Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds
Abstract
:1. Introduction
- Instead of traditional supports (SiO2, alumina, zeolites, etc.) use mixed oxides of rare earth and transition metals with variable oxidation states of cations/oxygen stoichiometry. As the result, such oxides with fluorite [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29], perovskite [30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] and spinel [68,69,70,71,72,73,74,75,76] structures as well as their nanocomposites [35,72,73] have sufficient amount of reactive surface/bulk oxygen species characterized also by a high mobility providing their fast migration to metal particles, where they react with activated fuel molecules, thus preventing coking [71,72,73]. These oxides are the most promising supports for catalysts of hydrocarbons or oxygenates reforming to syngas without coking [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77]. Their oxygen mobility can be tuned by changing their composition as well as synthesis procedures [13,32,35].
- In the case of bimetallic Ni-containing nanoalloys with Ru, Co, Fe, etc. coking is also much smaller than for pure Ni [8]. This is explained by dilution of the alloy surface layers by added atoms, thus preventing clustering of Ni atoms responsible for graphitic carbon nucleation. Moreover, guest metals suppress migration of carbon atoms into the bulk of alloy particle, thus preventing nucleation of carbon fibers at the metal/support interface [8]. While for traditional as well as fluorite-like supports nanoalloys were mainly loaded via impregnation route, for perovskites and spinels both Ni and other metal cations can be incorporated into the mixed oxide lattice during synthesis. Subsequent reduction generates nanocomposites comprised of segregated metal alloy nanoparticles strongly interacting with oxide matrix, which improves coking resistance and stability to sintering [12,54,55,56,57,58,59,60,61]. However, even for Ce–Zr–O fluorites application of such modern method as solvothermal one-pot synthesis in supercritical alcohols [22,23,24] allowed to provide incorporation of Ni cations into the mixed oxide lattice with the same Ni nanoparticles exsolution in reducing conditions.
2. Synthesis of Active Components
2.1. Pechini Method
2.2. Synthesis in Supercritical Alcohols
2.3. Mesoporous Nanocomposites
3. Characterization of Nanocomposite Materials
3.1. Structural Features
3.2. Surface Properties
3.3. Oxygen Species: Bonding Strength and Mobility
4. Catalytic Properties
4.1. Catalysts Based on Cerium–Zirconium Mixed Oxides
4.2. Catalysts Based on Perovskite Oxides
4.2.1. Reactions of Methane Reforming
4.2.2. Ethanol Reforming on Bulk Perovskites
4.2.3. Perovskite-Fluorite Nanocomposites
4.3. Catalysts Based on Spinels
4.4. Catalysts Based on High Surface Area Supports
5. Mechanisms of Main Reactions
5.1. Partial Oxidation and Dry Reforming of Methane
CH4 + 2s → CH3s + Hs CH3s + s → CH2s + Hs CH2s + s → CHs + Hs CHs + s → Cs + Hs | Methane activation and decomposition | |
Ols + s ⇔ Os + VOs Cs + Os → COs + s COs ⇔ CO + s | CO formation from CH4 | |
Hs + Hs ⇔ H2s + s H2s ⇔ H2 + s | H2 formation | |
Ols + s ⇔ Os + VOs Hsm + Os ⇔ OHs + s OHs + Hs ⇔ H2Os + s H2Os ⇔ H2O + s | Support reduction | |
CO2 + Vos ⇔ CO + Ols | Support oxidation and CO formation from CO2 |
- (1)
- O2 + 2Pt ⇔ 2PtO
- (2)
- H2O + z ⇔ H2 + zO
- (3)
- zO + Pt ⇔ PtO + z spillover
- (4)
- Obulk + z⇔zO + VO (bulk) diffusion
- (5)
- CH4 + PtO → CO + 2H2 + Pt
- (6)
- CH4 + 4PtO → CO2 + 2H2O + 4Pt
- (7)
- CO + PtO → CO2 + Pt
- (8)
- H2 + PtO → H2O + Pt
- (9)
- Pt + CO + H2O ⇔ CO2 + H2 + Pt
- (1)
- CO2 + [PtO] ↔ [PtCO3 ]
- (2)
- CH4 + [PtCO3] → 2 CO + 2 H2 + [PtO]
- (3)
- CH4 + [PtO] → CO + 2 H2 + [Pt]
- (4)
- [Pt] + [Os] ↔ [PtO ] + [Vs]
- (5)
- CO2 + [Vs] → CO + [Os]
- (6)
- H2 + [PtO] → H2O + [Pt]
5.2. Reactions of Ethanol Transformation into Syngas
- (1)
- O2 + 2[Z] → 2 [ZO]
- (2)
- C2H5OH + [ZO] → C2H4O + H2O + [Z]
- (3)
- C2H4O + (2+n)[ZO] → CO + CO2 + nH2O + (2-n)H2 + (2+n)[Z], n = 0–2
- (4)
- CO + [ZO] ↔ CO2 + [Z]
- (5)
- H2 + [ZO] ↔ H2O + [Z]
6. Development of Structured Catalysts
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bepari, S.; Kuila, D. Steam reforming of methanol ethanol and glycerol over nickel-based catalysts—A review. Int. J. Hydrogen Energy 2020, 45, 18090–18113. [Google Scholar] [CrossRef]
- Chattahathan, S.A.; Adhikari, A.; Abdoulmoumine, N. A review on current status of hydrogen production from bio-oil. Renew. Sustain. Energy Rev. 2012, 16, 2366–2372. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Setiabudi, H.D.; Teh, L.P.; Annuar, N.H.R.; Jalil, A.A. A review of heterogeneous catalysts for syngas production via dry reforming. J. Taiwan Inst. Chem. Eng. 2019, 101, 139–158. [Google Scholar] [CrossRef]
- Chen, J.; Sun, J.; Wang, Y. Catalysts for steam reforming of bio-oil: A review. Ind. Eng. Chem. Res. 2016, 56, 4627–4637. [Google Scholar] [CrossRef]
- Dou, B.; Song, Y.; Wang, C.; Chen, H.; Xu, Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges. Renew. Sustain. Energy Rev. 2014, 30, 950–960. [Google Scholar] [CrossRef]
- Anil, C.; Modak, J.M.; Madras, G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol. Catal. 2020, 484, 110805. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef] [PubMed]
