Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study
Abstract
:1. Introduction
1.1. Battery Electric Heavy-Duty Trucks
1.2. Electric Machine Efficiency
2. Methodology
2.1. Vehicle Parameters
2.2. MEAPA Tool
2.3. LOTUS
3. Results
4. Sensitivity Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Battery Electric Vehicle |
EM | Electric Machine |
EU | European Union |
FCEV | Fuel Cell Electric Vehicle |
ICE(V) | Internal Combustion Engine (Vehicle) |
IM | Induction Machine |
IPMSM | Interior Permanent-Magnet Synchronous Machine |
LH | Long Haul |
LOTUS | Long-Haul Truck Simulation |
MEAPA | Model for the design and analysis of a PMSM or ASM (German: Modell für den Entwurf und die Analyse einer PMSM oder ASM) |
PMSM | Permanent-Magnet Synchronous Machine |
RD | Regional Delivery |
VECTO | Vehicle Energy Consumption Calculation Tool |
References
- Paris Agreement—Climate Action—European Commission. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_en#tab-0-0 (accessed on 1 August 2019).
- European Environment Agency. Greenhouse Gas Emissions from Transport in Europe; EEA: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/ds_resolveuid/7009a89effc04dbea8b5f94ff0a39912 (accessed on 23 April 2020).
- Regulation of the European Parliament and of the Council Setting CO2 Emission Performance Standards for New Heavy-Duty Vehicles, 2018.
- Moultak, M.; Lutsey, N.; Hall, D. Transitioning to Zero-Emission Heavy-Duty Freight Vehicles. 2017. Available online: https://theicct.org/publications/transitioning-zero-emission-heavy-duty-freight-vehicles (accessed on 14 December 2018).
- Wallentowitz, H.; Freialdenhoven, A.; Olschewski, I. Strategien zur Elektrifizierung des Antriebstranges. Technologien, Märkte und Implikationen (Strategies for Powertrain Electrification: Technologies, Markets and Implications); Vieweg + Teubner/GWV Fachverlage GmbH: Wiesbaden, Germany, 2010; ISBN 9783834897015. [Google Scholar]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Nicoletti, L.; Bronner, M.; Danquah, B.; Koch, A.; Konig, A.; Krapf, S.; Pathak, A.; Schockenhoff, F.; Sethuraman, G.; Wolff, S.; et al. Review of Trends and Potentials in the Vehicle Concept Development Process. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; pp. 1–15, ISBN 9781728156415. [Google Scholar]
- Mahmoudi, A.; Soong, W.L.; Pellegrino, G.; Armando, E. Efficiency maps of electrical machines. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE 2015), Montreal, QC, Canada, 20–24 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2791–2799, ISBN 9781467371513. [Google Scholar]
- Mareev, I.; Becker, J.; Sauer, D. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation. Energies 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Sen, B.; Ercan, T.; Tatari, O. Does a battery-electric truck make a difference?—Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. J. Clean. Prod. 2017, 141, 110–121. [Google Scholar] [CrossRef]
- Hoepke, E.; Appel, W.; Brähler, H.; Dahlhaus, U. Nutzfahrzeugtechnik; Springer Fachmedien: Wiesbaden, Germany, 2010; ISBN 9783834809957. [Google Scholar]
- Wolff, S.; Seidenfus, M.; Gordon, K.; Álvarez, S.; Kalt, S.; Lienkamp, M. Scalable Life-Cycle Inventory for Heavy-Duty Vehicle Production. Sustainability 2020, 12, 5396. [Google Scholar] [CrossRef]
- Naunheimer, H.; Bertsche, B.; Ryborz, J. Fahrzeuggetriebe. Grundlagen, Auswahl, Auslegung und Konstruktion (Automotive Transmissions. Basics, Selection, Design and Construction), 3rd ed.; Springer: Berlin, Germany, 2019; ISBN 9783662588833. [Google Scholar]
