1 | 0.0 | 86.3 | 0.1 | 0.0 | 4.9 | |
2010–2010 | 7385394.5 | 2.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.3 | 3.2 | 0.1 | 0.5 | 88.2 | 0.1 | 0.0 | 3.7 | 14.3 |
2011–2017 | 5002472.9 | 1.1 | 0.0 | 0.2 | 0.0 | 0.0 | 3.6 | 0.0 | 1.6 | 0.6 | 0.2 | 1.7 | 88.2 | 0.8 | 0.0 | 2.0 | −22.5 |
Gas oil | |||||||||||||||||
1990–1999 | 851400 | 16.05 | 2.55 | 0.41 | 1.28 | 0.26 | 24.17 | 2.71 | 2.75 | 11.45 | 9.17 | 1.06 | 17.56 | 6.35 | 1.10 | 3.14 | |
2010–2010 | 1413900.2 | 16.63 | 3.03 | 0.58 | 1.11 | 0.46 | 27.03 | 2.65 | 2.39 | 10.43 | 5.34 | 1.13 | 20.78 | 5.35 | 1.78 | 1.29 | 66.06 |
2011–2017 | 1727653.845 | 18.39 | 4.90 | 1.16 | 1.07 | 0.71 | 23.68 | 3.22 | 3.19 | 10.21 | 4.25 | 1.33 | 21.09 | 3.65 | 1.83 | 1.31 | 36.80 |
Country | 1990–1999 C | 1990–1990 T | 1990–1999 O | 2000–2009 C | 2000–2009 T | 2000–2009 O | 2010–2017 C | 2010–2017 T | 2010–2017 O |
---|---|---|---|---|---|---|---|---|---|
Algeria | 81.39 | 85.025 | 103.807 | 102.99 | 131.897 | 143.724 | 148.5 | 157.17 | 224.45 |
Angola | 4.46 | 15.633 | 70.507 | 8.31 | 35.923 | 109.923 | 15.59 | 49.98 | 155.32 |
Benin | 0.9 | 1.57 | 21.523 | 2.76 | 4.908 | 20.631 | 5.17 | 7.53 | 28.12 |
Cameroon | 3.24 | 7.501 | 109.478 | 3.84 | 11.3 | 126.591 | 5.57 | 12.12 | 139.08 |
Congo | 1.01 | 3.175 | 15.368 | 2.2 | 5.298 | 17.079 | 5.57 | 5.2 | 22.4 |
Egypt | 87.06 | 99.383 | 150.123 | 166.6 | 172.387 | 227.301 | 198.47 | 211.83 | 341.34 |
Ghana | 4.08 | 6.381 | 26.039 | 5.81 | 13.475 | 65.777 | 11.29 | 22.92 | 63.25 |
Kenya | 5.28 | 11.783 | 33.553 | 6.79 | 17.648 | 61.129 | 11.74 | 24.23 | 87.1 |
Morocco | 17.93 | 27.72 | 40.165 | 27.14 | 46.424 | 59.262 | 33.28 | 59.09 | 95.99 |
Nigeria | 107.72 | 124.757 | 264.181 | 57.31 | 161.171 | 264.068 | 85.26 | 170.35 | 360.17 |
Senegal | 1.98 | 4.307 | 21.821 | 3.26 | 7.704 | 27.329 | 4.77 | 9.77 | 36.3 |
South Africa | 113.12 | 269.674 | 335.839 | 152.99 | 411.315 | 436.869 | 146.45 | 431.8 | 584.93 |
Tanzania | 1.92 | 8.586 | 103.549 | 4.19 | 16.731 | 121.18 | 8.12 | 31.74 | 178.71 |
Tunisia | 12.93 | 16.351 | 23.13 | 19.48 | 24.995 | 31.754 | 19.21 | 26.6 | 45.59 |
Zimbabwe | 6.88 | 18.661 | 42.406 | 5.31 | 14.258 | 38.388 | 4.89 | 14.32 | 68.92 |
Total | 449.9 | 200.507 | 1361.489 | 568.98 | 1075.434 | 1751.005 | 703.8 | 1234.6 | 2431.69 |
GHGs emitted by sources (%) | |||||||||
C-T | T-O | C-O | C-T | T-O | C-O | C-T | T-O | C-O | |
Percentage | 64.2 | 51.45 | 33.04 | 52.9 | 61.42 | 32.49 | 57 | 50.77 | 28.94 |
References
- Leaver, J. Global food supply: A challenge for sustainable agriculture. Nutr. Bull. 2011, 36, 416–421. [Google Scholar] [CrossRef]
- Singh, R.L.; Singh, P.K. Global environmental problems. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2017; pp. 13–41. [Google Scholar]
- Foster, V.; Bedrosyan, D. Understanding CO2 Emissions from the Global Energy Sector; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Ngiruwonsanga, I.; Maniragaba, A.; Muhirwa, F. The Cation Exchange Capacity, pH of Soil in Mwogo Marshland, and the Rice Plantation in Huye District -Rwanda. Int. J. Environ. Agric. Res. 2019, 5. [Google Scholar] [CrossRef]
- Wang, L.; Cutforth, H.; Lal, R.; Chai, Q.; Zhao, C.; Gan, Y.; Siddique, K.H.M. ‘Decoupling’ land productivity and greenhouse gas footprints: A review. Land Degrad. Dev. 2018, 29, 4348–4361. [Google Scholar] [CrossRef]