- Yentekakis, I.V.; Panagiotopoulou, P.; Artemakis, G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Appl. Catal. B Environ. 2021, 296, 120210. [Google Scholar] [CrossRef]
- Bae, J.; Lee, S.; Kim, S.; Oh, J.; Choi, S.; Bae, M.; Kang, I.; Katikaneni, S.P. Liquid fuel processing for hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 19990–20022. [Google Scholar] [CrossRef]
- Pham, T.T.P.; Ro, K.S.; Chen, L.; Mahajan, D.; Siang, T.J.; Ashik, U.P.M.; Hayashi, J.; Minh, D.H.; Vo, D.-V.N. Microwave-assisted dry reforming of methane for syngas production: A review. Environ. Chem. Lett. 2020, 18, 1987–2019. [Google Scholar] [CrossRef]
- Gao, X.; Ashok, J.; Kawi, S. Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: A recent review. Reactions 2020, 1, 162–194. [Google Scholar] [CrossRef]
- Cho, E.; Lee, Y.-H.; Kim, H.; Jang, E.J.; Kwak, J.H.; Lee, K.; Ko, C.H.; Yoon, W.L. Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Appl. Catal. A Gen. 2020, 602, 117694. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Kuznetsova, T.G.; Alikina, G.M.; Frolova, Y.V.; Lukashevich, A.I.; Muzykantov, V.S.; Rogov, V.A.; Batuev, L.C.; Kriventsov, V.V.; Kochubei, D.I.; et al. Ceria-based fluorite-like oxide solid solutions promoted by precious metals as catalysts of methane transformation into syngas. In New Topics in Catalysis Research; McReynolds, D.K., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2007; pp. 97–196. [Google Scholar]
- Charisiou, N.D.; Iordanidis, A.; Polychronopoulou, K.; Yentekakis, I.V.; Goula, M.A. Studying the stability of Ni supported on modified with CeO2 alumina catalysts for the biogas dry reforming reaction. Mater. Today Proc. 2018, 5, 27607–27616. [Google Scholar] [CrossRef]
- Faria, E.C.; Neto, R.C.R.; Colman, R.C.; Noronha, F.B. Hydrogen production through CO2 reforming of methane over Ni/CeZrO2/Al2O3 catalysts. Catal. Today 2014, 228, 138–144. [Google Scholar] [CrossRef]
- Grabchenko, M.; Pantaleo, G.; Puleo, F.; Kharlamova, T.S.; Zaikovskii, V.I.; Vodyankina, O.; Liotta, L.F. Design of Ni based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catal. Today 2021. [Google Scholar] [CrossRef]
- Vagia, E.C.; Lemonidou, A.A. Investigations on the properties of ceria–zirconia-supported Ni and Rh catalysts and their performance in acetic acid steam reforming. J. Catal. 2010, 269, 388–396. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Kuznetsova, T.G.; Frolova, Y.V.; Alikina, G.M.; Lukashevich, A.I.; Rogov, V.A.; Muzykantov, V.S.; Pinaeva, L.G.; Sadovskaya, E.M.; Ivanova, Y.A.; et al. Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support. Catal. Today 2006, 117, 475–483. [Google Scholar] [CrossRef]
- Mirodatos, C.; van Veen, A.C.; Pokrovskaya, S.A.; Chumakova, N.A.; Sazonova, N.N.; Sadykov, V.A. Modeling of transient studies on the reaction kinetics over catalysts with lattice oxygen mobility: Dry reforming of CH4 over a Pt/PrCeZrO catalyst. Chem. Eng. J. 2018, 343, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, M.Y.; Pavlova, S.N.; Krieger, T.A.; Bespalko, Y.N.; Anikeev, V.I.; Chesalov, Y.A.; Kaichev, V.V.; Mezentseva, N.V.; Sadykov, V.A. The synthesis of Ce1−xZrxO2 oxides in supercritical alcohols and catalysts for carbon dioxide reforming of methane on their basis. Russ. J. Phys. Chem. B 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Simonov, M.; Bespalko, Y.; Smal, E.; Valeev, K.; Fedorova, V.; Krieger, T.; Sadykov, V. Nickel-containing ceria-zirconia doped with Ti and Nb. Effect of support composition and preparation method on catalytic activity in methane dry reforming. Nanomaterials 2020, 10, 1281. [Google Scholar] [CrossRef] [PubMed]
- Bespalko, Y.; Smal, E.; Simonov, M.; Valeev, K.; Fedorova, V.; Krieger, T.; Cherepanova, S.; Ishchenko, A.; Rogov, V.; Sadykov, V. Novel Ni/Ce(Ti)ZrO2 catalysts for methane dry reforming prepared in supercritical alcohol media. Energies 2020, 13, 3365. [Google Scholar] [CrossRef]
- Pavlova, S.; Smirnova, M.; Bobin, A.; Cherepanova, S.; Kaichev, V.; Ishchenko, A.; Selivanova, A.; Rogov, V.; Roger, A.-C.; Sadykov, V. Structural, textural, and catalytic properties of Ni-CexZr1−xO2 catalysts for methane dry reforming prepared by continuous synthesis in supercritical isopropanol. Energies 2020, 13, 3728. [Google Scholar] [CrossRef]
- Fedorova, V.; Simonov, M.; Valeev, K.; Bespalko, Y.; Smal, E.; Eremeev, N.; Sadovskaya, E.; Krieger, T.; Ishchenko, A.; Sadykov, V. Kinetic regularities of methane dry reforming reaction on nickel-containing modified ceria-zirconia. Energies 2021, 14, 2973. [Google Scholar] [CrossRef]
- Auxéméry, A.; Frias, B.B.; Smal, E.; Dziadek, K.; Philippot, G.; Legutko, P.; Simonov, M.; Thomas, S.; Adamski, A.; Sadykov, V.; et al. Continuous supercritical solvothermal preparation of nanostructured ceria-zirconia as supports for dry methane reforming catalysts. J. Supercrit. Fluids 2020, 162, 104855. [Google Scholar] [CrossRef]
- Smirnova, M.Y.; Bobin, A.S.; Pavlova, S.N.; Ishchenko, A.V.; Selivanova, A.V.; Kaichev, V.V.; Cherepanova, S.V.; Krieger, T.A.; Arapova, M.V.; Roger, A.-C.; et al. Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids. Open Chem. 2017, 15, 412–425. [Google Scholar] [CrossRef]
- Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C.H. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2010, 377, 16–26. [Google Scholar] [CrossRef]
- Lino, A.V.P.; Rodella, C.B.; Assaf, E.M.; Assaf, J.M. Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio. Int. J. Hydrogen Energy 2020, 45, 8418–8432. [Google Scholar] [CrossRef]