- Verbruggen, F.J.R.; Silvas, E.; Hofman, T. Electric Powertrain Topology Analysis and Design for Heavy-Duty Trucks. Energies 2020, 13, 2434. [Google Scholar] [CrossRef]
- Füßel, A. Entwicklungspotenzial technischer Kriterien der BEV-Technologie. In Technische Potenzialanalyse der Elektromobilität: Stand der Technik, Forschungsausblick und Projektion auf das Jahr 2025; Füßel, A., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; pp. 35–82. ISBN 9783658166953. [Google Scholar]
- Finken, T. Fahrzyklusgerechte Auslegung von Permanentmagneterregten Synchronmaschinen für Hybrid- und Elektrofahrzeuge (Design of Permanent Magnet Excited Synchronous Machines for Hybrid and Electric Vehicles according to the Driving Cycle). Ph.D. Thesis, Technical University of Aachen, Aachen, Germany, 2011. [Google Scholar]
- Hu, X.; Li, Y.; Lv, C.; Liu, Y. Optimal Energy Management and Sizing of a Dual Motor-Driven Electric Powertrain. IEEE Trans. Power Electron. 2019, 34, 7489–7501. [Google Scholar] [CrossRef]
- Guo, N.; Lenzo, B.; Zhang, X.; Zou, Y.; Zhai, R.; Zhang, T. A Real-Time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 4935–4946. [Google Scholar] [CrossRef] [Green Version]
- Teigelkötter, J. Energieeffiziente elektrische Antriebe: Grundlagen, Leistungsleektronik, Betriebsverhalten und Regelung von Drehstrommotoren (Energy-Efficient Electric Drives: Fundamentals, Power Lelectronics, Operating Behavior and Control of Three-Phase Motors); Vieweg + Teubner: Wiesbaden, Germany, 2013; ISBN 9783834823304. [Google Scholar]
- Kremser, A. Elektrische Maschinen und Antriebe (Electrical Machines and Drives); Vieweg + Teubner: Wiesbaden, Germany, 2004; ISBN 9783519161882. [Google Scholar]
- Müller, G.; Ponick, B. Berechnung Elektrischer Maschinen (Computation of Electrical Machines), 10th ed.; Wiley-VCH: Berlin, Germany, 2014; ISBN 9783527405251. [Google Scholar]
- Hofmann, P. Hybridfahrzeuge (Hybridvehicles), 2nd ed.; Springer: Vienna, Austria, 2014; ISBN 9783709117798. [Google Scholar]
- Simion, A.; Livadaru, L.; Mihai, S.; Munteanu, A.; Cantemir, C.G. Induction Machine with Improved Operating Performances for Electric Trucks. A FEM-Based Analysis. Adv. Electr. Comput. Eng. 2010, 10, 71–76. [Google Scholar] [CrossRef]
- Permanent Magnet Synchronous Machines as “Brushless DC Drives”: High Torque Machines. Available online: https://www.ew.tu-darmstadt.de/media/ew/vorlesungen_4/vorlesungmotordevelopementforelectricaldrivesystems/ss_14/Folie_MD_1_5_english.pdf (accessed on 7 February 2020).
- Binder, A. Elektrische Maschinen und Antriebe (Electrical Machines and Powertrains), 1st ed.; Springer: Berlin, Germany, 2012; ISBN 9783540718499. [Google Scholar]
- Artetxe, G.; Paredes, J.; Prieto, B.; Martinez-Iturralde, M.; Elosegui, I. Optimal Pole Number and Winding Designs for Low Speed–High Torque Synchronous Reluctance Machines. Energies 2018, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Grunditz, E.A.; Thiringer, T. Performance Analysis of Current BEVs Based on a Comprehensive Review of Specifications. IEEE Trans. Transp. Electrific. 2016, 2, 270–289. [Google Scholar] [CrossRef]
- Rafael, M.; Lozano, A.; Cervantes, J.; Mucino, V.; Cajun, C.L. A method for powertrain selection of heavy-duty vehicles with fuel savings. IJHVS 2009, 16, 49. [Google Scholar] [CrossRef]
- Yang, G.; Xu, H.; Wang, Z.; Tian, Z. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps. Int. J. Transp. Sci. Technol. 2016, 5, 93–102. [Google Scholar] [CrossRef] [Green Version]
- AxleTech. EPS Series. EPS785. 2018. Available online: https://www.axletech.com/at-admin/resources/Literature/eps785flyerletterweb.pdf (accessed on 13 February 2020).