- Kebede, E.; Kagochi, J.; Jolly, C.M. Energy consumption and economic development in Sub-Sahara Africa. Energy Econ. 2010, 32, 532–537. [Google Scholar] [CrossRef]
- Ahmed, S.M. Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-saharan Africa: The case of Sudan. Agric. Water Manag. 2020, 232, 106064. [Google Scholar] [CrossRef]
- Hirwa, H.; Zhang, Q.; Qiao, Y.; Peng, Y.; Leng, P.; Tian, C.; Khasanov, S.; Li, F.; Kayiranga, A.; Muhirwa, F.; et al. Insights on Water and Climate Change in the Greater Horn of Africa: Connecting Virtual Water and Water-Energy-Food-Biodiversity-Health Nexus. Sustainability 2021, 13, 6483. [Google Scholar] [CrossRef]
- Elysée, N.; Bienvenu, S.; Thiam, A.; Xavier, N.F.; Thacienne, U.; Gloriose, U.; Fabien, M. Water Resources Dynamics and Vulnerability in Rusizi National Park (Burundi) from 1984 to 2015, in the Context of Climate Change and Global Warming. Int. J. Environ. Clim. Chang. 2018, 8, 308–331. [Google Scholar] [CrossRef]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Hanson, C. How to Sustainably Feed 10 Billion People by 2050, in 21 charts; The World Resource Institute: Washington, DC, USA, 2018. [Google Scholar]
- Maris, S.C.; Teira-Esmatges, M.R.; Català, M.M. Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy Water Environ. 2016, 14, 199–210. [Google Scholar] [CrossRef]
- Belinskij, A. Water-Energy-Food Nexus within the Framework of International Water Law. Water 2015, 7, 5396–5415. [Google Scholar] [CrossRef] [Green Version]
- Mpandeli, S.; Naidoo, D.; Mabhaudhi, T.; Nhemachena, C.; Nhamo, L.; Liphadzi, S.; Hlahla, S.; Modi, A.T. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa. Int. J. Environ. Res. Public Health 2018, 15, 2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabhaudhi, T.; Simpson, G.; Badenhorst, J.; Senzanje, A.; Jewitt, G.P.W.; Chimonyo, V.G.P.; Mpandeli, S.; Nhamo, L. Developing a Framework for the Water-Energy-Food Nexus in South Africa. In Climate Change and Water Resources in Africa: Perspectives and Solutions Towards an Imminent Water Crisis; Diop, S., Scheren, P., Niang, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 407–431. [Google Scholar]
- Lindoso, D.P.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S.; Nasuti, S. Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- Habimana Simbi, C.; Lin, J.; Yang, D.; Ndayishimiye, J.C.; Liu, Y.; Li, H.; Xu, L.; Ma, W. Decomposition and decoupling analysis of carbon dioxide emissions in African countries during 1984–2014. J. Environ. Sci. 2021, 102, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, M.; Zhou, M. Study on the decoupling relationship between CO2 emissions and economic development based on two-dimensional decoupling theory: A case between China and the United States. Ecol. Indic. 2019, 102, 230–236. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhou, Z. Fuzzy Comprehensive Evaluation of Decoupling Economic Growth from Environment Costs in China’s Resource-Based Cities. Math. Probl. Eng. 2020, 1283740. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Davis, S.J.; Egoh, B.N. Trends and drivers of African fossil fuel CO2 emissions 1990–2017. Environ. Res. Lett. 2020, 15, 124039. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Ben Youssef, A.; M’Henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Lahmouri, M.; Drewes, J.E.; Gondhalekar, D. Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus. Water 2019, 11, 906. [Google Scholar] [CrossRef] [Green Version]