- Shoynkhorova, T.B.; Simonov, P.A.; Potemkin, D.I.; Snytnikov, P.V.; Belyaev, V.D.; Ishchenko, A.V.; Svintsitskiy, D.A.; Sobyanin, V.A. Highly dispersed Rh-, Pt-, Ru/Ce0.75Zr0.25O2−δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas. Appl. Catal. B Environ. 2018, 237, 237–244. [Google Scholar] [CrossRef]
- Shahnazi, A.; Firoozi, S. Improving the catalytic performance of LaNiO3 perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane. J. CO2 Util. 2021, 45, 101455. [Google Scholar] [CrossRef]
- Naurzkulova, S.M.; Arapova, M.V.; Ishchenko, A.V.; Krieger, T.A.; Saraev, A.A.; Kaichev, V.V.; Rogov, V.A.; Krasnov, A.V.; Massalimova, B.K.; Sadykov, V.A. Ni–Ru-containing mixed oxide-based composites as precursors for ethanol steam reforming catalysts: Effect of the synthesis methods on the structural and catalytic properties. Open Chem. 2021, 19, 696–708. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Pavlova, S.N.; Alikina, G.M.; Sazonova, N.N.; Mezentseva, N.V.; Arapova, M.V.; Rogov, V.A.; Krieger, T.A.; Ishhenko, A.V.; Gulyaev, R.V.; et al. Perovskite-based catalysts for transformation of natural gas and oxygenates into syngas. In Perovskite: Crystallography, Chemistry and Catalytic Performance; Zhang, J., Li, H., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 1–58. [Google Scholar]
- Barros, B.S.; Melo, D.M.A.; Libs, S.; Kiennemann, A. CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwave assisted self-combustion method. Appl. Catal. A Gen. 2010, 378, 69–75. [Google Scholar] [CrossRef]
- Pavlova, S.; Kapokova, L.; Bunina, R.; Alikina, G.; Sazonova, N.; Krieger, T.; Ishchenko, A.; Rogov, V.; Gulyaev, R.; Sadykov, V.; et al. Syngas production by CO2 reforming of methane using LnFeNi(Ru)O3 perovskites as precursors of robust catalysts. Catal. Sci. Technol. 2012, 2, 2099–2108. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Pavlova, S.N.; Kharlamova, T.S.; Muzykantov, V.S.; Uvarov, N.F.; Okhlupin, Y.S.; Ishchenko, A.V.; Bobin, A.S.; Mezentseva, N.V.; Alikina, G.M.; et al. Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance. In Perovskites: Structure, Properties and Uses; Borowski, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 67–178. [Google Scholar]
- Goldwasser, M.R.; Rivas, M.E.; Pietri, E.; Pérez-Zurita, M.J.; Cubeiro, M.L.; Grivobal-Constant, A.; Leclercq, G. Perovskites as catalysts precursors: Synthesis and characterization. J. Mol. Catal. A Chem. 2005, 228, 325–331. [Google Scholar] [CrossRef]
- Tanaka, H.; Misono, M. Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5, 381–387. [Google Scholar] [CrossRef]
- Goldwasser, M.R.; Rivas, M.E.; Pietri, E.; Pérez-Zurita, M.J.; Cubeiro, M.L.; Gingembre, L.; Leclercq, L.; Leclercq, G. Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln = La, Sm, Nd). Appl. Catal. A Gen. 2003, 255, 45–57. [Google Scholar] [CrossRef]
- Bhattar, D.; Abedin, M.A.; Kanitkar, S.; Spivey, J.J. A review on dry reforming of methane over perovskite derived catalysts. Catal. Today 2021, 365, 2–23. [Google Scholar] [CrossRef]
- Mawdsley, J.R.; Krause, T.R. Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl. Catal. A Gen. 2008, 334, 311–320. [Google Scholar] [CrossRef]
- Batiot-Dupeyrat, C.; Gallego, G.A.S.; Mondragon, F.; Barrault, J.; Tatibouët, J.-M. CO2 reforming of methane over LaNiO3 as precursor material. Catal. Today 2005, 107–108, 474–480. [Google Scholar] [CrossRef]
- Pereniguez, R.; Gonzalez-DelaCruz, V.M.; Holgado, J.P.; Caballero, A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Appl. Catal. B Environ. 2010, 93, 346–353. [Google Scholar] [CrossRef]
- Moradi, G.R.; Rahmanzade, M.; Sharifni, S. Kinetic investigation of CO2 reforming of CH4 over La–Ni based perovskite. Chem. Eng. J. 2010, 162, 787–791. [Google Scholar] [CrossRef]
- Nam, J.W.; Chae, H.; Lee, S.H.; Jung, H.; Lee, K.-Y. Methane dry reforming over well-dispersed Ni catalyst prepared from perovskite-type mixed oxides. Stud. Surf. Sci. Catal. 1998, 119, 843–848. [Google Scholar]
- Valderrama, G.; Goldwasser, M.R.; Urbina de Navarro, C.; Tatibouët, J.M.; Barrault, J.; Batiot-Dupeyrat, C.; Martınez, F. Dry reforming of methane over Ni perovskite type oxides. Catal. Today 2005, 107–108, 785–791. [Google Scholar] [CrossRef]
- Rynkowski, J.; Samulkiewicz, P.; Ladavos, A.K.; Pomonis, P.J. Catalytic performance of reduced La2−xSrxNiO4 perovskite-like oxides for CO2 reforming of CH4. Appl. Catal. A Gen. 2004, 263, 1–9. [Google Scholar] [CrossRef]
- Chettapongsaphan, C.; Charojrochkul, S.; Assabumrungrat, S.; Laosiripojana, N. Catalytic H2O and CO2 reforming of CH4 over perovskite-based La0.8Sr0.2Cr0.9Ni0.1O3: Effects of pre-treatment and co-reactant/CH4 on its reforming characteristics. Appl. Catal. A Gen. 2010, 386, 194–200. [Google Scholar] [CrossRef]
- Valderrama, G.; Kiennemann, A.; Goldwasser, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J. Power Sources 2010, 195, 1765–1771. [Google Scholar] [CrossRef]
- Mota, N.; Álvarez-Galván, M.C.; Al-Zahrani, S.M.; Navarro, R.M.; Fierro, J.L.G. Diesel fuel reforming over catalysts derived from LaCo1−xRuxO3 perovskites with high Ru loading. Int. J. Hydrogen Energy 2012, 37, 7056–7066. [Google Scholar] [CrossRef]
- Gallego, G.S.; Batiot-Dupeyrat, C.; Barrault, J.; Florez, E.; Mondragon, F. Dry reforming of methane over LaNi1−yByO3±δ (B = Mg, Co) perovskites used as catalyst precursor. Appl. Catal. A Gen. 2008, 334, 251–258. [Google Scholar] [CrossRef]