- DAF Trucks Showcases Electric and Hybrid Trucks at IAA CV. Available online: https://www.greencarcongress.com/2018/09/20180927-daf.html (accessed on 13 February 2020).
- DAF Präsentiert Neuen E-Lkw (DAF Presents New E-Truck). Available online: https://www.eurotransport.de/artikel/cf-electric-als-6x2-fahrgestell-daf-praesentiert-neuen-e-lkw-10986730.html (accessed on 13 February 2020).
- Scania Stellt Vollelektrischen Lkw Mit 250 km Reichweite vor (Scania Introduces All-Electric Truck with 250 km Range). Available online: https://www.scania.com/ch/de/home/experience-scania/news-and-events/News/archive/2020/09/bev.html (accessed on 2 December 2020).
- Hyundai Liefert erste Xcient Fuel Cell Brennstoffzellen-Lkw aus (Hyundai Delivers first Xcient Fuel Cell Fuel Cell Trucks). Available online: https://www.hyundai.news/de/unternehmen/hyundai-liefert-erste-xcient-fuel-cell-brennstoffzellen-lkw-aus/ (accessed on 2 December 2020).
- Meritor Introduces Electric Drives for Heavy Trucks—Electrive.com. Available online: https://www.electrive.com/2019/10/30/meritor-introduces-electric-drives-for-heavy-trucks/ (accessed on 13 February 2020).
- AxTrax (in Development). Available online: https://www.zf.com/products/en/trucks/products_48386.html (accessed on 13 February 2020).
- ZF Friedrichshafen AG. Product Overview. Axle & Transmission Systems for Buses & Coaches. 2019. Available online: https://www.zf.com/products/media/product_media/buses_1/product_overview_1/product_overview_axle_transmission_systems.pdf (accessed on 13 February 2020).
- Electric Trucks: Complete Disagreement. Available online: https://www.idtechex.com/ko/research-article/electric-trucks-complete-disagreement/9529 (accessed on 13 February 2020).
- Here’s Everything We Know about the Tesla Semi. Available online: https://www.trucks.com/2019/09/05/everything-we-know-about-the-tesla-semi-truck/ (accessed on 13 February 2020).
- E-Force One AG. Facts & Figures. E-Trucks. 2019. Available online: https://www.eforce.ch/products/ef26 (accessed on 13 February 2020).
- BRUSA Supplies Complete Drivetrain for E-FORCE 18-t Electric Truck. Available online: https://www.greencarcongress.com/2013/07/brusa-20130718.html (accessed on 13 February 2020).
- Heerwagen, M. So Wird aus Einem Diesel- ein E-Lkw (How a Diesel Truck Becomes an E-Truck). Eurotransport. 4 May 2020. Available online: https://www.eurotransport.de/artikel/umbau-von-diesel-zu-e-lkw-von-0-auf-800-volt-11160701.html (accessed on 1 December 2020).
- Allison Introduces New AXE Series E-Axles for MD, HD Trucks; in Peterbilt 579EV Class 8 EV for Testing. Available online: https://www.greencarcongress.com/2019/04/20190425axe.html (accessed on 13 February 2020).
- Neue E-Achsen von Allison (New E-Axles from Allison). Available online: https://www.eurotransport.de/artikel/fuer-lkw-und-busse-neue-e-achsen-von-allison-10757781.html (accessed on 13 February 2020).