- Maji, I.K.; Sulaiman, C.; Abdul-Rahim, A.S. Renewable energy consumption and economic growth nexus: A fresh evidence from West Africa. Energy Rep. 2019, 5, 384–392. [Google Scholar] [CrossRef]
- Martin, M.; Danielsson, L. Environmental Implications of Dynamic Policies on Food Consumption and Waste Handling in the European Union. Sustainability 2016, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Awodumi, O.B.; Adewuyi, A.O. The role of non-renewable energy consumption in economic growth and carbon emission: Evidence from oil producing economies in Africa. Energy Strategy Rev. 2020, 27, 100434. [Google Scholar] [CrossRef]
- Pardoe, J.; Conway, D.; Namaganda, E.; Vincent, K.; Dougill, A.J.; Kashaigili, J.J. Climate change and the water–energy–food nexus: Insights from policy and practice in Tanzania. Clim. Policy 2018, 18, 863–877. [Google Scholar] [CrossRef] [Green Version]
- Conway, D.; van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Adom, P.K.; Agradi, M.P.; Bekoe, W. Electricity supply in Ghana: The implications of climate-induced distortions in the water-energy equilibrium and system losses. Renew. Energy 2019, 134, 1114–1128. [Google Scholar] [CrossRef]
- Mackay, H.; Mugagga, F.; Kakooza, L.; Chiwona-Karltun, L. Doing things their way? Food, farming and health in two Ugandan cities. Cities Health 2017, 1, 147–170. [Google Scholar] [CrossRef]
- Zaman, K.; Shamsuddin, S.; Ahmad, M. Energy-water-food nexus under financial constraint environment: Good, the bad, and the ugly sustainability reforms in sub-Saharan African countries. Environ. Sci. Pollut. Res. 2017, 24, 13358–13372. [Google Scholar] [CrossRef]
- Anser, M.K.; Yousaf, Z.; Usman, B.; Nassani, A.A.; Qazi Abro, M.M.; Zaman, K. Management of water, energy, and food resources: Go for green policies. J. Clean. Prod. 2020, 251, 119662. [Google Scholar] [CrossRef]
- IEA. Renewable Share in Final Energy Consumption (SDG 7.2). Available online: https://www.iea.org/fuels-and-technologies/renewables (accessed on 27 July 2021).
- IEA. Energy Data and Statistics Country Profile. Available online: https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=Energy%20consumption&indicator=CO2Industry (accessed on 10 July 2021).
- UNdata. Energy Statistic Database. Available online: http://data.un.org/Data.aspx?q=diesel&d=EDATA&f=cmID%3aDL#EDATA (accessed on 10 July 2021).
- Worldbank. Food Imports (% of Merchandise Imports). Available online: https://data.worldbank.org/indicator/TM.VAL.FOOD.ZS.UN (accessed on 10 July 2021).
- Worldbank. Improved Water Source (% Of Population With Access). Available online: https://datacatalog.worldbank.org/improved-water-source-population-access (accessed on 27 July 2021).
- WRI. Historical GHG Emissions. Available online: https://www.climatewatchdata.org/ghg-emissions?breakBy=sector&end_year=2018&rgions=DZA%2CAGO%2CBEN%2CCMR%2CEGY%2CGHA%2CKEN%2CNGA%2CCOG%2CSEN%2CZAF%2CTZA%2CTUN%2CZWE%2CMAR&source=CAIT&start_year=1990 (accessed on 9 July 2021).
- Faria, J. Largest Cities in Africa 2021 by Number of Inhabitants. Available online: https://www.statista.com/statistics/1218259/largest-cities-in-africa/ (accessed on 15 September 2021).