- Valderrama, G.; Kienneman, A.; Goldwasser, M.R. Dry reforming of CH4 over solid solutions of LaNi1−xCoxO3. Catal. Today 2008, 133, 142–148. [Google Scholar] [CrossRef]
- Goldwasser, M.R.; Rivas, M.E.; Lugo, M.L.; Pietri, E.; Perez-Zurita, J.; Cubeiro, M.L.; Griboval-Constant, A.; Leclercq, G. Combined methane reforming in presence of CO2 and O2 over LaFe1−xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal. Today 2005, 107–108, 106–113. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A review on perovskite catalysts for reforming of methane to hydrogen production. Renew. Sustain. Energy Rev. 2020, 134, 110291. [Google Scholar] [CrossRef]
- Provendier, H.; Petit, C.; Estournes, C.; Kiennemann, A. Steam reforming of methane on LaNixFe1−xO3 (0≤x≤1) perovskites. Reactivity and characterization after test. C. R. Acad. Sci.—Ser. IIC—Chem. 2001, 4, 57–66. [Google Scholar]
- Provendier, H.; Petit, C.; Estournes, C.; Libs, S.; Kiennemann, A. Stabilization of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl. Catal. A Gen. 1999, 180, 163–173. [Google Scholar] [CrossRef]
- Kapokova, L.; Pavlova, S.; Bunina, R.; Alikina, G.; Krieger, T.; Ishchenko, A.; Rogov, V.; Sadykov, V. Dry reforming of methane over LnFe0.7Ni0.3O3−δ perovskites: Influence of Ln nature. Catal. Today 2011, 164, 227–233. [Google Scholar] [CrossRef]
- Kim, W.Y.; Jang, J.S.; Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, J.S. Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Appl. Catal. A Gen. 2019, 575, 198–203. [Google Scholar] [CrossRef]
- Gallego, G.S.; Marín, J.G.; Batiot-Dupeyrat, C.; Barrault, J.; Mondragon, F. Influence of Pr and Ce in dry methane reforming catalysts produced from La1−xAxNiO3−δ perovskites. Appl. Catal. A Gen. 2009, 369, 97–103. [Google Scholar] [CrossRef]
- Rivas, M.E.; Fierro, J.L.G.; Goldwasser, M.R.; Pietri, E.; Pérez-Zurita, M.J.; Griboval-Constant, A.; Lecler, G. Structural features and performance of LaNi1−xRhxO3 system for the dry reforming of methane. Appl. Catal. A Gen. 2008, 344, 10–19. [Google Scholar] [CrossRef]
- Araujo, G.C.; Lima, S.M.; Assaf, J.M.; Pena, M.A.; Fierro, J.L.G.; Rangel, M.D.C. Catalytic evaluation of perovskite-type oxide LaNi1−xRuxO3 in methane dry reforming. Catal. Today 2008, 133–135, 129–135. [Google Scholar] [CrossRef]
- Mota, N.; Alvarez-Galvána, M.C.; Navarro, R.M.; Al-Zahrani, S.M.; Goguet, A.; Daly, H.; Zhang, W.; Trunschke, A.; Schlögl, R.; Fierro, J.L.G. Insights on the role of Ru substitution in the properties of LaCoO3-based oxides as catalysts precursors for the oxidative reforming of diesel fuel. Appl. Catal. B Environ. 2012, 113–114, 271–280. [Google Scholar] [CrossRef]
- Chen, H.; Yu, H.; Peng, F.; Yang, G.; Wang, H.; Yang, J.; Tang, Y. Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem. Eng. J. 2010, 160, 333–339. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lee, C.C.; Wang, C.H.; Yeh, C.T.; Wang, C.B. Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen. Int. J. Hydrogen Energy 2010, 35, 4069–4075. [Google Scholar] [CrossRef]
- De Lima, S.M.; da Silva, A.M.; da Costa, L.O.O.; Assaf, J.M.; Jacobs, G.; Davis, B.H.; Mattos, L.V.; Noronha, F.B. Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl. Catal. A Gen. 2010, 377, 181–190. [Google Scholar] [CrossRef]
- Chen, S.Q.; Wang, H.; Liu, Y. Perovskite La–St–Fe–O (St = Ca, Sr) supported nickel catalysts for steam reforming of ethanol: The effect of the A site substitution. Int. J. Hydrogen Energy 2009, 34, 7995–8005. [Google Scholar] [CrossRef]
- Chen, S.Q.; Li, Y.D.; Liu, Y.; Bai, X. Regenerable and durable catalyst for hydrogen production from ethanol steam reforming. Int. J. Hydrogen Energy 2011, 36, 5849–5856. [Google Scholar] [CrossRef]
- De Lima, S.M.; da Silva, A.M.; da Costa, L.O.O.; Assaf, J.M.; Mattos, L.V.; Sarkari, R.; Venugopale, A.; Noronha, F.B. Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl. Catal. B Environ. 2012, 121–122, 1–9. [Google Scholar] [CrossRef]
- Sadovskaya, E.M.; Frolov, D.D.; Goncharov, V.B.; Fedorova, A.A.; Morozov, I.V.; Klyushin, A.Y.; Vinogradov, A.S.; Smal, E.A.; Sadykov, V.A. Mixed spinel-type Ni-Co-Mn oxides: Synthesis, structure and catalytic properties. Catal. Sustain. Energy 2016, 3, 25–31. [Google Scholar] [CrossRef]
- Smal, E.A.; Simonov, M.N.; Mezentseva, N.V.; Krieger, T.A.; Larina, T.V.; Saraev, A.A.; Glazneva, T.S.; Ishchenko, A.V.; Rogov, V.A.; Eremeev, N.F.; et al. Spinel-type MnxCr3−xO4-based catalysts for ethanol steam reforming. Appl. Catal. B Environ. 2021, 283, 119656. [Google Scholar] [CrossRef]
- Medeiros, R.L.B.A.; Macedo, H.P.; Melo, V.R.M.; Oliveira, A.A.S.; Barros, J.M.F.; Melo, M.A.F.; Melo, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. Int. J. Hydrogen Energy 2016, 41, 14047–14057. [Google Scholar] [CrossRef]
- Pinaeva, L.G.; Sadovskaya, E.M.; Smal, E.A.; Bobin, A.S.; Sadykov, V.A. Mechanism and kinetics of ethanol oxidation over Ru(Pt) supported onto Mn-Cr-O mixed oxides. Chem. Eng. J. 2018, 333, 101–110. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Bobrova, L.N.; Mezentseva, N.V.; Pavlova, S.N.; Fedorova, Y.E.; Bobin, A.S.; Vostrikov, Z.Y.; Glazneva, T.S.; Smirnova, M.; Sazonova, N.N.; et al. Methane dry reforming on nanocomposite catalysts: Design, kinetics and mechanism. In Small-Scale Gas to Liquid Fuel Synthesis; Kannelopoulos, N., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 315–376. [Google Scholar]