- Elias-E-Truck auf dem Weg in Die Serienfertigung (Elias E-Truck on the Way to Series Production). Available online: https://transport-online.de/news/elias-e-truck-auf-dem-weg-die-serienfertigung-14533.html (accessed on 13 February 2020).
- Robar, C. IVECO, FPT Industrial and Nikola Corporation Unveil the Nikola TRE. 2019. Available online: https://nikolamotor.com/press_releases/iveco-fpt-industrial-and-nikola-corporation-unveil-the-nikola-tre-71 (accessed on 13 February 2020).
- Hoffmann, J. Elektro-Lkw Kommt 2021 (Electric Truck Coming in 2021). Eurotransport. 5 December 2019. Available online: https://www.eurotransport.de/artikel/nikola-tre-auf-iveco-basis-elektro-lkw-kommt-2021-11037980.html (accessed on 1 December 2020).
- Inside Nikola’s Truck Technology—From Fuel Cells to Lights. Available online: https://www.trucks.com/2019/05/22/inside-nikolas-truck-technology-fuel-cells-tail-lights/ (accessed on 1 December 2020).
- Kalt, S.; Erhard, J.; Danquah, B.; Lienkamp, M. Electric Machine Design Tool for Permanent Magnet Synchronous Machines. In Proceedings of the 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 8–10 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7, ISBN 9781728137032. [Google Scholar]
- Kalt, S.; Erhard, J.; Lienkamp, M. Electric Machine Design Tool for Permanent Magnet Synchronous Machines and Induction Machines. Machines 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- LOTUS—Long-Haul Truck Simulation: Longitudinal Dynamic Simulation for Heavy Duty Vehicles. Available online: https://github.com/TUMFTM/LOTUS. (accessed on 1 January 2021).
- Fries, M.; Kruttschnitt, M.; Lienkamp, M. Multi-objective optimization of a long-haul truck hybrid operational strategy and a predictive powertrain control system. In Proceedings of the Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 11–14 April 2017; pp. 1–7. [Google Scholar]
- Fries, M.; Lehmeyer, M.; Lienkamp, M. Multi-criterion optimization of heavy-duty powertrain design for the evaluation of transport efficiency and costs. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8, ISBN 9781538615263. [Google Scholar]
- Tansini, A.; Nikiforos-Georios, Z.; Prado Rujas, I.; Fontaras, G. Analysis of VECTO data for Heavy-Duty Vehicles (HDV) CO2 Emission Targets; Publications Office of the European Union: Luxembourg, Brussels, 2018. [Google Scholar] [CrossRef]
- Fries, M.; Wolff, S.; Horlbeck, L.; Kerler, M.; Lienkamp, M.; Burke, A.; Fulton, L. Optimization of hybrid electric drive system components in long-haul vehicles for the evaluation of customer requirements. In Proceedings of the 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, 12–15 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1141–1146, ISBN 9781509023646. [Google Scholar]
- So Testet der TRUCKER. Available online: http://www.trucker.de/so-testet-der-trucker-1156608.html (accessed on 13 September 2017).
- Rexeis, M.; Quaritsch, M.; Hausberger, S.; Silberholz, G.; Kies, A.; Steven, H.; Goschütz, M.; Vermeulen, R. VECTO Tool Development: Completion of Methodology to Simulate Heavy Duty Vehicles’ Fuel Consumption and CO2 Emissions. Upgrades to the Existing Version of VECTO and Completion of Certification Methodology to be Incorporated into a Commission Legislative Proposal. 2017. Available online: https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/sr7_lot4_final_report_en.pdf (accessed on 15 February 2019).