- IPCC. 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; The National Greenhouse Gas Inventories Programme: Hayama, Japan, 2008; pp. 1–20. [Google Scholar]
- Pankaj Bhatia, J.R.; WBCSD. The Greenhouse Gas Protocol; The World Resource Institute (WRI): Washington, DC, USA, 2004; p. 112. [Google Scholar]
- Li, J.S.; Chen, G.Q. Energy and greenhouse gas emissions review for Macao. Renewable and Sustainable Energy Reviews 2013, 22, 23–32. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Q.; Li, J.S.; Chen, G.Q. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao. Renew. Sustain. Energy Rev. 2017, 67, 662–672. [Google Scholar] [CrossRef]
- Ritchie, H. Food Production is Responsible for One-Quarter of the World’s Greenhouse Gas Emissions; WorldData: Wales, UK, 2019. [Google Scholar]
- Sven Sielhorst, J.W.M.; Offermans, D. Biofuels in Africa: An Assessment of Risks and Benefits for African Wetlands; Wetland International: Amsterdam, The Netherland, 2008; pp. 1–58. [Google Scholar]
- Oyedepo, S.O. Energy and sustainable development in Nigeria: The way forward. Energy Sustain. Soc. 2012, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Wu, J.; Chen, S. Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front. Sustain. Cities 2021, 3. [Google Scholar] [CrossRef]
- Hao, X.; Ruihong, Y.; Zhuangzhuang, Z.; Zhen, Q.; Xixi, L.; Tingxi, L.; Ruizhong, G. Greenhouse gas emissions from the water–air interface of a grassland river: A case study of the Xilin River. Sci. Rep. 2021, 11, 2659. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Lu, X.X.; Richey, J.E.; Sun, H.; Han, J.; Yu, R.; Liao, S.; Yi, Q. Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences 2015, 12, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N. One-third of our greenhouse gas emissions come from agriculture. Nature 2012. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.; Leon-Gruchalski, B.; et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 2018, 13, 1–12. [Google Scholar] [CrossRef]
Variable | Indication (Sub-Variables) | Source of Data |
---|---|---|
ENERGY |
| [33] |
| [34,35] | |
FOOD |
| [36] |
WATER |
| [37] |
GHG |
| [38] |
| [38] | |
| Authors | |
GHG proportion in water |
| Authors |
GHG proportion in food |
| Authors |
GHG proportion in energy |
| Authors |
GDPpc |
| World bank |
Fuel Energy | Emission Factors | |||
---|---|---|---|---|
CO2 a unit Kg/Tj | CH4 a | NO2 a | GWP b Unit: tCO2e./Tj | |
Gasoline | 69,300 | 3 | 0.6 | 69.5 |
Kerosene | 71,900 | 3 | 0.6 | 72.1 |
Gas oil and Diesel | 74,100 | 3 | 0.6 | 74.3 |
Fuel Oil | 77,400 | 3 | 0.6 | 77.6 |
LPG | 63,100 | 1 | 0.1 | 63.2 |
Traditional Fuel | 112,000 | 1 | 1.5 | 112.5 |
Natural Gas | 56,100 | 1 | 0.1 | 56.2 |
Decoupling Trends | DEP | DED | DEI | Level | Trends |
---|---|---|---|---|---|
Strong-positive decoupling | <0 | >0 | <−0.5 | excellent(E) | GDP increase is accompanied by a reduction in emissions by no less than 50% of the rate of economic increase. |
Weak positive decoupling | <0 | >0 | >−0.5 | Very good (VG) | GDP increase coupled with emissions declines at 50% of the rate of GDP increase. |
Expansive decoupling | >0 | >0 | <1 | satisfactory (S) | GDP tends to increase emissions as well, but not by more than the GDP growth rate. |
Declining (Recessive) decoupling | <0 | <0 | <1.2 | satisfactory (S) | Pollution decreases 1.2 times great than GDP declines. |
Expansive negative > 0 decoupling | >0 | >1 | poor (P) | Emissions increase at a higher rate than the growth of the economic GDP. | |
Decline-negative decoupling | <0 | <0 | <1.2 | poor (P) | Emissions are declining at a pace 1.2 times slower than GDP declines. |
Strong-negative de-coupling | >0 | <0 | <0 | unsatisfactory (U) | GDP is declining while emissions rise. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhirwa, F.; Shen, L.; Elshkaki, A.; Velempini, K.; Hirwa, H.; Zhong, S.; Mbandi, A.M. Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017. Energies 2021, 14, 6326. https://doi.org/10.3390/en14196326
Muhirwa F, Shen L, Elshkaki A, Velempini K, Hirwa H, Zhong S, Mbandi AM. Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017. Energies. 2021; 14(19):6326. https://doi.org/10.3390/en14196326
Chicago/Turabian StyleMuhirwa, Fabien, Lei Shen, Ayman Elshkaki, Kgosietsile Velempini, Hubert Hirwa, Shuai Zhong, and Aderiana Mutheu Mbandi. 2021. "Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017" Energies 14, no. 19: 6326. https://doi.org/10.3390/en14196326
APA StyleMuhirwa, F., Shen, L., Elshkaki, A., Velempini, K., Hirwa, H., Zhong, S., & Mbandi, A. M. (2021). Decoupling Energy, Water, and Food Resources Production from GHG Emissions: A Footprint Perspective Review of Africa from 1990 to 2017. Energies, 14(19), 6326. https://doi.org/10.3390/en14196326