- Sadykov, V.; Mezentseva, N.; Simonov, M.; Smal, E.; Arapova, M.; Pavlova, S.; Fedorova, Y.; Chub, O.; Bobrova, L.; Kuzmin, V.; et al. Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: Design and performance. Int. J. Hydrogen Energy 2015, 40, 7511–7522. [Google Scholar] [CrossRef]
- Korneeva, E.V.; Kardash, T.Y.; Rogov, V.A.; Smal, E.A.; Sadykov, V.A. Catalytic steam reforming of ethanol over W-, V-, or Nb–modified Ni-Al-O hydrotalcite-type precursors. Catal. Sustain. Energy 2017, 4, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Hadian, N.; Rezaei, M. Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4. Fuel 2013, 113, 571–579. [Google Scholar] [CrossRef]
- Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadykov, V.; Mezentseva, N.; Alikina, G.; Bunina, R.; Pelipenko, V.; Lukashevich, A.; Vostrikov, Z.; Rogov, V.; Krieger, T.; Ishchenko, A.; et al. Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance. In Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications; Reddy, B., Ed.; INTECH: Vienna, Austria, 2011; pp. 909–946. [Google Scholar]
- Sadykov, V.; Pavlova, S.; Fedorova, J.; Bobin, A.; Fedorova, V.; Simonov, M.; Ishchenko, A.; Krieger, T.; Melgunov, M.; Glazneva, T.; et al. Structured catalysts with mesoporous nanocomposite active components loaded on heat-conducting substrates for transformation of biogas/biofuels into syngas. Catal. Today 2021, 379, 166–180. [Google Scholar] [CrossRef]
- Wysocka, J.H.I.; Rogala, A. Catalytic activity of nickel and ruthenium–nickel catalysts supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a dry reforming process. Catalysts 2019, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Katheria, S.; Deo, G.; Kunzru, D. Rh-Ni/MgAl2O4 catalyst for steam reforming of methane: Effect of Rh doping, calcination temperature and its application on metal monoliths. Appl. Catal. A Gen. 2019, 570, 308–318. [Google Scholar] [CrossRef]
- Lino, A.V.P.; Assaf, E.M.; Assaf, J.M. Adjusting process variables in methane tri-reforming to achieve suitable syngas quality and low coke deposition. Energy Fuels 2020, 34, 16522–16531. [Google Scholar] [CrossRef]
- Sadykov, V.; Bobrova, L.; Pavlova, S.; Simagina, V.; Makarshin, L.; Parmon, V.; Ross, J.R.H.; Van Veen, A.C.; Mirodatos, C. Syngas Generation from Hydrocarbons and Oxygenates with Structured Catalysts; Nova Science Publishers: Hauppauge, NY, USA, 2012; p. 140. [Google Scholar]
- Deutschman, O. Catalytic reforming of logistic fuels at high-temperatures. Catalysis 2012, 24, 48–82. [Google Scholar]
- Bobrova, L.N.; Sadykov, V.A.; Mezentseva, N.V.; Pelipenko, V.V.; Vernikovskaya, N.V.; Klenov, O.P.; Smorygo, O.L. Catalytic performance of structured packages coated with perovskite-based nanocomposite in the methane steam reforming reaction. Int. J. Hydrogen Energy 2016, 41, 4632–4645. [Google Scholar] [CrossRef]
- Shoynkhorova, T.B.; Rogozhnikov, V.N.; Ruban, N.V.; Shilov, V.A.; Potemkin, D.I.; Simonov, P.A.; Belyaev, V.D.; Snytnikov, P.V.; Sobyanin, V.A. Composite Rh/Zr0.25Ce0.75O2−δ-γ-Al2O3/Fecralloy wire mesh honeycomb module for natural gas, LPG and diesel catalytic conversion to syngas. Int. J. Hydrogen Energy 2019, 44, 9941–9948. [Google Scholar] [CrossRef]
- Smorygo, O.L.; Sadykov, V.A.; Bobrova, L.N. Open Cell Foams as Substrates for Design of Structured Catalysts, Solid Oxide Fuel Cells and Supported Asymmetric Membrane; Nova Science Publishers: Hauppauge, NY, USA, 2016; p. 207. [Google Scholar]
- Sadykov, V.A. (Ed.) Advanced Nanomaterials for Catalysis and Energy. Synthesis, Characterization and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 567. [Google Scholar]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent No. 3330697, 1967. Available online: https://patents.google.com/patent/US3330697A/ (accessed on 6 August 2021).
- Sadykov, V.A.; Simonov, M.N.; Mezentseva, N.V.; Pavlova, S.N.; Fedorova, Y.E.; Bobin, A.S.; Bespalko, Y.N.; Ishchenko, A.V.; Krieger, T.A.; Glazneva, T.S.; et al. Ni-loaded nanocrystalline ceria-zirconia solid solutions prepared via modified Pechini route as stable to coking catalysts of CH4 dry reforming. Open Chem. 2016, 14, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Sadykov, V.; Pavlova, S.; Smal, E.; Arapova, M.; Simonov, M.; Mezentseva, N.; Rogov, V.; Glazneva, T.; Lukashevich, A.; Roger, A.-C.; et al. Structured catalysts for biofuels transformation into syngas with active components based on perovskite and spinel oxides supported on Mg-doped alumina. Catal. Today 2017, 293–294, 176–185. [Google Scholar] [CrossRef]
- Sadykov, V.; Mezentseva, N.; Fedorova, Y.; Lukashevich, A.; Pelipenko, V.; Kuzmin, V.; Simonov, M.; Ishchenko, A.; Vostrikov, Z.; Bobrova, L.; et al. Structured catalysts for steam/autothermal reforming of biofuels on heat-conducting substrates: Design and performance. Catal. Today 2015, 251, 19–27. [Google Scholar] [CrossRef]