- Fries, M.; Baum, A.; Wittman, M.; Lienkamp, M. Derivation of a real-life driving cycle from fleet testing data with the Markov-Chain-Monte-Carlo Method. In Proceedings of the 2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Fries, M.; Sinning, M.; Lienkamp, M.; Höpfner, M. Virtual Truck—A Method for Customer Oriented Commercial Vehicle Simulation. In Commercial vehicle technology 2016, Proceedings of the 4th Commercial Vehicle Technology Symposium (CVT 2016), 8–10 March 2016, Kaiserslautern, Germany; Berns, K., Dreßler, K., Fleischmann, P., Ilsen, R., Jörg, B., Kalmar, R., Nagel, T., Schindler, C., Stephan, N.K., Eds.; Shaker Verlag: Herzogenrath, Germany, 2016; ISBN 9783844042290. [Google Scholar]
- MEAPA—Model for the Design and Analysis of a PMSM or ASM (German: Modell für den Entwurf und die Analyse einer PMSM oder ASM). Available online: https://github.com/TUMFTM/Electric_Machine_Design (accessed on 1 January 2021).
Concept | Topology | Gear | No. of Machines | Machine Type | Power (Rated) | Rot. Velocity (Rated) 1 | EM Torque (Max) | Source |
---|---|---|---|---|---|---|---|---|
Axletech EPS785 | central motor | 1 | 1 | PMSM2 | 350 | - | 3500 | [30] |
DAF CF Electric | central motor | 1 | 1 | PMSM | 210 | 8837 | 2000 | [31,32] |
Scania L | central motor | 1 | 2 | - | 230 | - | 1300 | [33] |
Hyundai XCIENT | central motor | 1 | 6 | - | 350 | - | 3400 | [34] |
Meritor 17xe | central motor, eAxle | 2–3 | 1 | - | 410 | - | 2000 | [35] |
ZF AxTrax | distributed | 1 | 2 | IM | 60 | 11,362 | 485 | [13,36,37] |
Nikola Two | distributed | 1 | 4 | - | 186.25 | 677.75 | [38] | |
Tesla Semi | distributed | 1 | 4 | PMSM | 223 | 5700 | 380 | [39] |
E-Force EF18 SZM | dual central motor | 3 | 2 | PMSM | 150 | 2525 | 2025 | [40,41,42] |
Alisson AXE | dual central motor | 2 | 2 | - | 400 | - | - | [43,44] |
Ansorge Elias | dual central motor | 12 | 2 | PMSM | 140 | 1250 | [45] | |
Nikola Tre | dual central motor, eAxle | 1 | 2 | PMSM | 240 | 9819 | 900 | [46,47,48] |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Voltage (rated) | U | 800 | V |
Number of pole pairs | p | 4 | - |
Rot. velocity (max) | 1.75 | rpm | |
Power factor | 1 | - | |
Number of phases | m | 3 | - |
Magnet arrangements | - | internal, embedded | - |
Circuit-wiring | - | Star | - |
Wire-type | - | Round-wire | - |
Cooling type | - | Liquid | - |
Iron material | - | VACOFLUX50 | - |
Conductor material | - | Copper | - |
Winding type | - | Single-layer, integral-slot | - |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Payload | 19,300 | kg | |
Frontal area | 10.2 | m2 | |
Drag coefficient | 0.53 | - | |
Tire radius | 0.4465 | m | |
Rolling drag coefficient | 0.0043 | - | |
Auxiliary consumers | 3.5 | kW |
Vehicle | Weight in kg |
---|---|
E Force | 1437 |
ZF | 681 |
Nikola | 2345 |
Tesla | 1265 |
DAF | 2118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolff, S.; Kalt, S.; Bstieler, M.; Lienkamp, M. Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study. Energies 2021, 14, 328. https://doi.org/10.3390/en14020328
Wolff S, Kalt S, Bstieler M, Lienkamp M. Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study. Energies. 2021; 14(2):328. https://doi.org/10.3390/en14020328
Chicago/Turabian StyleWolff, Sebastian, Svenja Kalt, Manuel Bstieler, and Markus Lienkamp. 2021. "Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study" Energies 14, no. 2: 328. https://doi.org/10.3390/en14020328
APA StyleWolff, S., Kalt, S., Bstieler, M., & Lienkamp, M. (2021). Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study. Energies, 14(2), 328. https://doi.org/10.3390/en14020328