- Shmakov, A.N.; Cherepanova, S.V.; Zyuzin, D.A.; Fedorova, Y.E.; Bobrikov, I.A.; Roger, A.-C.; Adamski, A.; Sadykov, V.A. The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods. Open Chem. 2017, 15, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Kol’ko, V.P.; Zyuzin, D.A.; Sadykov, V.A.; Kriventsov, V.V.; Moroz, E.M. Structure of the mixed oxides Mex(Ce0.5Zr0.5)1−xOy (Me = Gd, Pr). Glass Phys. Chem. 2007, 33, 335–339. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Kriventsov, V.V.; Moroz, E.M.; Borchert, Y.V.; Zyuzin, D.A.; Kol’ko, V.P.; Kuznetsova, T.G.; Ivanov, V.P.; Boronin, A.I.; Mezentseva, N.V.; et al. Ceria-zirconia nanoparticles doped with La or Gd: Effect of the doping cation on the real structure. Solid State Phenom. 2007, 128, 81–88. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Mezentseva, N.V.; Alikina, G.M.; Lukashevich, A.I.; Borchert, Y.V.; Kuznetsova, T.G.; Ivanov, V.P.; Trukhan, S.N.; Paukshtis, E.A.; Muzykantov, V.S.; et al. Pt-supported nanocrystalline ceria-zirconia doped with La, Pr or Gd: Factors controlling syngas generation in partial oxidation/autothermal reforming of methane or oxygenates. Solid State Phenom. 2007, 128, 239–248. [Google Scholar] [CrossRef]
- Sadykov, V.; Mezentseva, N.; Alikina, G.; Lukashevich, A.; Muzykantov, V.; Bunina, R.; Boronin, A.; Pazhetnov, E.; Paukshtis, E.; Kriventsov, V.; et al. Doped nanocrystalline Pt-promoted ceria-zirconia as anode catalysts for IT-SOFC: Synthesis and properties. Mater. Res. Soc. Symp. Proc. 2007, 1023, 26–31. [Google Scholar] [CrossRef]
- Kuznetsova, T.G.; Sadykov, V.A. Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials. Kinet. Catal. 2008, 49, 840–858. [Google Scholar] [CrossRef]
- Cortés Corberán, V.; Rives, V.; Mezentseva, N.V.; Sadykov, V.A.; Martínez-Tamayo, E. Nanostructured metal oxide catalyst. In Nanotechnology for Sustainable Manufacturing; Rickerby, D., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 153–198. [Google Scholar]
- Bulgakov, N.N.; Sadykov, V.A.; Lunin, V.V.; Kemnitz, E. Lattice defects and oxygen absorption/migration in ceria/ceria-zirconia solid solutions: Analysis by semiempirical interacting bonds method. React. Kinet. Catal. Lett. 2002, 76, 103–110. [Google Scholar] [CrossRef]
- Bulgakov, N.N.; Sadykov, V.A.; Lunin, V.V.; Kemnitz, E. Surface energies and heats of oxygen adsorption in ceria/ceria-zirconia solid solutions: Analysis by semiempirical interacting bonds method. React. Kinet. Catal. Lett. 2002, 76, 111–116. [Google Scholar] [CrossRef]
- Sadykov, V.; Rogov, V.; Ermakova, E.; Arendarsky, D.; Mezentseva, N.; Alikina, G.; Sazonova, N.; Bobin, A.; Pavlova, S.; Schuurman, Y.; et al. Mechanism of CH4 dry reforming by pulse microcalorimetry: Metal nanoparticles on perovskite/fluorite supports with high oxygen mobility. Thermochim. Acta 2013, 567, 27–34. [Google Scholar] [CrossRef]
- Simonov, M.N.; Rogov, V.A.; Smirnova, M.Y.; Sadykov, V.A. Pulse microcalorimetry study of methane dry reforming reaction on Ni/ceria-zirconia catalyst. Catalysts 2017, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- Simonov, M.N.; Sadykov, V.A.; Rogov, V.A.; Bobin, A.S.; Sadovskaya, E.M.; Mezentseva, N.V.; Ishchenko, A.V.; Krieger, T.A.; Roger, A.-C.; van Veen, A.C. Ethanol selective oxidation into syngas over Pt-promoted fluorite-like oxide: SSITKA and pulse microcalorimetry study. Catal. Today 2016, 277, 157–163. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Eremeev, N.F.; Sadovskaya, E.M.; Chesalov, Y.A.; Pavlova, S.N.; Rogov, V.A.; Simonov, M.N.; Bobin, A.S.; Glazneva, T.S.; Smal, E.A.; et al. Detailed mechanism of ethanol transformation into syngas on catalysts based on mesoporous MgAl2O4 support loaded with Ru+Ni/(PrCeZrO or MnCr2O4) active components. Top. Catal. 2020, 63, 166–177. [Google Scholar] [CrossRef]
- Sadykov, V.; Sadovskaya, E.; Bobin, A.; Kharlamova, T.; Uvarov, N.; Ulikhin, A.; Argirusis, C.; Sourkouni, G.; Stathopoulos, V. Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients. Solid State Ionics 2015, 271, 69–72. [Google Scholar] [CrossRef]
- Sadykov, V.; Eremeev, N.; Sadovskaya, E.; Bobin, A.; Ishchenko, A.; Pelipenko, V.; Muzykantov, V.; Krieger, T.; Amanbaeva, D. Oxygen mobility and surface reactivity of PrNi1−xCoxO3-δ perovskites and their nanocomposites with Ce0.9Y0.1O2−δ by temperature-programmed isotope exchange experiments. Solid State Ionics 2015, 273, 35–40. [Google Scholar] [CrossRef]
- Sadovskaya, E.M.; Ivanova, Y.A.; Pinaeva, L.G.; Grasso, G.; Kuznetsova, T.G.; van Veen, A.; Sadykov, V.A.; Mirodatos, C. Kinetics of oxygen exchange over CeO2-ZrO2 fluorite-based catalysts. J. Phys. Chem. A 2007, 111, 4498–4505. [Google Scholar] [CrossRef]
- Pinaeva, L.G.; Sadovskaya, E.M.; Ivanova, Y.A.; Kuznetsova, T.G.; Prosvirin, I.P.; Sadykov, V.A.; Schuurman, Y.; van Veen, A.C.; Mirodatos, C. Water gas shift and partial oxidation of CH4 over CeO2–ZrO2(–La2O3) and Pt/CeO2–ZrO2(–La2O3): Performance under transient conditions. Chem. Eng. J. 2014, 257, 281–291. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Sazonova, N.N.; Bobin, A.S.; Muzykantov, V.S.; Gubanova, E.L.; Alikina, G.M.; Lukashevich, A.I.; Rogov, V.A.; Ermakova, E.N.; Sadovskaya, E.M.; et al. Partial oxidation of methane on Pt-supported lanthanide doped ceria-zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance. Catal. Today 2011, 169, 125–137. [Google Scholar] [CrossRef]
- Reshetnikov, S.I.; Lukashevich, A.I.; Alikina, G.M.; Sadykov, V.A. Effect of oxygen mobility in solid catalyst on transient regimes of catalytic reaction of methane partial oxidation at short contact times. Catal. Lett. 2006, 110, 235–242. [Google Scholar] [CrossRef]
- Pavlova, S.N.; Sazonova, N.N.; Sadykov, V.A.; Alikina, G.M.; Lukashevich, A.I.; Gubanova, E.L.; Bunina, R.V. Study of synthesis gas production over structured catalysts based on LaNi(Pt)Ox- and Pt(LaPt)- CeO2-ZrO2 supported on corundum. Stud. Surf. Sci. Catal. 2007, 167, 343–348. [Google Scholar]
- Sazonova, N.N.; Sadykov, V.A.; Bobin, A.S.; Pokrovskaya, S.A.; Gubanova, E.L.; Mirodatos, C. Dry reforming of methane over fluorite-like mixed oxides promoted by Pt. React. Kinet. Catal. Lett. 2009, 98, 35–41. [Google Scholar] [CrossRef]
- Yaseneva, P.; Pavlova, S.; Sadykov, V.; Alikina, G.; Lukashevich, A.; Rogov, V.; Belochapkine, S.; Ross, J. Combinatorial approach to the preparation and characterization of catalysts for biomass steam reforming into syngas. Catal. Today 2008, 137, 23–28. [Google Scholar] [CrossRef]
- Wei, T.; Jia, L.; Zheng, H.; Chi, B.; Pu, J.; Li, J. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: A highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Appl. Catal. A. 2018, 564, 199–207. [Google Scholar] [CrossRef]
- Arapova, M.V.; Pavlova, S.N.; Rogov, V.A.; Krieger, T.A.; Ishchenko, A.V.; Roger, A.-C. Ni(Co)-containing catalysts based on perovskite-like ferrites for steam reforming of ethanol. Catal. Sustain. Energy 2014, 1, 10–20. [Google Scholar] [CrossRef]
- Marinho, A.L.A.; Rabelo-Neto, R.C.; Noronha, F.B.; Mattos, L.V. Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen. Appl. Catal. A Gen. 2016, 520, 53–64. [Google Scholar] [CrossRef]
- Sadykov, V.; Sobyanin, V.; Mezentseva, N.; Alikina, G.; Vostrikov, Z.; Fedorova, Y.; Pelipenko, V.; Usoltsev, V.; Tikhov, S.; Salanov, A.; et al. Transformation of CH4 and liquid fuels into syngas on monolithic catalysts. Fuel 2010, 89, 1230–1240. [Google Scholar] [CrossRef]
- Frolova-Borchert, Y.V.; Sadykov, V.A.; Alikina, G.M.; Lukashevich, A.I.; Moroz, E.M.; Kochubey, D.I.; Kriventsov, V.V.; Zaikovskii, V.I.; Zyryanov, V.V.; Uvarov, N.F. Nanocomposites comprised of doped cerium dioxide and lanthanum manganite for syngas production. Solid State Ionics 2006, 177, 2533–2538. [Google Scholar] [CrossRef]
- Sadykov, V.; Mezentseva, N.; Alikina, G.; Bunina, R.; Rogov, V.; Krieger, T.; Belochapkine, S.; Ross, J. Composite catalytic materials for steam reforming of methane and oxygenates: Combinatorial synthesis, characterization and performance. Catal. Today 2009, 145, 127–137. [Google Scholar] [CrossRef]
- Sadykov, V.; Mezentseva, N.; Alikina, G.; Bunina, R.; Pelipenko, V.; Lukashevich, A.; Tikhov, S.; Usoltsev, V.; Vostrikov, Z.; Bobrenok, O.; et al. Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance. Catal Today. 2009, 146, 132–140. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Chub, O.V.; Chesalov, Y.A.; Mezentseva, N.V.; Pavlova, S.N.; Arapova, M.V.; Rogov, V.A.; Simonov, M.N.; Roger, A.-C.; Parkhomenko, K.V.; et al. Mechanism of ethanol steam reforming over Pt/(Ni+Ru)-promoted oxides by FTIRS in situ. Top. Catal. 2016, 59, 1332–1342. [Google Scholar] [CrossRef]
- Marinho, A.L.A.; Toniolo, F.S.; Noronha, F.B.; Epron, F.; Duprez, D.; Bion, N. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl. Catal. B Environ. 2021, 281, 119459. [Google Scholar] [CrossRef]
- Guilhaume, N.; Bianchi, D.; Wandawa, R.A.; Yin, W.; Yves Schuurman, Y. Study of CO2 and H2O adsorption competition in the combined dry/steam reforming of biogas. Catalysis Today 2021, 375, 282–289. [Google Scholar] [CrossRef]
- Di Michele, A.; Dell’Angelo, A.; Tripodi, A.; Bahadori, E.; Sanchez, F.; Motta, D.; Dimitratos, N.; Rossetti, I.; Ramis, G. Steam reforming of ethanol over Ni/MgAl2O4 catalysts. Int. J. Hydrogen Energy 2019, 44, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ying, M.; Yu, J.; Zhan, W.; Wang, L.; Guo, Y.; Guo, Y. NixAl1O2−δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B Environ. 2021, 291, 120074. [Google Scholar] [CrossRef]
- Lino, A.V.P.; Assaf, E.M.; Assaf, J.M. X-ZrO2 addition (X= Ce, La, Y and Sm) on Ni/MgAl2O4 applied to methane tri-reforming for syngas production. J. CO2 Util. 2019, 33, 273–283. [Google Scholar] [CrossRef]
- Mao, X.; Foucher, A.C.; Stach, E.A.; Gorte, R.J. Changes in Ni-NiO equilibrium due to LaFeO3 and the effect on dry reforming of CH4. J. Catal. 2020, 381, 561–569. [Google Scholar] [CrossRef]
- Messaoudia, H.; Thomas, S.; Djaidja, A.; Slyemia, S.; Barama, A. Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane. J. CO2 Util. 2018, 24, 40–49. [Google Scholar] [CrossRef]
- Pavlova, S.; Fedorova, Y.; Ishchenko, A.; Melgunov, M.; Melgunova, E.; Simonov, M.; Rogov, V.; Krieger, T.; Sadykov, V.; Roger, A.-C. Ni-containing catalysts based on ordered mesoporous MgO–Al2O3 for methane dry reforming. Catal. Sustain. Energy 2018, 5, 59–66. [Google Scholar] [CrossRef]
- Jabbour, K.; El Hassan, N.; Davidson, A.; Casaleb, S.; Massiani, P. Factors affecting the long-term stability of mesoporous nickel-based catalysts in combined steam and dry reforming of methane. Catal. Sci. Technol. 2016, 6, 4616–4631. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Song, H.; Chou, L. Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Appl. Catal. B Environ. 2011, 108–109, 177–190. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Ordered mesoporous MgO-Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: Effects of basic modifier and mesopore structure. Int. J. Hydrogen Energy 2013, 38, 7307–7325. [Google Scholar] [CrossRef]
- Jabbour, K.; Massiani, P.; Davidson, A.; Casale, S.; El Hassan, N. Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Appl. Catal. B Environ. 2017, 201, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Bobin, A.S.; Sadykov, V.A.; Rogov, V.A.; Mezentseva, N.V.; Alikina, G.M.; Sadovskaya, E.M.; Glazneva, T.S.; Sazonova, N.N.; Smirnova, M.Y.; Veniaminov, S.A.; et al. Mechanism of CH4 dry reforming on nanocrystalline doped ceria–zirconia with supported Pt, Ru, Ni, and Ni–Ru. Top. Catal. 2013, 56, 958–968. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Tikhov, S.F.; Isupova, L.A. Heterogeneous Catalytic Redox Reactions; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Sadykov, V.A.; Gubanova, E.L.; Sazonova, N.N.; Pokrovskaya, S.A.; Chumakova, N.A.; Mezentseva, N.V.; Bobin, A.S.; Gulyaev, R.V.; Ishchenko, A.V.; Krieger, T.A.; et al. Dry reforming of methane over Pt/PrCeZrO catalyst: Kinetic and mechanistic features by transient studies and their modeling. Catal. Today 2011, 171, 140–149. [Google Scholar] [CrossRef]
- Sadykov, V.; Mezentseva, N.; Muzykantov, V.; Efremov, D.; Gubanova, E.; Sazonova, N.; Bobin, A.; Paukshtis, E.; Ishchenko, A.; Voronin, V.; et al. Real structure-oxygen mobility relationship in nanocrystalline doped ceria-zirconia fluorite-like solid solutions promoted by Pt. MRS Online Proc. Libr. 2008, 1122, 1122-O05-03. [Google Scholar] [CrossRef]
- Ulianitsky, V.; Shtertser, A.; Sadykov, V.; Smurov, I. Development of catalytic converters using detonation spraying. Mater. Manuf. Process. 2016, 31, 1433–1438. [Google Scholar] [CrossRef]
- Rogozhnikov, V.N.; Kuzin, N.A.; Snytnikov, P.V.; Potemkin, D.I.; Shoynkhorova, T.B.; Simonov, P.A.; Shilov, V.A.; Ruban, N.V.; Kulikov, A.V.; Sobyanin, V.A. Design, scale-up, and operation of a Rh/Ce0.75Zr0.25O2−δ-ƞ-Al2O3/FeCrAl alloy wire mesh honeycomb catalytic module in diesel autothermal reforming. Chem. Eng. J. 2019, 374, 511–519. [Google Scholar] [CrossRef]
- Zazhigalov, S.V.; Rogozhnikov, V.N.; Snytnikov, P.V.; Potemkin, D.I.; Simonov, P.A.; Shilov, V.A.; Ruban, N.V.; Kulikov, A.V.; Zagoruiko, A.N.; Sobyanin, V.A. Simulation of diesel autothermal reforming over Rh/Ce0.75Zr0.25O2−δ-η-Al2O3/FeCrAl wire mesh honeycomb catalytic module. Chem. Eng. Process. 2020, 150, 107876. [Google Scholar] [CrossRef]
- Potemkin, D.I.; Rogozhnikov, V.N.; Ruban, N.V.; Shilov, V.A.; Simonov, P.A.; Shashkov, M.V.; Sobyanin, V.A.; Snytnikov, P.V. Comparative study of gasoline, diesel and biodiesel autothermal reforming over Rh-based FeCrAl-supported composite catalyst. Int. J. Hydrogen Energy 2020, 45, 26197–26205. [Google Scholar] [CrossRef]
- Shilov, V.A.; Rogozhnikov, V.N.; Zazhigalov, S.V.; Potemkin, D.I.; Belyaev, V.D.; Shashkov, M.V.; Zagoruiko, A.N.; Sobyanin, V.A.; Snytnikov, P.V. Operation of Rh/Ce0.75Zr0.25O2−δ-ƞ-Al2O3/FeCrAl wire mesh honeycomb catalytic modules in diesel steam and autothermal reforming. Int. J. Hydrogen Energy 2021, in press. [Google Scholar] [CrossRef]
Sample, Type of Exchange Molecule | Dbulk, cm2/s | Dinterfaces, cm2/s |
---|---|---|
Pt/Pr0.3Ce0.35Zr0.35O2−δ, 18O2 | 4 × 10−14 | >3.3 × 10−11 |
Pt/Pr0.3Ce0.35Zr0.35O2−δ, C18O2 | - | >2 × 10−12 |
Pt/La0.3Ce0.35Zr0.35O2−δ, 18O2 | 4 × 10−15 | 5 × 10−13 ÷ 7 × 10−13 |
LaNiPt/Pr0.15Sm0.15Ce0.35Zr0.35O2−δ, 18O2 | 3 × 10−14 | >2.5 × 10−11 |
LaNiPt/Pr0.15Sm0.15Ce0.35Zr0.35O2−δ, C18O2 | - | >5 × 10−12 |
Co1.8Mn1.2O4, 18O2 | 8 × 10−13 | - |
Ni0.33Co1.33Mn1.33O4, 18O2 | 1.5 × 10−12 | - |
Ni0.6Co1.2Mn1.2O4, 18O2 | 10−11 | - |
PrNi0.5Co0.5O3–Ce0.9Y0.1O2−δ-nanocomposite, C18O2 | 10−11 ÷ 10−9 | 10−8 ÷ 10−7 |
Ce0.65Pr0.25Y0.1O2−δ, C18O2 | 10−8 | - |
Ni/Pr0.2Ce0.4Zr0.4O2−δ, C18O2 | 4.8 × 10−12 | - |
Ni0.5Cu0.5O/Nd5.5WO11.25-δ nanocomposite, C18O2 | Fast 2.2 × 10−11 Slow ~10−13 | - |
5 wt.% Ni/Ce0.75Zr0.25O2, C18O2 | 1.3 × 10−14 | - |
2 wt.% Ni+2 wt.% Ru/MnCr2O4, C18O2 | 2.6 × 10−15 | - |
Sample 1 | keff (700 °C), s−1 | TOF, s−1 | DO (700 °C), 10−15 cm2/s |
---|---|---|---|
5 wt.% Ni/Ce0.75Zr0.25O2-I | 46 | 2.9 | 7.1 |
5 wt.% Ni/Ce0.75Zr0.25O2-O | 51 | 2.4 | 13 |
5 wt.% Ni/Ce0.75Ti0.1Zr0.15O2-I | 38 | 3.4 | 3.2 |
5 wt.% Ni/Ce0.75Ti0.05Nb0.05Zr0.15O2-I | 64 | 9.0 | 1.7 |
5 wt.% Ni/Ce0.75Ti0.05Nb0.05Zr0.15O2-O | 38 | 2.6 | 7.8 |
Catalyst Composition | Partial Oxidation 1 | Steam Reforming 2 | Dry Reforming 3 |
---|---|---|---|
LaNiOx/Ce0.2Zr0.8O2 | 80 | ||
LaNiPt/Ce0.2Zr0.8O2 (0.4 wt.% Pt) | 63 | 16 | 62 |
0.4 wt.% Pt/Ce0.2Zr0.8O2 | 40 | 20 | 5 |
0.4 wt.% Pt+2.8 La/Ce0.2Zr0.8O2 | 94 | 44 | 44 |
1.8 wt.% Pt/Ce0.2Zr0.8O2 | 40 | 4 | 1 |
1.4 wt.% Pt/Pr0.05(Ce0.5Zr0.5)0.95O | 40 | ||
1.4 wt.% Pt/Pr0.3Ce0.35Zr0.35O2 | 80 | 30 | 30 |
1.4 wt.% Pt/Gd0.3 Ce0.35Zr0.35O2 | 60 | 8 | |
1.4 wt.% Pt/La0.3 Ce0.35Zr0.35O2 | 30 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadykov, V.; Simonov, M.; Eremeev, N.; Mezentseva, N. Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds. Energies 2021, 14, 6334. https://doi.org/10.3390/en14196334
Sadykov V, Simonov M, Eremeev N, Mezentseva N. Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds. Energies. 2021; 14(19):6334. https://doi.org/10.3390/en14196334
Chicago/Turabian StyleSadykov, Vladislav, Mikhail Simonov, Nikita Eremeev, and Natalia Mezentseva. 2021. "Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds" Energies 14, no. 19: 6334. https://doi.org/10.3390/en14196334
APA StyleSadykov, V., Simonov, M., Eremeev, N., & Mezentseva, N. (2021). Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds. Energies, 14(19), 6334. https://doi.org/10.3390/en14196334